
Software distribution and updates

Contents1

Terminology 32

Application and services . 33

Base operating system . 34

Bundles . 35

Software distribution . 46

Software updates . 47

Operator-driven use cases 48

Building access control devices . 49

Robotic lawn mower . 510

User-driven use cases 611

Infotainment system . 612

Power and measuring tools . 713

Non-use-cases 714

Requirements 815

Conditional software deployment based on business rules 816

Configurable access rights to user data and system resources 817

Consistent state across devices . 818

Independent release and update of application domains 819

Operator-driven software distribution and updates 820

Protecting the fleet from software deployment issues 821

Resilience to distribution and update failures 822

Resilience to user operation . 923

Software inventory . 924

Tampering protection . 925

Unwanted changes to the software stack 926

Updates rollback . 927

User-driven software distribution . 928

High level features 929

Immutable software stack . 1030

Atomic updates . 1031

Separation between system and application domains 1032

Deployment management . 1033

Existing systems 1134

OSTree for base operating system . 1135

Flatpak and Docker for applications 1236

Eclipse hawkBit . 1237

Microsoft Azure IoT Edge . 1338

Appstore 1339

2

Curridge . 1340

Flathub . 1441

Summary of recommendations 1442

Reference: System updates and rollback 1443

Apertis is a mature platform that is compatible with modern and flexible solu-44

tions for software distribution and software update. This document describes45

user-driven and operator-driven use cases, explores the challenges of each use46

case to extract requirements, and finally propose building blocks for software47

distribution and software update.48

Terminology49

Application and services50

Application and services are loosely defined terms that indicate single functional51

entities from the perspective of end users. However each application may be52

composed of more than one component:53

• system services154

• user services255

• graphical programs356

From the perspectives of software updates and software distribution applications57

and services can be deployed as part of the base operating system or separately58

as bundles4.59

Base operating system60

The base operating system is the core component of the software stack. It61

includes the kernel, and basic userspace tools and libraries such as process man-62

ager, connectivity services, and update manager. Additional components like63

an application manager may be part of the base OS, depending on the intended64

usage.65

Bundles66

A bundle or “application bundle”refers to a unit that represent all the compo-67

nents of an Application or service. Comparing to mobile phones a bundle is68

similar to a phone “app”, and we would say that an Android .apk file contains69

a bundle. Some systems refer to this concept as a package, but that term is70

1https://www.apertis.org/glossary/#system-service
2https://www.apertis.org/glossary/#user-service
3https://www.apertis.org/glossary/#graphical-program
4https://www.apertis.org/glossary/#application-bundle

3

https://www.apertis.org/glossary/#system-service
https://www.apertis.org/glossary/#user-service
https://www.apertis.org/glossary/#graphical-program
https://www.apertis.org/glossary/#application-bundle
https://www.apertis.org/glossary/#system-service
https://www.apertis.org/glossary/#user-service
https://www.apertis.org/glossary/#graphical-program
https://www.apertis.org/glossary/#application-bundle

strongly associated with dpkg/apt (.deb) packages in Debian-derived systems,71

and it only partially captures the concept of a bundle.72

The granularity is usually different between packages and bundles. Installing73

an application using packages is likely to involve multiple packages, while the74

bundle approach in our context goes in the direction of a single monolithic75

bundle that contains all components of an application. A bundle, unlike a76

package, offers atomic updates, rollback, insulation from the base operating77

system, insulation from other applications and configurable run time permissions78

for user data and system resources.79

Docker images, Flatpak bundles, and Snaps are all examples of application80

bundles.81

Software distribution82

Software distribution is the process of delivering software to users and devices. It83

usually refers to the distribution of binaries of software to be installed or updated.84

However software distribution is more than a transport layer for packages an it85

can include authorization, inventory, and deployment management.86

Software updates87

The most common goals of an update are fixing bugs, removing security vul-88

nerabilities, and adding new features to already installed software. Updating89

a software component may also involve updating the chain of dependencies of90

that software component.91

Operator-driven use cases92

The operator is an entity with the responsibility of ensuring that the devices93

operate within pre-defined specifications. A device can have more than one op-94

erator such as the manufacturer and the owner of the devices, and the operators,95

and not the device user, have powers to install, remove and update software on96

the devices.97

Building access control devices98

Access control is used to restrict access to a particular place, building, room, or99

resource. To gain access an individual generally needs to be given permission100

to enter by someone who already has authorization.101

Automated building access rely on control devices to authenticate identity and102

to control physical locks. These devices use a variety of authentication methods103

such as smart cards, biometric data, and passwords, and can control access104

devices such as doors, gates and turnstile.105

4

For most use cases, building access control devices are only the interface for106

more complex systems that include secure networks and servers. Building access107

control devices collect authentication data and send it to a server. The server108

then decides if the physical access should be granted, and send commands back109

to the device for informing the user and for controlling the lock.110

Building access control devices have a critical mission. Failing to grant access111

to authorized personnel or granting access to unauthorized personnel can have112

serious consequences that can go beyond financial losses. Mission critical de-113

vices have strict reliability and security requirements, which include protection114

against tampering, resilience to user operation, and resilience to minor failures115

on the devices.116

Both the manufacturer and owner may operate a large fleet of building ac-117

cess control devices. Large fleets are vulnerable to unintended changes on the118

software stack as it can introduce reliability and security issues. Low severity119

variability issues can be solved remotely, but high severity issues require manual120

intervention on each affected device.121

Another problem for large fleet of devices is software deployment. Updates and122

new features should be deployed to devices on the field with minimal risk of123

rendering devices unusable. Operators require information about the software124

stack(installed software, version, etc) of each device to make decisions about125

how and when to do software deployment.126

Device manufacturers offer on-demand development services. A new feature is127

developed for a customer and then is deployed only to the devices of that spe-128

cific customer. Delivering the custom features requires conditional deployment129

capabilities based on business rules such as device owner and service level.130

Robotic lawn mower131

A robotic lawn mower is an electric autonomous robot that cuts lawn grass in132

a pre-determined area. Common features of robotic lawn mowers include find-133

ing the recharging base automatically, avoiding obstacles, and using advanced134

algorithms to cover the working area efficiently.135

High-end robotic lawn mower are connected to the cloud to allow the owner136

to configure and control the unit using a convenient web interface. The owner,137

acting as the operator, uses a website to configure the schedule and settings of138

the mower such as the cutting height. Some models also allow the operator to139

remote control the mower.140

Connected robotic lawn mowers receive over-the-air updates that are installed141

when the mower is not in use, respecting the schedule that was configured by142

the operator.143

5

User-driven use cases144

There are two categories of user-driven use cases. The first one is built on top145

of operator-driven use cases. In this category the device allow users to install146

and remove optional applications, but keeps the operator in control of system147

updates and system applications. In the second category the device is left under148

full control of the user, without any operator involvement.149

Infotainment system150

An infotainment system is usually an interface between users and a vehicle show-151

ing information about the vehicle and allowing the user to configure options such152

as interior lights and air conditioning. An infotainment system also provides153

additional functionality such as navigation, connectivity with the user’s phone,154

music, Internet browser, and allows the user to install and remove applications.155

An infotainment system can offer a personalized set of features for different156

models of vehicles and for different users. Premium features and applications157

are only available for owners of premium models of the vehicle and for users158

willing to pay for them.159

The life cycle of an infotainment system can go beyond a decade, creating a160

challenging scenario for support and maintenance of the software stack. The161

vast majority of software components used in an infotainment system have a162

much smaller release cycle, with more than one release per year being common.163

Releases are important for software components because only the latest releases164

receive security and bug fixes. Failing to keep the software stack using fairly165

recent components results in an infotainment system with bugs and security166

vulnerabilities.167

On the other hand, as users interact with infotainment systems while driving,168

these devices are heavily regulated. The device requires an expensive certi-169

fication process before deployment, and software updates are also subject to170

certification. So while updates are important for bug and security fixes, the171

structure and costs of certification of changes makes pressure against too fre-172

quent updates.173

Another important actor in the infotainment ecosystem is the application de-174

veloper. Empowering the application developer results in greater availability of175

applications and in faster availability of updates. Having more applications is176

a competitive advantage for the infotainment system, as users may prefer the177

infotainment system that has more installable applications.178

Application developers need to be able to target as many different infotainment179

products as possible without being tied to the release cycle of each specific prod-180

uct. In other words, it is important for the developer to be as close as possible181

to have a single application that runs without changes in different infotainment182

systems and in different releases of infotainment systems.183

6

This is particularly challenging as the very long lifecycle of infotainment prod-184

ucts means that there are significant differences in the kind and versions of185

components shipped as part of the base operating system of different products.186

As such an application developer should be capable of releasing and updating187

applications independently from the base operating system, and should be able188

to conveniently create bundles that are optimized for a modern development189

flow.190

The physical deployment characteristics of infotainment systems also complicate191

maintenance and updates. An unrecoverable failure due to an over-the-air up-192

date may force vehicle owners to pay a visit to the closest service center making193

customers unhappy, and potentially causing significant financial loss when the194

problem affects tens of thousands of vehicles.195

And finally resilience to user operation is also a challenge to infotainment sys-196

tems. Users should not be able to render the device inoperative, or make the197

device to operate outside its design specifications by continuous use, by changing198

configurations, or by installing/uninstalling applications.199

Power and measuring tools200

Power tools are electrically driven tools such as drills and grinders, with most201

models being powered by batteries. Measuring tools are electronic devices for202

measuring, or helping the user to measure, physical properties of the environ-203

ment. Examples of measuring tools are wall scanners, thermo cameras, and204

laser measures.205

Connected power and measuring tools can receive over-the-air updates and offer206

a convenient interface for the user to adjust operating parameters and to see207

the device status. The user can choose between a web interface and a mobile208

phone application to interact with power and measuring tools.209

Non-use-cases210

• Product development: during product development developers need to211

privilege flexibility over robustness. However robustness is of primary212

importance in production environment, and as such flexibility to ease de-213

velopment is not a use case.214

• Workstations: while the mechanism described here are valuable on work-215

stations as well, they are not the focus of this document.216

7

Requirements217

Conditional software deployment based on business rules218

It should be possible to restrict the selection of software components that users219

and operators can install, remove and update based on business rules such as220

payment, customer, service level, and market segment.221

It should also be possible for the operator to configure the deployment to ad-222

here to business rules such as available time slots for maintenance, and to split223

complex deployments in batches.224

Configurable access rights to user data and system re-225

sources226

Applications should have limited and configurable access to system resources227

and user data. For example, applications should not be capable of taking screen228

shots, and the music player should have access to only specific files and folders.229

Consistent state across devices230

Maintaining a large fleet of devices requires the software stack of each device to231

be in a known state. Devices in unknown state are challenging to maintain and232

may present reliability and security issues.233

Independent release and update of application domains234

It should be possible to release and update application domains independently235

from the base operating system.236

Operator-driven software distribution and updates237

On operator-driven use cases, the operator should be capable of controlling the238

software distribution and update of large fleets of devices.239

Protecting the fleet from software deployment issues240

There should be mechanisms in place to prevent software distribution and soft-241

ware update issues, such as an update that renders the devices unusable, to242

affect the entire fleet of devices.243

Resilience to distribution and update failures244

Minor problems such as an update failure due to download problem caused by245

a network issue on the device side should not render the device inoperative and246

should recover automatically without intervention.247

8

Resilience to user operation248

User actions including installing and removing optional applications should not249

render the device inoperative, or make the device to operate outside its design250

specifications.251

Software inventory252

Operators require software inventory information such as installed software, and253

software version to make decisions about how and when to do software deploy-254

ment. As an example when a security vulnerability is discovered, having an255

overview of how many devices are affected is important to determine the sever-256

ity of the vulnerability, and to plan a response.257

Tampering protection258

Mission critical devices and devices subject to regulation require protection259

against unauthorized modification. Users should not be allowed to modify the260

devices to operate outside its design specifications.261

Unwanted changes to the software stack262

A common method of attacking a device consists in changing software that is263

installed or installing malicious components. Preventing unwanted changes on264

the software stack, and preventing non-authorized software to be installed elim-265

inates an important attack vector: attacks that require changes to the software266

stack.267

Updates rollback268

Software updates should be reversible, and allow to rollback to a previous work-269

ing state. This requirement applies to system software and applications.270

User-driven software distribution271

The user should be capable of installing and removing software components on272

user-driven use cases.273

High level features274

Before describing existing solutions it is necessary to group the requirements275

in features that are implemented by these solutions. One requirement may276

be related to more than one feature such as the requirement Consistent state277

across devices being related to the features Immutable software stack and Atomic278

updates.279

9

Immutable software stack280

• Related requirements: Consistent state across devices, Resilience to user281

operation, Tampering protection, Unwanted changes to the software stack282

One solution to address these requirements is to make the base operating system283

and the application domains immutable.284

Atomic updates285

• Related requirements: Consistent state across devices, Protecting the fleet286

from software deployment issues, Resilience to distribution and update287

failures, Updates rollback288

Updates on traditional package-based Linux distributions are prone to errors.289

An update usually involves multiple packages, and each package update can fail290

in ways that are not trivial to automatically recover from. After a failure on291

a package-based update, the limited rollback functionality is not guaranteed to292

revert the problem, leading to manual intervention.293

A robust approach for updates that are capable of reliable rollbacks is called294

atomic updates. Atomic updates perform the file operations in a staging area,295

and the changes are only committed if the update is successful. When a failure296

occurs during an update, the changes are not committed and do not affect the297

file system.298

However the benefits of reliable rollbacks are limited to changes made to the299

filesystem. Changes that are not file operations, such as updating the bootloader300

are not guaranteed to rollback gracefully.301

Separation between system and application domains302

• Related requirements: Conditional software deployment based on business303

rules, Configurable access rights to user data and system resource, Con-304

sistent state across devices, Independent release and update of application305

domains, Resilience to distribution and update failures, User-driven soft-306

ware deployment307

These requirements are related to separating the base operating system from308

application domains in regards to software distribution, software updates, and309

execution environment.310

Separating base operating system from application domains allow product teams311

to develop their products with greater independence, and offers more flexibility312

on how application domains are deployed, updated and executed.313

Deployment management314

• Related requirements: Conditional software deployment based on business315

rules, Consistent state across devices, Operator-driven software distribu-316

10

tion and updates, Protecting the fleet from software deployment issues,317

Resilience to distribution and update failures, Software inventory318

Software distribution is more than a transport layer for packages, it includes319

authorization, inventory, and deployment management. The software distribu-320

tion infrastructure for traditional tools such as apt-get basically consists of static321

content providers that were designed to replace the previous method based on322

CDs and DVDs.323

This infrastructure works well for transporting packages over the network, but324

it lacks features to implement business rules such as customer, payment, and325

hardware profile. On large fleets of operator-driven use cases, the operator need326

control over the deployment of updates and new features. It is responsibility of327

the operator to run the deployment in conformity to business rules to for exam-328

ple schedule a reboot in an appropriate moment, and to divide the deployment329

in batches.330

The main component of a deployment management solutions is usually the back-331

end infrastructure that interfaces with agents running one the devices. A com-332

mon goal to deployment management is to offer easy and flexible rollout of333

software with monitoring of progress which is essential for large fleets.334

Existing systems335

OSTree for base operating system336

OSTree implements for the base operating system Immutable software stack and337

Atomic updates. It also offers the underlying framework to allow Separation338

between system and application domains.339

OSTree is a feature-rich deployment and update mechanism for files and directo-340

ries in Linux. It offers transactional upgrades and rollback, is capable of replicat-341

ing content incrementally over HTTP, support multiple parallel bootable root342

filesystems, and have flexible support for multiple branches and repositories.343

As mentioned earlier, rolling out updates using package management tools such344

as apt-get is prone to a high degree of variability. Each update involves multiple345

packages, and each package update can fail on file operations and on scripts.346

Current package management systems have only limited roll back capability(See347

apt-btrfs-snapshot5) meaning that a failure during a package update can leave348

the system in an unknown state making it challenging to secure and maintain.349

Failures during an OSTree atomic update are not committed, meaning that350

a failed update have no effect on the running system. If an OSTree atomic351

update completes successfully but introduces software issues, rolling back to352

the previous working version is guaranteed to work.353

5https://github.com/skorokithakis/apt-btrfs-snapshot

11

https://github.com/skorokithakis/apt-btrfs-snapshot
https://github.com/skorokithakis/apt-btrfs-snapshot

However OSTree does not directly address the needs of application domains. For354

software distribution and update of application domains we recommend using355

either Flatpak or Docker.356

Flatpak and Docker for applications357

Both Flatpak and Docker implement for applications Immutable software stack,358

Atomic updates, and Separation between system and application domains. One359

requirement that is also addressed by both is Configurable access rights to user360

data and system resource.361

Both Flatpak and Docker are mature and feature rich solutions for applica-362

tion distribution and update. They offer decoupling from the system, give the363

application developer greater freedom, give the user greater control, and run364

applications insulated from the system and from other applications. These are365

advantages when compared to more conventional packaging and distribution366

systems such as dpkg and apt-get.367

Flatpak purposely focuses on user-level applications and services, or in applica-368

tions with a GUI, such as the ones to be used on a infotainment system. Flatpak369

applications are shipped in bundles named Flatpaks, and it uses libostree under370

the hood to provide OSTree efficiency and robustness to application manage-371

ment.372

Docker is instead better suited for non-graphical applications. Docker ships373

containers, and it is a good solution for applications that are developed and374

deployed as a collection of loosely coupled services. In some cases some sort of375

container orchestration is used with Docker, but orchestration is a topic that376

goes beyond the scope of this document.377

Flatpak and Docker can fulfill similar roles for decoupling applications from the378

base OS, and there are use cases for both in Apertis. A case-by-case evaluation379

needs to be done to find the most suitable mechanism for each application and380

service. As examples, for the infotainment system use case Flatpak is better381

suited for the applications the user can install and remove. For the building382

access control devices Docker is a better fit for headless applications that collect383

identity data and controls locking mechanisms.384

Eclipse hawkBit385

Eclipse hawkBit implements Deployment management.386

Eclipse hawkBit is a back-end framework for deployment management of edge387

devices. It can manage both the base OS and applications, and it is relatively388

agnostic about the kind of applications used. A preliminary investigation of the389

feasibility of the integration of the hawkBit-based Bosch Software Innovations390

IoT management suite with Apertis has been done with positive outcome.391

12

Microsoft Azure IoT Edge392

Eclipse hawkBit implements Deployment management.393

Microsoft Azure IoT Edge is a full hosted suite to manage the deployment of394

Docker containers on edge devices and it also offer deployment management395

capabilities.396

A preliminary Apertis image with support for Docker containers has been eval-397

uated to explore the feasibility of using Apertis with Microsoft Azure IoT Edge.398

Appstore399

An appstore should meet the requirements: Conditional software deployment400

based on business rules, Independent release and update of application domains,401

Protecting the fleet from software deployment issues, Software inventory, User-402

driven software deployment. It should also provide support to the high level403

feature Deployment management or integrate with an external Deployment man-404

agement solution.405

An appstore is the interface that allow users to browse, buy, install, remove, and406

update applications on their devices. Users interact with an appstore remotely407

over a web frontend, and locally over an application on the device.408

The appstore sits at the highest level layer of software distribution and update409

and reflects the decisions made for the lower layers. For example the solution410

for bundles and for deployment management highly impact the appstore design.411

As an interface with the user the appstore verifies user credentials, presents the412

software catalog, and processes payment. As an interface with the deployment413

management layer the appstore queries the software inventory, and issue soft-414

ware distribution commands such as install an application on the user device.415

Unlike an user, the operator is responsible for the health of a fleet of devices,416

and an appstore may not be part of the use case. Instead the operator uses an417

interface to change device configuration and to control deployment of updates418

and new features.419

Curridge420

Curridge is a custom non-upstream solution based on the Magento web com-421

merce framework. At the moment Curridge has only been part of demonstra-422

tions done by the RBEI team, but Apertis currently ships a component to423

interface with it named Frome.424

Collabora is not aware of the current feature set, but we expect that it is possible425

to adapt Curridge to ship Flatpak bundles. However more information is needed426

to compare the feature set with the requirements of an appstore.427

13

An alternative path is to extend Curridge to interface with external solutions428

such as Flathub and hawkBit. This interfacing could allow Curridge to focus429

on the appstore user, and offload other tasks such as deployment management430

and bundle compatibility to dedicated components.431

Flathub432

Flathub is the upstream appstore for applications distributed via Flatpak.433

It provides a validated workflow for third-party application authors to publish434

their work6.435

Applications can be browsed on FlatHub itself or through the on-device appli-436

cations for app management, such as GNOME Software or KDE Discover.437

Flathub does not support payments at the moment, even though there’s up-438

stream interest in the feature. It does not provide any remote management439

solution.440

Summary of recommendations441

• Use OSTree for the base operating system for Immutable software stack,442

Atomic updates, and Updates rollback.443

• Use Flatpak or Docker for applications for Immutable software stack,444

Atomic updates, Separation between system and application domains, and445

Configurable access rights to user data and system resource.446

• Use Flathub and Docker registry for storage and content delivery systems447

• For operator-driven management, provide integration with hawkBit and448

Microsoft Azure IoT Edge449

– Open point: should Apertis provide a default hawkBit instance for450

testing and guidance for product teams?451

• Evaluate the effort to extend Curridge to interface with Flathub and hawk-452

Bit.453

– Open point: Should Curridge handle deployment management or454

offload it to other solution such as hawkBit?455

• For user-driven application management, use Flathub on the back-end,456

and either adapt GNOME Software or write a custom GUI application on457

top of Flatpak for the on-device user interface458

– Open point: Should Curridge be adapted to interface with Flathub?459

Reference: System updates and rollback460

The System updates and rollback7 document contains details about technologies461

that are currently being used for software distribution and software update such462

6https://github.com/flathub/flathub/wiki/App-Submission#how-to-submit-an-app
7https://www.apertis.org/concepts/platform/system-updates-and-rollback/

14

https://github.com/flathub/flathub/wiki/App-Submission#how-to-submit-an-app
https://github.com/flathub/flathub/wiki/App-Submission#how-to-submit-an-app
https://github.com/flathub/flathub/wiki/App-Submission#how-to-submit-an-app
https://www.apertis.org/concepts/platform/system-updates-and-rollback/
https://github.com/flathub/flathub/wiki/App-Submission#how-to-submit-an-app
https://www.apertis.org/concepts/platform/system-updates-and-rollback/

as OSTree. Consider reading System updates and rollback after having read this463

document.464

15

	Terminology
	Application and services
	Base operating system
	Bundles
	Software distribution
	Software updates

	Operator-driven use cases
	Building access control devices
	Robotic lawn mower

	User-driven use cases
	Infotainment system
	Power and measuring tools

	Non-use-cases
	Requirements
	Conditional software deployment based on business rules
	Configurable access rights to user data and system resources
	Consistent state across devices
	Independent release and update of application domains
	Operator-driven software distribution and updates
	Protecting the fleet from software deployment issues
	Resilience to distribution and update failures
	Resilience to user operation
	Software inventory
	Tampering protection
	Unwanted changes to the software stack
	Updates rollback
	User-driven software distribution

	High level features
	Immutable software stack
	Atomic updates
	Separation between system and application domains
	Deployment management

	Existing systems
	OSTree for base operating system
	Flatpak and Docker for applications
	Eclipse hawkBit
	Microsoft Azure IoT Edge

	Appstore
	Curridge
	Flathub

	Summary of recommendations
	Reference: System updates and rollback

