
The AGL Wayland compositor

Marius Vlad
marius.vlad@collabora.com

Open FirstOpen First

Hi, I’m Marius

-/-

3

Outline and agenda

4

Outline and agenda
● Wayland ecosystem, compositor, shells and WMs

● In-Vehicle Infotainment – IVI shell

● AGL Wayland compositor

5

Wayland ecosystem, compositors, shells
and WMs

6

Wayland, compositors, shells and WMs

● Wayland a protocol; a specification; only local → →

vs X core protocol, network transparent

● Wayland Compositor an implementation of the →
(Wayland) protocol; servers vs X server with a built-→
in compositing manager

7

Wayland, compositors, shells and WMs

● Shell how an user and applications interact vs X →

Desktop environments: KDE, Gnome, XFCE →
different types of the same desktop-shell

● Window managers multiple implementations of →
a same interface, wl_shell or xdg-shell

8

Wayland, compositors, shells and WMs

● wayland-protocols other protocol specifications that can →
standardize different operations:

– Xdg-shell (suited for traditional DE), linux-dmabuf (dmabuf-

based buffers) and many, many more

● Compositor private extensions:

– Screen shooting, bypass GPU imports, debugging

– adds additional functionality to compositors

●

9

Wayland, compositors, shells and WMs

From a system where parts of it are scattered in
different components under different projects

 → a system where all components are under the
same project; apart from clients

10

In-Vehicle Infotainment shell

11

In-Vehicle Infotainment shell != Desktop
shell

● IVI-shell different use-cases than on desktop→
– no user interaction for window positioning, spanning or

dragging

– similar to a tiling WM; with a customizable window placement

– policy: don’t show/show certain windows in certain events &

conditions

12

In-Vehicle Infotainment shell

● IVI-shell seeks to implement the IVI requirements; effort lead →
by former GENEVI Alliance (now COVESA)

– private extension in weston compositor

– based & made up of multiple components

– retains the idea of splitting components under different

projects & processes

– all clients need to have an implementation

13

In-Vehicle Infotainment shell
– applications identified as a number: example 3 different applications

processes

– requires a controller, acts a window manager that manages layouts

and window positioning

– bring your own controller

14

In-Vehicle Infotainment shell

● Not all doom & gloom

– it can display desktop clients (xdg-shell)

– seen an uptick in changes and maintenance effort

● But….

– maintenance with multiple components & dependencies

associated

– Still a departure from the Wayland compositor paradigm

15

The AGL Wayland compositor

16

The AGL Wayland compositor

● An entire compositor wouldn’t be even a bigger issue than writing

your own controller?

● Simplicity fairly similar to Weston; start-up code almost identical→
● A fitness process less components less maintenance→ →
● Customizable to an different degree owning the entire →

compositor

17

The AGL Wayland compositor
● Libweston-based: include libweston.h + start-up code = Wayland compositor

● All AGL/IVI functionality provided by two private extensions:
– agl-shell (agl-shell-desktop) only the HMI implementing the client side →

protocol

– gRPC proxy – additional window management

● clients: all toolkits implement the desktop-like, xdg-shell protocol, use it to

perform app identification

18

The AGL Wayland compositor – agl_shell

19

The AGL Wayland compositor – agl-shell –
single surface

20

Thank you!
marius.vlad@collabora.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

