
Apertis integration testing with LAVA

Contents1

Integration testing example . 22

Local testing . 23

Testing in LAVA . 34

Changes in testing script . 35

Create GIT repository for the test suite 56

Add the test into Apertis LAVA CI 57

Details on test job templates . 108

Using short-lived CI tokens . 119

Non-public jobs . 1210

LAVA1 is a testing system allowing the deployment of operating systems to11

physical and virtual devices, sharing access to devices between developers. As12

a rule tests are started in non-interactive unattended mode and LAVA provides13

logs and results in a human-readable form for analysis.14

As a common part of the development cycle we need to do some integration15

testing of the application and validate it’s behavior on different hardware and16

software platforms. LAVA provides the ability for Apertis to share a pool of17

test devices, ensuring good utilization of these resources in addition to providing18

automated testing.19

Integration testing example20

Let’s take the systemd service and systemctl CLI tool as an example to illustrate21

how to test an application with a D-Bus interface.22

The goal could be defined as follows:23

As a developer of the systemctl CLI tool, I want to ensure that24

systemctl is able to provide correct information about the system25

state.26

Local testing27

To simplify the guide we are testing only the status of systemd with the command28

below:29

$ systemctl is-system-running30

running31

It doesn’t matter if systemctl is reporting some other status, degraded for in-32

stance. The goal is to validate if systemctl is able to provide a proper status,33

rather than to check the systemd status itself.34

To ensure that the systemctl tool is providing the correct information we may35

check the system state additionally via the systemd D-Bus interface:36

1https://www.lavasoftware.org/

2

https://www.lavasoftware.org/
https://www.lavasoftware.org/

$ gdbus call --system --dest=org.freedesktop.systemd1 --object-path "/org/freedesktop/systemd1" -37

-method org.freedesktop.DBus.Properties.Get org.freedesktop.systemd1.Manager SystemState38

(<'running'>,)39

So, for local testing during development we are able to create a simple script40

validating that systemctl works well in our development environment:41

#!/bin/sh42

43

status=$(systemctl is-system-running)44

45

gdbus call --system --dest=org.freedesktop.systemd1 \46

--object-path "/org/freedesktop/systemd1" \47

--method org.freedesktop.DBus.Properties.Get org.freedesktop.systemd1.Manager SystemState | \48

grep "${status}"49

50

if [$? -eq 0]; then51

echo "systemctl is working"52

else53

echo "systemctl is not working"54

fi55

Testing in LAVA56

As soon as we are done with development, we push all changes to GitLab and CI57

will prepare a new version of the package and OS images. But we do not know58

if the updated version of systemctl is working well for all supported devices and59

OS variants, so we want to have the integration test to be run by LAVA.60

Since the LAVA is a part of CI and works in non-interactive unattended mode61

we can’t use the test script above as is.62

To start the test with LAVA automation we need to:63

1. Adopt the script for LAVA64

2. Integrate the testing script into Apertis LAVA CI65

Changes in testing script66

The script above is not suitable for unattended testing in LAVA due some issues:67

• LAVA relies on exit code to determine if test a passed or not. The exam-68

ple above always return the success code, only a human-readable string69

printed by the script provides an indication of the status of the test70

• if systemctl is-system-running call fails for some other reason (with a71

segfault for instance), the script will proceed further without that error72

being detected and LAVA will set the test as passed, so we will have a73

false positive result74

3

• LAVA is able to report separately for any part of the test suite –just need75

to use LAVA-friendly output pattern76

So, more sophisticated script suitable both for local and unattended testing in77

LAVA could be the following:78

#!/bin/sh79

80

Test if systemctl is not crashed81

testname="test-systemctl-crash"82

status=$(systemctl is-system-running)83

if [$? -le 4]; then84

echo "${testname}: pass"85

else86

echo "${testname}: fail"87

exit 188

fi89

90

Test if systemctl return non-empty string91

testname="test-systemctl-value"92

if [-n "$status"]; then93

echo "${testname}: pass"94

else95

echo "${testname}: fail"96

exit 197

fi98

99

Test if systemctl is reporting the same status as100

systemd exposing via D-Bus101

testname="test-systemctl-dbus-status"102

gdbus call --system --dest=org.freedesktop.systemd1 \103

--object-path "/org/freedesktop/systemd1" \104

--method org.freedesktop.DBus.Properties.Get \105

org.freedesktop.systemd1.Manager SystemState | \106

grep "${status}"107

if [$? -eq 0]; then108

echo "${testname}: pass"109

else110

echo "${testname}: fail"111

exit 1112

fi113

Now the script is ready for adding into LAVA testing. Pay attention to output114

format which will be used by LAVA to detect separate tests from our single115

script. The exit code from the testing script must be non-zero to indicate the116

test suite failure.117

4

Create GIT repository for the test suite118

We assume the developer is already familiar with GIT version control system2119

and has an account for the Apertis GitLab3 as described in the Development120

Process guide4121

The test script must be accessible by LAVA for downloading. LAVA has support122

for several methods for downloading but for Apertis the GIT fetch is preferable123

since we are using separate versions of test scripts for each release.124

It is strongly recommended to create a separate repository with test scripts and125

tools for each single test suite.126

As a first step we need a fresh and empty GIT repository somewhere (for example127

in your personal space of the GitLab instance) which needs to be cloned locally:128

git clone git@gitlab.apertis.org:d4s/test-systemctl.git129

cd test-systemctl130

By default the branch name is set to main but Apertis automation require to use131

the branch name aimed at a selected release (for instance apertis/v2022dev1), so132

need to create it:133

git checkout HEAD -b apertis/v2022dev1134

Copy your script into GIT repository, commit and push it into GitLab:135

chmod a+x test-systemctl.sh136

git add test-systemctl.sh137

git commit -s -m "Add test script" test-systemctl.sh138

git push -u origin apertis/v2022dev1139

Add the test into Apertis LAVA CI140

Apertis test automation could be found in the GIT repository for Apertis test141

cases5, so we need to fetch a local copy and create a work branch wip/example142

for our changes:143

git clone git@gitlab.apertis.org:tests/apertis-test-cases.git144

cd apertis-test-cases145

git checkout HEAD -b wip/example146

1. Create test case description.147

First of all we need to create the instruction for LAVA with following148

information:149

• where to get the test150

2https://www.apertis.org/guides/app_devel/version_control/
3https://gitlab.apertis.org/
4https://www.apertis.org/guides/app_devel/development_process/
5https://gitlab.apertis.org/tests/apertis-test-cases

5

https://www.apertis.org/guides/app_devel/version_control/
https://gitlab.apertis.org/
https://www.apertis.org/guides/app_devel/development_process/
https://www.apertis.org/guides/app_devel/development_process/
https://www.apertis.org/guides/app_devel/development_process/
https://gitlab.apertis.org/tests/apertis-test-cases
https://gitlab.apertis.org/tests/apertis-test-cases
https://gitlab.apertis.org/tests/apertis-test-cases
https://www.apertis.org/guides/app_devel/version_control/
https://gitlab.apertis.org/
https://www.apertis.org/guides/app_devel/development_process/
https://gitlab.apertis.org/tests/apertis-test-cases

• how to run the test151

Create the test case file test-cases/test-systemctl.yaml with your favorite152

editor:153

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

metadata:

name: test-systemctl

format: "Apertis Test Definition 1.0"

image-types:

fixedfunction: [armhf, arm64, amd64]

image-deployment:

- OSTree

group: systemctl

type: functional

exec-type: automated

priority: medium

maintainer: "Apertis Project"

description: "Test the systemctl."

expected:

- "The output should show pass."

install:

git-repos:

- url: https://gitlab.apertis.org/d4s/test-systemctl.git

branch: apertis/v2022dev1

run:

steps:

- "# Enter test directory:"

- cd test-systemctl

- "# Execute the following command:"

- lava-test-case test-systemctl --shell ./test-systemctl.sh

parse:

pattern: "(?P<test_case_id>.*):\\s+(?P<result>(pass|fail))"

This test is aimed to be run for an ostree-based fixedfunction Apertis154

image for all supported architectures. However the metadata is mostly155

needed for documentation purposes.156

The group field is used to group test cases into the same LAVA job descrip-157

tion. See the job templates below.158

Action “install”points to the GIT repository as a source for the test, so159

LAVA will fetch and deploy this repository for us.160

6

Action “run”provides the step-by-step instructions on how to execute the161

test. Please note that it is recommended to use wrapper for the test for162

integration with LAVA.163

Action “parse”provides its own detection for the status of test results164

printed by script.165

2. Push the test case to the GIT repository.166

This step is mandatory since the test case would be checked out by LAVA167

internally during the test preparation.168

git add test-cases/test-systemctl.yaml169

git commit -s -m "add test case for systemctl" test-cases/test-170

systemctl.yaml171

git push --set-upstream origin wip/example172

3. If needed, add a job template to be run in lava. Job templates contain173

all needed information for LAVA to boot the target device and deploy the174

OS image onto it.175

Job template files must be named lava/group-[GROUP]-tpl.yaml.176

e.g.: Create the simple template lava/group-systemctl-tpl.yaml with your177

lovely editor:178

job_name: systemctl test on {{release_version}} {{pretty}} {{image_date}}179

{% if device_type == 'qemu' %}180

{% include 'common-qemu-boot-tpl.yaml' %}181

{% else %}182

{% include 'common-boot-tpl.yaml' %}183

{% endif %}184

- test:185

timeout:186

minutes: 15187

namespace: system188

name: {{group}}-tests189

definitions:190

{%- for test_name in tests %}191

- repository: https://gitlab.apertis.org/tests/apertis-test-192

cases.git193

branch: 'wip/example'194

from: git195

name: {{test_name}}196

path: test-cases/{{test_name}}.yaml197

{%- endfor -%}198

If no template exists for a given group, the default template (lava/group-199

default-tpl.yaml) will be used, still creating a different job per group. It200

7

looks a lot like the example template above. This is useful if you do not201

need any specific variables set or special boot steps.202

Hopefully you don’t need to deal with the HW-related part, boot and203

deploy since we already have those instructions for all supported boards204

and Apertis OS images. See common boot template6 for instance.205

Please pay attention to branch –it must point to your development branch206

while you are working on your test.207

It is highly recommended to use a temporary group specific to the test208

you are working on to avoid unnecessary workload on LAVA while you’re209

developing the test.210

4. Generate the job descriptions.211

Since LAVA is a part of Apertis OS CI, it requires some variables to be212

provided for using Apertis templates. Let’s define the board we will use213

for testing, as well as the image release and variant:214

release=v2023dev1215

version=v2023dev1.0rc2216

variant=fixedfunction217

arch=armhf218

board=uboot219

baseurl="https://images.apertis.org"220

imgpath="release/$release"221

image_name=apertis_ostree_${release}-${variant}-${arch}-${board}_${version}222

To generate the test job description, generate-jobs.py is used:223

./generate-jobs.py -d lava/devices.yaml --config lava/config.yaml224

--release ${release} --arch ${arch} --board ${board} --osname apertis225

--deployment ostree --type ${variant} --date ${version}226

--name ${image_name}227

-t visibility:"{'group': ['Apertis']}" -t priority:"medium"228

It will generate one job description file for each group that is found com-229

patible with those parameters.230

generate-jobs.py can be found here7231

There should not be any error or warning. You may want to add the -v232

argument to see the generated LAVA job.233

If the test definition is on an external git repository, you can specify the234

folder to load the test cases from with --tests-dir or, for debugging one235

specific test case, specify it with --test-case.236

6https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2022/lava/common-
boot-tpl.yaml

7https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2023dev1/generate-
jobs.py

8

https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2022/lava/common-boot-tpl.yaml
https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2023dev1/generate-jobs.py
https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2022/lava/common-boot-tpl.yaml
https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2022/lava/common-boot-tpl.yaml
https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2023dev1/generate-jobs.py
https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2023dev1/generate-jobs.py

It is recommended to set visibility variable to “Apertis”group during237

development to avoid any credentials/passwords leak by occasion. Setting238

the additional variable priority to high allows you to bypass the jobs239

common queue if you do not want to wait for your job results for ages.240

The generate-jobs.py tool generates the test job from local files, so you241

don’t need to push your changes to GIT until your test job is working as242

designed.243

5. Configure and test the lqa tool.244

For interaction with LAVA you need to have the lqa tool installed and245

configured as described in LQA8 tutorial.246

The tool is pretty easy to install in the Apertis SDK:247

$ sudo apt-get update248

$ sudo apt-get install -y lqa249

To configure the tool you need to create file ~/.config/lqa.yaml with the250

following authentication information:251

user: '<REPLACE_THIS_WITH_YOUR_LAVA_USERNAME>'252

auth-token: '<REPLACE_THIS_WITH_YOUR_AUTH_TOKEN>'253

server: 'https://lava.collabora.dev/'254

where user is your login name for LAVA and auth-token must be obtained255

from LAVA API: https://lava.collabora.dev/api/tokens/256

To test the setup just run command below, if the configuration is correct257

you should see your LAVA login name:258

$ lqa whoami259

d4s260

6. Submit your first job to LAVA.261

Jobs can be submitted with lava-submit.py. It can be found here9.262

You can select the job files you want to send, here it will be the one for263

our new test group systemctl:264

job-apertis_ostree_v2023dev1-fixedfunction-armhf-uboot_v2023dev1.0rc2-265

systemctl.yaml266

and can be sent with:267

$./lava-submit.py -c ~/.config/lqa.yaml submit268

job-apertis_ostree_v2023dev1-fixedfunction-armhf-uboot_v2023dev1.0rc2-269

systemctl.yaml270

8https://www.apertis.org/qa/lqa/
9https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2023dev1/lava-

submit.py

9

https://www.apertis.org/qa/lqa/
https://lava.collabora.dev/api/tokens/
https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2023dev1/lava-submit.py
https://www.apertis.org/qa/lqa/
https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2023dev1/lava-submit.py
https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2023dev1/lava-submit.py

Submitted job job-apertis_ostree_v2023dev1-fixedfunction-armhf-271

uboot_v2023dev1.0rc2-systemctl.yaml with id 3463731272

It is possible to check the job status by URL with the ID returned by the273

above command: https://lava.collabora.dev/scheduler/job/3463731274

The lava-submit.py tool is currently only a wrapper around the lqa tool. It275

is also capable to communicate the tested image to the QA Report App10.276

7. Push your template changes.277

Once your test case works as expected you should make sure it is in the278

right group, change the branch key in file lava/group-systemctl-tpl.yaml to279

a suitable target branch and submit your changes:280

git add lava/group-systemctl-tpl.yaml281

git commit -a -m "hello world template added"282

git push283

As a last step you need to create a merge request in GitLab. As soon as it gets284

accepted your test becomes part of Apertis testing CI.285

Details on test job templates286

The boot process for non-emulated devices and for QEMU differs, and due to287

the amount of differences the definitions are split into two separate template288

files.289

common-boot-tpl.yaml contains definition needed to boot Apertis images on real290

(non-emulated devices). Since they cannot boot images directly, the boot pro-291

cess is separated in two stages: flashing the image onto a device from which the292

board can boot, and booting into the image and running tests.293

The first stage boots over NFS into a (currently) Debian stretch image with a294

few extra tools needed to flash the image, downloads the image using HTTP,295

flashes it and reboots. This stage is defined using namespace: flash in the job296

YAML file. In most cases you won’t need to edit bits related to this stage. The297

second stage is common for both non-emulated devices and QEMU, despite298

them having certain differences. It is used to boot the image itself, prepare the299

LAVA test runner and run tests. This stage is defined using namespace: system.300

You normally don’t need to edit this stage either. The exception to this is when301

you need to load an image from a different source than images.apertis.org.302

Image URLs are defined in the deploy action. For common-boot-tpl.yaml, it is303

necessary to specify URLs to both image itself and its bmap file, which is used304

to speed up the flashing process and avoid unnecessary excessive device wear.305

For common-qemu-boot-tpl.yaml, only the URL to the image itself is needed, as306

QEMU doesn’t support bmap files yet.307

10https://qa.apertis.org/

10

https://lava.collabora.dev/scheduler/job/3463731
https://qa.apertis.org/
https://qa.apertis.org/

The second stage always performs two tests: sanity-check, which basically checks308

that the system actually works, and add-repo, which isn’t actually a test, and is309

used to add repositories to /etc/apt/sources.list on certain devices.310

Using short-lived CI tokens311

Gitlab provides a short-lived token called CI_JOB_TOKEN which can be used to give312

access to the contents of internal and private repositories during CI runs. From313

apertis/v2023dev3 we can make use of this token, using a different approach to314

job submission to the one described in the previous sections. That is, so far in315

this document, we’ve run lava-submit.py to batch upload the jobs generated by316

generate-jobs.py to LAVA. If we do the same thing in our CI pipeline, then the317

CI job will terminate shortly after the jobs are uploaded, invalidating our job318

token.319

Do not expose CI_JOB_TOKEN to the wider public by submitting publicly visible320

jobs. You should submit jobs with tokens in them as private. You should also321

reduce the privileges of job tokens11 when using CI_JOB_TOKEN in LAVA jobs.322

For this reason, instead of using lava-submit.py, we use a different tool, generate-323

test-pipeline.py, from the same repository when running CI tests. This makes324

a dynamic Gitlab pipeline to run the generated jobs. Each LAVA job will have325

its own Gitlab job to track it, and that means there is a short-lived token326

available that will remain valid for as long as the LAVA job runs. generate-327

test-pipeline.py can be found here12.328

There are two different places you might want to use such tokens with LAVA,329

and they require slightly different approaches. To use a short-lived token to330

gain access to a repository from a LAVA job description, for example to obtain331

test files from a private repository, the repository URL needs to be altered to332

show where to substitute the token. For example:333

https://gitlab-ci-token:{{ '{{job.CI_JOB_TOKEN}}' }}@gitlab.apertis.org/tests/apertis-334

test-cases.git335

The odd appearance is because two rounds of templating are occurring: we336

escape the template for the job token so that generate-jobs.py will preserve it.337

When our dynamic pipeline runs, the LAVA runner will substitute its own value338

for CI_JOB_TOKEN.339

To use a short-lived token from within a test-case, we need to do two things.340

First, we need to add a parameter to the test’s group template with the full341

URL for the repository we wish to include. The group templates form part of342

the job definition, and so we can modify the URL in exactly the same way as343

before.344

11https://docs.gitlab.com/ee/ci/jobs/ci_job_token.html#configure-the-job-token-scope-
limit

12https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2023dev3/generate-
test-pipeline.py

11

https://docs.gitlab.com/ee/ci/jobs/ci_job_token.html#configure-the-job-token-scope-limit
https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2023dev3/generate-test-pipeline.py
https://docs.gitlab.com/ee/ci/jobs/ci_job_token.html#configure-the-job-token-scope-limit
https://docs.gitlab.com/ee/ci/jobs/ci_job_token.html#configure-the-job-token-scope-limit
https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2023dev3/generate-test-pipeline.py
https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2023dev3/generate-test-pipeline.py

Secondly, we need to replace the repository URL in the test case with the new345

parameter. You cannot use templating within test cases themselves, you must346

setup a parameter or environment variable in the job definition that the test347

case can use. Parameters are preferable because they can be used in the install348

section of a test.349

Putting things together, let’s look at a section of a group template that:350

• Pulls test case files from apertis-test-cases using a short-lived token.351

• Sets up a parameter which contains the URL to clone glib-gio-fs using a352

short-lived token as authentication. We can use this parameter in a test353

case to obtain our test data.354

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

- test:

timeout:

minutes: 180

namespace: system

name: {{group}}-tests

definitions:

{%- for test_name in tests %}

- repository: https://gitlab-ci-token:{{ '{{job.CI_JOB_TOKEN}}' }}@gitlab.apertis.org/tests/apertis-test-cases.git

branch: 'apertis/v2023dev3'

history: False

from: git

name: {{test_name}}

path: test-cases/{{test_name}}.yaml

parameters:

EXAMPLE_REPO_URL: |-

https://gitlab-ci-token:{{ '{{job.CI_JOB_TOKEN}}' }}@gitlab.apertis.org/tests/glib-gio-fs.git

{%- endfor -%}

We could then amend our test-case in apertis-test-cases to use the parameter355

like this (note that there is no $ when substituting the parameter in an install356

section):357

1

2

3

4

install:

git-repos:

- url: EXAMPLE_REPO_URL

branch: 'apertis/v2023dev3'

Non-public jobs358

These instructions are written to submit LAVA jobs for ONLY PUBLIC Aper-359

tis images. If you need to submit a LAVA job for a private image, there are360

few things that need to be taken into consideration and few changes need to be361

12

made to these instructions: personal or group visibility should be selected for362

your jobs.363

If you really need to submit a private job, please contact the Apertis QA team.364

13

	Integration testing example
	Local testing
	Testing in LAVA
	Changes in testing script
	Create GIT repository for the test suite
	Add the test into Apertis LAVA CI
	Details on test job templates
	Using short-lived CI tokens
	Non-public jobs

