
Sensors and actuators



Contents1

Terminology and concepts . . . . . . . . . . . . . . . . . . . . . . . . . 42

Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Intra-vehicle network . . . . . . . . . . . . . . . . . . . . . . . . . 44

Inter-vehicle network . . . . . . . . . . . . . . . . . . . . . . . . . 45

Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Augmented reality parking . . . . . . . . . . . . . . . . . . . . . . 510

Virtual mechanic . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

Petrol station finder . . . . . . . . . . . . . . . . . . . . . . . . . 612

Sightseeing application bundle . . . . . . . . . . . . . . . . . . . . 613

Changing bundle functionality when driving at speed . . . . . . . 614

Changing audio volume with vehicle or cabin noise . . . . . . . . 615

Night mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

Weather feedback or traffic jam feedback . . . . . . . . . . . . . . 717

Insurance bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . 718

Driving setup bundle . . . . . . . . . . . . . . . . . . . . . . . . . 719

Odour detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 820

Air conditioning control . . . . . . . . . . . . . . . . . . . . . . . 821

Agricultural vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . 822

Roof box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823

Truck installations . . . . . . . . . . . . . . . . . . . . . . . . . . 824

Compromised application bundle . . . . . . . . . . . . . . . . . . 925

Ethernet intra-vehicle network . . . . . . . . . . . . . . . . . . . 926

Development against the SDK . . . . . . . . . . . . . . . . . . . . 927

Non-use-cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928

Bluetooth wrist watch and the Internet of Things . . . . . . . . . 929

Car-to-car and car-to-infrastructure communications . . . . . . . 1030

Buddied and vehicle fleet communications . . . . . . . . . . . . . 1031

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132

Enumeration of devices . . . . . . . . . . . . . . . . . . . . . 1133

Enumeration of vehicles . . . . . . . . . . . . . . . . . . . . . . . 1134

Retrieving data from sensors . . . . . . . . . . . . . . . . . . . . 1135

Sending data to actuators . . . . . . . . . . . . . . . . . . . . . . 1136

Network independence . . . . . . . . . . . . . . . . . . . . . . . . 1137

Bounded latency of processing sensor data . . . . . . . . . . . . . 1238

Extensibility for OEMs . . . . . . . . . . . . . . . . . . . . . . . . 1239

Third-party backends . . . . . . . . . . . . . . . . . . . . . . . . 1240

Third-party backend validation . . . . . . . . . . . . . . . . . . . 1241

Notifications of changes to sensor data . . . . . . . . . . . . . . . 1242

Uncertainty bounds . . . . . . . . . . . . . . . . . . . . . . . . . 1343

Failure feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 1344

Timestamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1345

2



Triggering bundle activation . . . . . . . . . . . . . . . . . . . . . 1346

Bulk recording of sensor data . . . . . . . . . . . . . . . . . . . . 1447

Sensor security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1448

Actuator security . . . . . . . . . . . . . . . . . . . . . . . . . . . 1449

App store knowledge of device requirements . . . . . . . . . . . . 1450

Accessing devices on multiple vehicles . . . . . . . . . . . . . . . 1451

Third-party accessories . . . . . . . . . . . . . . . . . . . . . . . . 1552

SDK hardware support . . . . . . . . . . . . . . . . . . . . . . . . 1553

Background on intra-vehicle networks . . . . . . . . . . . . . . . . . . 1554

Existing sensor systems . . . . . . . . . . . . . . . . . . . . . . . . . . 1555

W3C Vehicle Information Service Specification (VISS) . . . . . . 1656

GENIVI Web API Vehicle . . . . . . . . . . . . . . . . . . . 1657

Apple HomeKit . . . . . . . . . . . . . . . . . . . . . . . . . . 1658

Apple External Accessory API . . . . . . . . . . . . . . . . . . . 1759

iOS CarPlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1860

Android Auto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1861

MirrorLink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1862

Android Sensor API . . . . . . . . . . . . . . . . . . . . . . . . . 1963

Automotive Message Broker . . . . . . . . . . . . . . . . . . . . . 1964

AllJoyn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2065

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2066

Overall architecture . . . . . . . . . . . . . . . . . . . . . . . . . 2167

Vehicle device daemon . . . . . . . . . . . . . . . . . . . . . . . . 2168

Hardware and app APIs . . . . . . . . . . . . . . . . . . . . . . . 2269

Hardware API compliance testing . . . . . . . . . . . . . . . . . . 2670

SDK API compliance testing and simulation . . . . . . . . . . . . 2771

SDK hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2772

Trip logging of sensor data . . . . . . . . . . . . . . . . . . . . . . 2873

Properties vs devices . . . . . . . . . . . . . . . . . . . . . . . . . 2874

Property naming . . . . . . . . . . . . . . . . . . . . . . . . . . . 2975

High bandwidth or low latency sensors . . . . . . . . . . . . . . . 2976

Timestamps and uncertainty bounds . . . . . . . . . . . . . . . . 3077

Registering triggers and actions . . . . . . . . . . . . . . . . . . . 3078

Bulk recording of sensor data . . . . . . . . . . . . . . . . . . . . 3179

Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3180

Suggested roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . 3881

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3882

Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4083

Summary of recommendations . . . . . . . . . . . . . . . . . . . . . . 4184

Sensors and Actuators API 4285

Rhosydd API Current State . . . . . . . . . . . . . . . . . . . . . . . . 4286

Considerations to align Rhosydd to the new VISS API . . . . . . . . . 4287

New vs Old Specification . . . . . . . . . . . . . . . . . . . . . . . . . 4288

Rhosydd New Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 4389

Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4490

3



Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4491

Appendix: W3C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4492

This documents possible approaches to designing an API for exposing vehicle93

sensor information and allowing interaction with actuators to application bun-94

dles on an Apertis system.95

The major considerations with a sensors and actuators API are:96

• Bandwidth and latency of sensor data such as that from parking cameras97

• Enumeration of sensors and actuators98

• Support for multiple vehicles or accessories99

• Support for third-party and OEM accessories and customisations100

• Multiplexing of access to sensors101

• Privilege separation between application bundles using the API102

• Policy to restrict access to sensors (privacy sensitive)103

• Policy to restrict access to actuators (safety critical)104

Terminology and concepts105

Vehicle106

For the purposes of this document, a vehicle may be a car, car trailer, motor-107

bike, bus, truck tractor, truck trailer, agricultural tractor, or agricultural trailer,108

amongst other things.109

Intra-vehicle network110

The intra-vehicle network connects the various devices and processors through-111

out a vehicle. This is typically a CAN or LIN network, or a hierarchy of such112

networks. It may, however, be based on Ethernet or other protocols.113

The vehicle network is defined by the OEM, and is statically defined —all devices114

which are supported by the network have messages or bandwidth allocated for115

them at the time of manufacture. No devices which are not known at the time116

of manufacture can be supported by the vehicle network.117

Inter-vehicle network118

An inter-vehicle network connects two or more physically connected vehicles119

together for the purposes of exchanging information. For example, a network120

between a truck tractor and trailer.121

An inter-vehicle network (for the purposes of this document) does not cover122

transient communications between separate cars on a motorway, for example;123

or between a vehicle and static roadside infrastructure it passes. These are124

4



car-to-car (C2C) and car-to-infrastructure (C2X) communications, respectively,125

and are handled separately.126

Sensor127

A sensor is any input device which is connected to the vehicle’s network but128

which is not a direct part of the dashboard user interface. For example: parking129

cameras, ultrasonic distance sensors, air conditioning thermometers, light level130

sensors, etc.131

Actuator132

An actuator is any output device which is connected to the vehicle’s network133

but which is not a direct part of the dashboard user interface. For example:134

air conditioning heater, door locks, electric window motors, interior lights, seat135

height motors, etc.136

Device137

A sensor or actuator.138

Use cases139

A variety of use cases for application bundle usage of sensor data are given140

below. Particularly important discussion points are highlighted at the bottom141

of each use case.142

Augmented reality parking143

When parking, the feed from a rear-view camera should be displayed on the144

screen, with an overlay showing the distance between the back of the vehicle145

and the nearest object, taken from ultrasonic or radar distance sensors.146

The information from the sensors has to be synchronised with the camera, so147

correct distance values are shown for each frame. The latency of the output148

image has to be low enough to not be noticed by the driver when parking at149

low speeds (for example, 5km·h).150

Virtual mechanic151

Provide vehicle status information such as tyre pressure, engine oil level, washer152

fluid level and battery status in an application bundle which could, for example,153

suggest routine maintenance tasks which need to be performed on the vehicle.154

(Taken from http://www.w3.org/2014/automotive/vehicle_spec.html#h2_abst155

ract.)156

5

http://www.w3.org/2014/automotive/vehicle_spec.html#h2_abstract
http://www.w3.org/2014/automotive/vehicle_spec.html#h2_abstract
http://www.w3.org/2014/automotive/vehicle_spec.html#h2_abstract


Trailer The driver attaches a trailer to their vehicle and it contains tyre pres-157

sure sensors. These should be available to the virtual mechanic bundle.158

Petrol station finder159

Monitor the vehicle’s fuel level. When it starts to get low, find nearby petrol160

stations and notify the driver if they are near one. Note that this requires161

programs to be notified of fuel level changes while not in the foreground.162

Sightseeing application bundle163

An application bundle could highlight sights of interest out of the windows by164

combining the current location (from GPS) with a direction from a compass165

sensor. Using a compass rather than the GPS’velocity angle allows the bundle166

to work even when the vehicle is stationary.167

Privacy concern: Any application bundle which has access to compass data168

can potentially use dead reckoning to track the vehicle’s location, even without169

access to GPS data.170

Basic model vehicle If a vehicle does not have a compass sensor, the sight-171

seeing bundle cannot function at all, and the Apertis store should not allow the172

user to install it on their vehicle.173

Changing bundle functionality when driving at speed174

An application bundle may want to voluntarily change or disable some of its175

features when the vehicle is being driven (as opposed to parked), or when it176

is being driven fast (above a cut-off speed). It might want to do this to avoid177

distracting the driver, or because the features do not make sense when the178

vehicle is moving. This requires bundles to be able to access speedometer and179

driving mode information.180

If the application bundle is using a cut-off speed for this decision, it should not181

have to continually monitor the vehicle’s speed to determine whether the cut-off182

has been reached.183

Changing audio volume with vehicle or cabin noise184

Bundles may want to adjust their audio output volume, or disable audio output185

entirely, in response to changes in the vehicle’s cabin or engine noise levels. For186

example, a game bundle could reduce its effects volume if a loud conversation187

can be heard in the cabin; but it might want to increase its effects volume if188

engine noise increases.189

Privacy concern: This should be implemented by granting access to overall190

‘volume level’information for different zones in the vehicle; but not by grant-191

ing access to the actual audio input data, which would allow the bundle to192

6



record conversations. The overall volume level information should be sufficiently193

smoothed or high-latency that a malicious application cannot infer audio infor-194

mation from it.195

Night mode196

Programs may wish to change their colour scheme according to the ambient197

lighting level in a particular zone in the cabin, for example by switching to a198

‘night mode’with a dark colour scheme if driving at night, but not if an interior199

light is on. This requires bundles to be able to read external light sensors and200

the state of internal lights.201

Weather feedback or traffic jam feedback202

A weather bundle may want to crowd-source information about local weather203

conditions to corroborate its weather reports. Information from external rain,204

temperature and atmospheric pressure sensors could be collected at regular in-205

tervals –even while the weather bundle is not active –and submitted to an online206

weather service as network connectivity permits.207

Similarly, a traffic jam or navigation bundle may want to crowd-source informa-208

tion about traffic jams, taking input from the speedometer and vehicle separa-209

tion distance sensors to report to an online service about the average speed and210

vehicle separation in a traffic jam.211

Insurance bundle212

A vehicle insurance company may want to offer lower insurance premiums to213

drivers who install its bundle, if the bundle can record information about their214

driving safety and submit it to the insurance company to give them more infor-215

mation about the driver’s riskiness. This would need information such as driving216

duration, distances driven, weather conditions, acceleration, braking frequency,217

frequency of using indicator lights, pitch, yaw and roll when cornering, and218

potentially vehicle maintenance information. It would also require access to219

unique identifiers for the vehicle, such as its VIN. The data would need to be220

collected regardless of whether the vehicle is connected to the internet at the221

time —so it may need to be stored for upload later.222

Privacy concern: Unique identification information like a VIN should not be223

given to untrusted bundles, as they may use it to track the user or vehicle.224

Driving setup bundle225

An application bundle may want to control the driving setup—the position of the226

steering wheel, its rake, the position of the wing mirrors, the seat position and227

shape, whether the vehicle is in sport mode, etc. If a guest driver starts using228

the vehicle, they could import their settings from the same bundle on their own229

vehicle, and the bundle would automatically adjust the physical driving setup230

7



in the vehicle to match the user’s preferences. The bundle may want to restrict231

these changes to only happen while the vehicle is parked.232

Odour detection233

A vehicle manufacturer may have invented a new type of interior sensor which234

can detect foul odours in the cabin. They want to integrate this into an ap-235

plication bundle which will change the air conditioning settings temporarily to236

clear the odour when detected. The Sensors and Actuators API currently has237

no support for this new sensor. The manufacturer does not expect their bundle238

to be used in other vehicles.239

Air conditioning control240

An application bundle which connects to wrist watch body monitors on each241

of the passengers (through an out-of-band channel like Bluetooth, which is out242

of the scope of this document; see Bluetooth wrist watch and the Internet of243

Things may want to change the cabin temperature in response to thermometer244

readings from passengers’watches.245

Automatic window feedback In order to do this, the bundle may also need246

to close the automatic windows, but one of the passengers has their arm hanging247

out of the window and the hardware interlock prevents it closing. The bundle248

must handle being unable to close the window.249

Agricultural vehicle250

Apertis is used by an agricultural manufacturer to provide an IVI system for251

drivers to use in their latest tractor model. The manufacturer provides a pre-252

installed app for controlling their own brand of agricultural accessories for the253

tractor, so the driver can use it to (for example) control a tipping trailer and254

a baler which are hitched to each other behind the tractor, and also control a255

bale spear attached to the front of the tractor.256

Roof box257

A car driver adds a roof box to their car, provided by a third party, containing258

a safety sensor which detects when the box is open. The built-in application259

bundle for alerting the driver to doors which are open when the vehicle starts260

moving should be able to detect and use this sensor to additionally alert the261

driver if the roof box is open when they start moving.262

Truck installations263

Trucks are sold as a basis ‘vanilla’truck with a special installation on top, which264

is customised for the truck’s intended use. For example, a rubbish truck, tipping265

truck or police truck. The installation is provided by a third party who has a266

8



relationship with the basis truck manufacturer. Each installation has specific267

sensors and actuators, which are to be controlled by an application bundle268

provided by the third party or by the manufacturer.269

Compromised application bundle270

An application bundle on the system, A, is installed with permissions to adjust271

the driver’s seat position, which is one of the features of the bundle. Another272

application bundle, B, is installed without such permissions (as they are not273

needed for its normal functionality).274

Safety critical: An attacker manages to exploit bundle B and execute arbitrary275

code with its privileges. The attacker must not be able to escalate this exploit276

to give B permission to use actuators attached to the system, or extra sensors.277

Similarly, they must not be able to escalate the exploit to gain the privileges of278

bundle A, and hence bundle A’s permissions to adjust the driver’s seat position.279

Ethernet intra-vehicle network280

A vehicle manufacturer wants to support high-bandwidth devices on their intra-281

vehicle network, and decides to use Ethernet for all intra-vehicle communica-282

tions, instead of a more traditional CAN or LIN network. Their use of a differ-283

ent network technology should not affect enumeration or functionality of devices284

as seen by the user.285

Development against the SDK286

An application developer wants to use a local gyroscope sensor attached to their287

development machine to feed input to their application while they are developing288

and testing it using the SDK.289

Non-use-cases290

Bluetooth wrist watch and the Internet of Things291

A passenger gets into the vehicle with a Bluetooth wrist watch which monitors292

their heart rate and various other biological variables. They launch their health293

monitor bundle on the IVI display, and it connects to their watch to download294

their recent activity data.295

This is not a use case for the Sensors and Actuators API; it should be handled296

by direct Bluetooth communication between the health monitor bundle and the297

watch. If the Sensors and Actuators API were to support third-party devices298

(as opposed to ones specified and installed by the vehicle manufacturer or sup-299

pliers), having full support for all available devices would become a lot harder.300

Additionally, devices would then appear and disappear while the vehicle was301

running (for example, if the user turned off their watch’s Bluetooth connection302

9



while driving); this is not possible with fixed in- vehicle sensors, and would303

complicate the sensor enumeration API.304

More generally, this use-case is a specific case of the internet of things (IoT),305

which is out of scope for this design for the reasons given above. Additionally,306

supporting IoT devices would mean supporting wireless communications as part307

of the sensors service, which would significantly increase its attack surface due308

to the complexity of wireless communications, and the fact they enable remote309

attacks.310

Car-to-car and car-to-infrastructure communications311

In C2C and C2X communications, vehicles share data with each other as they312

move into range of each other or static roadside infrastructure. This information313

may be anything from braking and acceleration information shared between314

convoys of vehicles to improve fuel efficiency, to payment details shared from a315

car to toll booth infrastructure.316

While many of the use cases of C2C and C2X cover sharing of sensor data, the317

data being shared is typically a limited subset of what’s available on one vehicle’318

s network. Due to the dynamic nature of C2C and C2X networks, and the319

greater attack surface caused by the use of more complex technologies (radio320

communications rather than wired buses), a conservative approach to security321

suggests implementing C2C and C2X on a use-case-by-use-case basis, using sep-322

arate system components to those handling intra-vehicle sensors and actuators.323

This ensures that control over actuators, which is safety critical, remains in a324

separate security domain from C2C and C2X, which must not have access to325

actuators on the local vehicle. See Security.326

An initial suggestion for C2C and C2X communications would be to implement327

them as a separate service which consumes sensor data from the sensors and328

actuators service just like other applications.329

Buddied and vehicle fleet communications330

Similarly, long-range communications of sensor data between buddied vehicles331

or vehicles operating in a fleet (for example, a haulage or taxi fleet) should332

be handled separately from the sensors and actuators service, as such systems333

involve network communications. Typical use cases here would be reporting334

speed and fuel usage information from trucks or taxis back to headquarters; or335

letting two friends know each others’locations and traffic conditions when both336

doing the same journey.337

10



Requirements338

Enumeration of devices339

An application bundle must be able to enumerate devices in the vehicle, includ-340

ing information about where they are located in the vehicle (for example, so341

that it can adjust the position and setup of the driver’s seat but not others (see342

Driving setup bundle)).343

It is expected that the set of devices in a vehicle may change dynamically while344

the vehicle is running, for example if a roof box were added while the engine345

was running ( Roof box).346

Enumeration is particularly important for bundles, as the set of sensors in a347

particular vehicle will not change, but the set of sensors seen by a bundle across348

all the vehicles it’s installed in will vary significantly.349

Enumeration of vehicles350

An application bundle must be able to enumerate vehicles connected to the351

inter-vehicle network, for example to discover the existence of hitched trailers352

or agricultural vehicles ( Trailer, Agricultural vehicle).353

It is expected that the set of vehicles may change dynamically while the vehicles354

are running.355

Retrieving data from sensors356

An application bundle must be able to retrieve data from sensors. This data357

must be strongly typed in order to minimise the possibility of a bundle mis-358

interpreting it, or sensors from different manufacturers using different units,359

for example. Sensor data could vary in type from booleans (see Night mode)360

through to streaming video data (see Augmented reality parking). Sensor data361

may be processed by the system to make it more useful for application bundles;362

they do not need direct access to raw sensor data.363

Sending data to actuators364

An application bundle must be able to send data to actuators (including invok-365

ing methods on them). This data must be strongly typed in order to minimise366

the possibility of a bundle misinterpreting it, or actuators from different man-367

ufacturers using different units, for example. Actuator data could vary in type368

from booleans through to enumerated types (see Driving setup bundle) and369

possibly larger data streams, though no concrete use cases exist for that.370

Network independence371

The API should be independent of the network used to connect to devices —372

whether it be Ethernet, LIN or CAN; or whether the device is connected directly373

11



to a host processor ( Ethernet intra-vehicle network).374

Bounded latency of processing sensor data375

Certain sensor data has bounds on its latency. For example, pitch, yaw and376

roll information typically arrive as angular rate from sensors, and have to be377

integrated over time to be useful to application bundles —if sensor readings are378

missed, accuracy decreases. Sensor readings should be processed within the379

latency limits specified by the sensors. The limits on forwarding this processed380

data to bundles are less strict, though it is expected to be within the latency381

noticeable by humans (around 20ms) so that it can be displayed in real time382

(see Augmented reality parking, Sightseeing application bundle, Changing audio383

volume with vehicle or cabin noise).384

Extensibility for OEMs385

New types of device may be developed after the Sensors and Actuators API is386

released. As the set of sensors in a vehicle does not vary after release, already-387

deployed versions of the API do not need to handle unknown devices. However,388

there must be a mechanism for OEMs or third parties working with them to389

define new device types when developing a new vehicle or an installation or390

accessory to go with it. In order for new devices to be usable by non-OEM391

application bundle authors, the Sensors and Actuators API must be updatable392

or extensible to support them. ( Odour detection, Truck installations.)393

Third-party backends394

If an OEM or third party produces a new device which can be connected to395

an existing vehicle, some code needs to exist to allow communication between396

the device and the Apertis sensors and actuators service. This code must be397

written by the device manufacturer, as they know the hardware, and must be398

installable on the Apertis system before or after vehicle production (so as a399

system or non-system application). (See Agricultural vehicle, Roof box, Truck400

installations.)401

Third-party backend validation402

If a third-party device is exposed to the sensors and actuators service, the third403

party might not be one who has contributed to or used Apertis before. There404

must be a process for validating backends for the sensors and actuators system,405

to ensure they have a certain level of code quality and security, in order to406

reduce the attack surface of the service as a whole. (See Roof box.)407

Notifications of changes to sensor data408

All sensor data changes over time, so the API must support notifying application409

bundles of changes to sensor data they are interested in, without requiring the410

12



bundle to poll for updates (see Petrol station finder, Sightseeing application411

bundle, Changing bundle functionality when driving at speed, Changing audio412

volume with vehicle or cabin noise, Night mode, Odour detection).413

Application bundles should be able to request notifications only when a sensor414

value crosses a given threshold, to avoid unnecessary notifications (see Changing415

bundle functionality when driving at speed).416

Uncertainty bounds417

Sensors are not perfectly accurate, and additionally a sensor’s accuracy may418

vary over time; each sensor measurement should be provided with uncertainty419

bounds. For example, the accuracy of geolocation by mobile phone tower varies420

with your location.421

This is especially possible with data aggregated from multiple sensors, where422

the aggregate accuracy can be statistically modelled (for example, distance cal-423

culation from multiple sensors in Weather feedback or traffic jam feedback).424

Failure feedback425

As actuators are physical devices, they can fail. The API cannot assume au-426

tomatic, immediate or successful application of its changes to properties, and427

needs to allow for feedback on all property changes.428

For example, the air conditioning coolant on an older vehicle might have leaked,429

leaving the air conditioning system unable to cool the cabin effectively. Appli-430

cation bundles which wish to set the temperature need to have feedback from a431

thermometer to work out whether the temperature has reached the target value432

(see Air conditioning control).433

Another example is failure to close windows: Automatic window feedback.434

Timestamping435

In-vehicle networks (especially Ethernet) may have variable latency. In order436

to correlate measurements from multiple sensors on the end of connections of437

varying latency, each measurement should have an associated timestamp, added438

at the time the measurement was recorded (see Augmented reality parking,439

Sightseeing application bundle).440

Triggering bundle activation441

Various use cases require a bundle to be able to trigger actions based on sensor442

data reaching a certain value, even if the program is not running at that time443

(see Petrol station finder, Changing audio volume with vehicle or cabin noise,444

Odour detection). This requires some operating system service to monitor a445

list of trigger conditions even while the programs which set those triggers are446

13



not running, and start the appropriate program so that it can respond to that447

trigger.448

Bulk recording of sensor data449

Some bundles require to be able to regularly record sensor measurements, with450

the intention of processing them (for example, uploading them to an online451

service) at a later time (see Weather feedback or traffic jam feedback, Insurance452

bundle). This is not latency sensitive. As an optimisation, a system service453

could record the sensor readings for them, to avoid waking up the programs454

regularly.455

Data recorded in this way must only be accessible to the application bundle456

which requested it be recorded.457

The requesting application bundle is responsible for processing the data period-458

ically, and deleting it once processed. The system must be able to periodically459

overwrite recorded data if running low on space.460

Sensor security461

As highlighted by the privacy concerns in several of the use cases ( Sightseeing462

application bundle, Changing audio volume with vehicle or cabin noise, Insur-463

ance bundle), there are security concerns with allowing bundles access to sensor464

data. The system must be able to restrict access to some or all types of sensor465

data unless the user has explicitly granted a bundle access to it. Bundles with466

access to sensor data must be in separate security domains to prevent privilege467

escalation ( Compromised application bundle).468

Actuator security469

Control of actuators is safety critical but not privacy sensitive (unlike sensors).470

The system must be able to restrict write access to some or all types of actuator471

unless the user has explicitly granted a bundle access to it. Bundles with access472

to actuators must be in separate security domains to prevent privilege escalation473

( Compromised application bundle).474

App store knowledge of device requirements475

The Apertis store must know which devices (sensors and actuators) an appli-476

cation bundle requires to function, and should not allow the user to install a477

bundle which requires a device their vehicle does not have, or the bundle would478

be useless ( Basic model vehicle).479

Accessing devices on multiple vehicles480

The API must support accessing properties for multiple vehicles, such as hitched481

agricultural trailers ( Agricultural vehicle) or car trailers ( Trailer). These vehi-482

14



cles may appear dynamically while the IVI system is running; for example, in483

the case where the driver hitches a trailer with the engine running.484

Note: This requirement explicitly does not support C2C or C2X, which are out485

of scope of this document. (See Car-to-car and car-to-infrastructure communi-486

cations).487

Third-party accessories488

The API must support accessing properties of third-party accessories —either489

dynamically attached to the vehicle ( Roof box) or installed during manufacture490

( Truck installations).491

SDK hardware support492

The SDK must contain a backend for the system which allows appropriate493

hardware which is attached to the developer’s machine to be used as sensors or494

actuators for development and testing of applications (see Development against495

the SDK).496

This backend must not be available in target images.497

Background on intra-vehicle networks498

For the purposes of informing the interface design between the Sensors and499

Actuators API and the underlying intra-vehicle network, some background in-500

formation is needed on typical characteristics of intra-vehicle networks.501

CAN and LIN are common protocols in use, though future development may502

favour Ethernet or other protocols. In all cases, the OEM statically defines all503

protocols, data structures, and devices which can be on the network. Bandwidth504

is allocated for all devices at the time of manufacture; even for devices which505

are only optionally connected to the network, either because they’re a premium506

vehicle feature, or because they are detachable, such as trailers. In these cases,507

data structures on the network relating to those devices are empty when the508

devices are not connected.509

Sometimes flags are used in the protocol, such as ‘is a trailer connected?’.510

There are no common libraries for accessing vehicle networks: they differ be-511

tween OEMs.512

Existing sensor systems513

This chapter describes the approaches taken by various existing systems for514

exposing sensor information to application bundles, because it might be useful515

input for Apertis’decision making. Where available, it also provides some details516

of the implementations of features that seem particularly interesting or relevant.517

15



W3C Vehicle Information Service Specification (VISS)518

The W3C Vehicle Information Service Specification1 defines a WebSocket based519

API for a Vehicle Information Service (VIS) to enable client applications to520

get, set, subscribe and unsubscribe to vehicle signals and data attributes. This521

specification defines a number of methods for accessing vehicle data which are522

strictly agnostic to the data model Vehicle Signal Specification2.523

The Vehicle Signal Specification (VSS) focuses on vehicle signals, in the sense524

of classical sensors and actuators with the raw data communicated over vehi-525

cle buses and data which is more commonly associated with the infotainment526

system alike. This defines a ’tree-like’logical taxonomy of the vehicle, (formally527

a Directed Acyclic Graph), where major vehicle structures (e.g. body, engine)528

are near the top of the tree and the logical assemblies and components that529

comprise them, are defined as their child nodes.530

The VSS supports both extensibility and the ability to define private branches.531

GENIVI Web API Vehicle532

The GENIVI Web API Vehicle3 (sic) is a proof of concept API for exposing and533

manipulating vehicle information to GENIVI apps via a JavaScript API. It is534

very similar to the W3C Vehicle Information Access API, and seems to expose535

a very similar set of properties.536

The Web API Vehicle4 is a proxy for exposing a separate Vehicle Interface API537

within a HTML5 engine. The Vehicle Interface API itself is apparently a D-Bus538

API for sharing vehicle information between the CAN bus and various clients,539

including this Web API Vehicle and any native apps. Unfortunately, the Vehicle540

Interface API seems to be unspecified as of August 2015, at least in publicly541

released GENIVI documents.542

The Web API Vehicle has the same features and scope as the W3C API, but its543

implementation is clumsier, relying a lot more on seemingly unstructured magic544

strings for accessing vehicle properties.545

It was last publicly modified in May 2013, and might not be under development546

any more. Furthermore, a lot of the wiki links in the specification link to private547

and inaccessible data on collab.genivi.org.548

Apple HomeKit549

Apple HomeKit5 is an API to allow apps on Apple devices to interact with550

sensors and actuators in a home environment, such as garage doors, thermostats,551

1https://www.w3.org/TR/vehicle-information-service/
2https://github.com/COVESA/vehicle_signal_specification
3https://at.projects.genivi.org/wiki/display/PROJ/Web+API+Vehicle
4https://at.projects.genivi.org/wiki/display/PROJ/Web+API+Vehicle
5https://developer.apple.com/homekit/

16

https://www.w3.org/TR/vehicle-information-service/
https://github.com/COVESA/vehicle_signal_specification
https://at.projects.genivi.org/wiki/display/PROJ/Web+API+Vehicle
https://at.projects.genivi.org/wiki/display/PROJ/Web+API+Vehicle
https://developer.apple.com/homekit/
https://www.w3.org/TR/vehicle-information-service/
https://github.com/COVESA/vehicle_signal_specification
https://at.projects.genivi.org/wiki/display/PROJ/Web+API+Vehicle
https://at.projects.genivi.org/wiki/display/PROJ/Web+API+Vehicle
https://developer.apple.com/homekit/


thermometers and light switches, amongst others. It is designed explicitly for the552

home environment, and does not consider vehicles. However, as it is effectively553

an API for allowing interactions between sandboxed apps and external sensors554

and actuators, it bears relevance to the design of such an API for vehicles.555

At its core, HomeKit allows enumeration of devices (‘accessories’) in a home.556

A large part of its API is dedicated to grouping these into homes, rooms, ser-557

vice groups and zones so that collections of accessories can be interacted with558

simultaneously.559

Each accessory implements one or more ‘services’which are defined interfaces560

for specific functionality, such as a light switch interface, or a thermostat inter-561

face. Each service can expose one or more ‘characteristics’which are readable562

or writeable properties of that interface, such as whether a light is on, the cur-563

rent temperature measured by a thermostat, or the target temperature for the564

thermostat.565

It explicitly maintains separation between current and target states for certain566

characteristics, such as temperature controlled by a thermostat, acknowledging567

that changes to physical systems take time.568

A second part of the API implements ‘actions’based on sensor values, which are569

arbitrary pieces of code executed when a certain condition is met. Typically,570

this would be to set the value of a characteristic on some actuator when the571

input from another sensor meets a given condition. For example, switching on a572

group of lights when the garage door state changes to ‘open’as someone arrives573

in the garage.574

Critically, triggers and actions are handled by the iOS operating system, so are575

still checked and executed when the app which created them is not active.576

HomeKit has a simulator6 for developing apps against.577

Apple External Accessory API578

As a precursor to HomeKit, Apple also supports an External Accessory API7,579

which allows any iOS device to interact with accessories attached to the device580

(for example, through Bluetooth).581

In order to use the External Accessory API, an app must list the accessory582

protocols it supports in its app manifest. Each accessory supports one or more583

protocols, defined by the manufacturer, which are interfaces for aspects of the584

device’s functionality. They are equivalent to the ‘services’in the HomeKit API.585

The code to implement these protocols is provided by the manufacturer, and586

the protocols may be proprietary or standard.587

6https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptua
l/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//a
pple_ref/doc/uid/TP40015050-CH7-SW1

7https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Introdu
ction/Introduction.html

17

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//apple_ref/doc/uid/TP40015050-CH7-SW1
https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//apple_ref/doc/uid/TP40015050-CH7-SW1
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//apple_ref/doc/uid/TP40015050-CH7-SW1
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//apple_ref/doc/uid/TP40015050-CH7-SW1
https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Introduction/Introduction.html
https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Introduction/Introduction.html


Each accessory exposes versioning information8 which can be used to determine588

the protocol to use.589

All communication with accessories is done via sessions9, rather than one-shot590

reads or writes of properties. Each session is a bi-directional stream along which591

the accessory’s protocol is transmitted.592

iOS CarPlay593

iOS CarPlay10 is a system for connecting an iOS device to a car’s IVI system,594

displaying apps from the phone on the car’s display and allowing those apps to595

be controlled by the car’s touchscreen or physical controls. It does not give11596

the iOS device access to car sensor data, and hence is not especially relevant to597

this design.598

It does not12 (as of August 2015) have an API for integrating apps with the IVI599

display.600

Most vehicle manufacturers have pledged support for it in the coming years.601

Android Auto602

Android Auto13 is very similar to iOS CarPlay: a system for connecting a phone603

to the vehicle’s IVI system so it can use the display and touchscreen or physical604

controls. As with CarPlay, it does not give the Android device access to vehicle605

sensor data, although (as of August 2015) that is planned for the future.606

As of August 2015, it has an API for apps14, allowing audio and messaging apps607

to improve their integration with the IVI display.608

Most vehicle manufacturers have pledged support for it in the coming years.609

MirrorLink610

MirrorLink15 is a proprietary system for integrating phones with the IVI display611

—it is similar to iOS CarPlay and Android Auto, but produced by the Car612

Connectivity Consortium16 rather than a device manufacturer like Apple or613

Google.614

8https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/
EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber

9https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/
EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory

10http://www.apple.com/uk/ios/carplay/
11http://www.tomsguide.com/us/apple-carplay-faq,news-18450.html
12https://developer.apple.com/carplay/
13https://www.android.com/auto/
14https://developer.android.com/training/auto/index.html
15http://www.mirrorlink.com/apps
16http://carconnectivity.org/

18

https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory
http://www.apple.com/uk/ios/carplay/
http://www.tomsguide.com/us/apple-carplay-faq,news-18450.html
https://developer.apple.com/carplay/
https://www.android.com/auto/
https://developer.android.com/training/auto/index.html
http://www.mirrorlink.com/apps
http://carconnectivity.org/
http://carconnectivity.org/
http://carconnectivity.org/
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory
http://www.apple.com/uk/ios/carplay/
http://www.tomsguide.com/us/apple-carplay-faq,news-18450.html
https://developer.apple.com/carplay/
https://www.android.com/auto/
https://developer.android.com/training/auto/index.html
http://www.mirrorlink.com/apps
http://carconnectivity.org/


The specifications for MirrorLink are proprietary and only available to registered615

developers. In a brochure (now unavailable for download), it is stated that616

support for allowing apps access to sensor data is planned for the future (as of617

2014).618

MirrorLink is apparently the technology behind Microsoft’s Windows in the619

Car17 system, which was announced in April 2014.620

Android Sensor API621

Android’s Sensor API18 is a mature system for accessing mobile phone sensors.622

There are a more constrained set of sensors available in phones than in vehi-623

cles, hence the API exposes individual sensors, each implementing an interface624

specific to its type of sensor (for example, accelerometer, orientation sensor or625

pressure sensor). The API places a lot of emphasis on the physical limitations of626

each sensor, such as its range, resolution, and uncertainty of its measurements.627

The sensors required by an app are listed in its manifest file, which allows the628

Google Play store to filter apps by whether the user’s phone has all the necessary629

sensors.630

As Android runs on a multitude of devices from different manufacturers, each631

with different sensors, enumeration of the available sensors is also an emphasis632

of the API, using its SensorManager19 class.633

Sensors20 can be queried by apps, or apps can register for notifications when634

sensor values change, including when the app is not in the foreground or when635

the device is asleep (if supported by the sensor). Apps can also register21 for no-636

tifications when sensor values satisfy some trigger, such as a ‘significant’change.637

Automotive Message Broker638

Automotive Message Broker22 is an Intel OTC project to broker information639

from the vehicle networks to applications, exposing a tweaked version23 of the640

W3C Vehicle Information Access API (with a few types and naming conventions641

tweaked) over D-Bus to apps, and interfacing with whatever underlying networks642

are in use in the vehicle. In short, it has the same goals as the Apertis Sensors643

and Actuators API.644

17http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-
with-windows-in-the-car-concept-1240245

18http://developer.android.com/guide/topics/sensors/index.html
19http://developer.android.com/reference/android/hardware/SensorManager.html
20http://developer.android.com/reference/android/hardware/SensorManager.html#regist

erListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%
29

21http://developer.android.com/reference/android/hardware/SensorManager.html#reques
tTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.Sensor%29

22https://github.com/otcshare/automotive-message-broker
23https://github.com/otcshare/automotive-message-broker/blob/master/docs/amb.in.fidl

19

http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://developer.android.com/guide/topics/sensors/index.html
http://developer.android.com/reference/android/hardware/SensorManager.html
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%29
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.Sensor%29
https://github.com/otcshare/automotive-message-broker
https://github.com/otcshare/automotive-message-broker/blob/master/docs/amb.in.fidl
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://developer.android.com/guide/topics/sensors/index.html
http://developer.android.com/reference/android/hardware/SensorManager.html
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%29
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%29
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%29
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.Sensor%29
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.Sensor%29
https://github.com/otcshare/automotive-message-broker
https://github.com/otcshare/automotive-message-broker/blob/master/docs/amb.in.fidl


As of August 2015, it was last modified in June 2015, so is an active project645

(although Tizen is in decline, so this may change). Although it is written in646

C++, it uses GNOME technologies like GObject Introspection; but it also uses647

Qt. Its main daemon is the Automotive Message Broker daemon, ambd.648

One area where it differs from the Apertis design is Security; it does not im-649

plement the polkit integration which is key to the vehicle device daemon secu-650

rity domain boundary. Modifying the security architecture of a large software651

project after its initial implementation is typically hard to get right.652

Another area where ambd differs from the Apertis design is in the backend:653

ambd uses multiple plugins to aggregate vehicle properties from many places.654

Apertis plans to use a single OEM-provided, vehicle-specific plugin.655

AllJoyn656

The AllJoyn Framework24 is an internet of things (IoT) framework produced657

under the Linux Foundation banner and the Open Connectivity Foundation25.658

(Note that IoT frameworks are explicitly out of scope for this design; this section659

is for background information only. See Bluetooth wrist watch and the Internet660

of Things) It allows devices to discover and communicate with each other. It is661

freely available (open source) and has components which run on various different662

operating systems.663

As a framework, it abstracts the differences between physical transports, provid-664

ing a session API for devices to use in one-to-one or one-to-many configurations665

for communication. A lot of its code is orientated towards implementing differ-666

ent physical transports.667

It provides a security API for establishing different trust models between devices.668

It provides various communication layer APIs for implementing RPC or raw669

I/O streams (or other things in-between) between devices. However, it does not670

specify the protocols which devices must use —they are specified by the device671

manufacturer.672

AllJoyn provides common services for setting up new devices, sending notifica-673

tions between devices, and controlling devices. It provides one example service674

for controlling lamps in a house, where each lamp manufacturer implements675

a well-defined OEM API for their lamp, and each application uses the lamp676

service API which abstracts over these.677

Approach678

Based on the above research ( Existing sensor systems) and Requirements, we679

recommend the following approach as an initial sketch of a Sensors and Actua-680

tors API.681

24https://openconnectivity.org/technology/reference-implementation/alljoyn/
25https://openconnectivity.org/

20

https://openconnectivity.org/technology/reference-implementation/alljoyn/
https://openconnectivity.org/
https://openconnectivity.org/technology/reference-implementation/alljoyn/
https://openconnectivity.org/


Overall architecture682

683

Vehicle device daemon684

Implement a vehicle device daemon which aggregates all sensor data in the vehi-685

cle, and multiplexes access to all actuators in the vehicle (apart from specialised686

high bandwidth devices; see High bandwidth or low latency sensors). It will687

connect to whichever underlying buses are used by the OEM to connect devices688

(for example, the CAN and LIN buses); see Hardware and app APIs. The im-689

plementation may be new, or may be a modified version of ambd, although it690

would need large amounts of rework to fit the Apertis design (see Automotive691

message broker).692

The daemon needs to receive and process input within the latency bounds of693

the sensors.694

The daemon should expose a D-Bus interface which follows the W3C Vehicle695

Information Access API26. The set of supported properties, out of those defined696

by the Vehicle Signal Specification27, may vary between vehicles —this is as ex-697

pected by the specification. It may vary over time as devices dynamically appear698

and disappear, which programs can monitor using the Availability interface28.699

The W3C specification was chosen rather than something like HomeKit due to700

its close match with the requirements, its automotive background, and the fact701

that it looks like an active and supported specification. Furthermore, HomeKit702

requires each device to define one or more protocols to use, allowing for arbitrary703

flexibility in how devices communicate with the controller. All the sensor and704

actuator use cases which are relevant to vehicles need only a property interface,705

however, which supports getting and setting properties, and being notified when706

they change.707

26http://www.w3.org/2014/automotive/vehicle_spec.html
27https://github.com/COVESA/vehicle_signal_specification
28http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability

21

http://www.w3.org/2014/automotive/vehicle_spec.html
http://www.w3.org/2014/automotive/vehicle_spec.html
http://www.w3.org/2014/automotive/vehicle_spec.html
https://github.com/COVESA/vehicle_signal_specification
http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
http://www.w3.org/2014/automotive/vehicle_spec.html
https://github.com/COVESA/vehicle_signal_specification
http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability


If an OEM, third party or application developer wishes to add new sensor or708

actuator types, they should follow the extension process29 and request that the709

extensions be standardised by Apertis —they will then be released in the next710

version of the Sensors and Actuators API, available for all applications to use.711

If a vehicle needs to be released with those sensors or actuators in the meantime,712

their properties must be added to the SDK API in an OEM-specific namespace.713

Applications from the OEM can use properties from this namespace until they714

are standardised in Apertis. See Property naming.715

Multiple vehicles can be supported by exposing new top-level instances of the716

Vehicle interface30. For example, each vehicle could be exposed as a new object717

in D-Bus, each implementing the Vehicle interface, with changes to the set of718

vehicles notified using an interface like the standard D-Bus ObjectManager31719

interface.720

This API can be exposed to application bundles in any binding language sup-721

ported by GObject Introspection (including JavaScript), through the use of a722

client library, just as with other Apertis services. The client library may pro-723

vide more specific interfaces than the D-Bus interface —the D-Bus API may be724

defined in terms of string keywords and variant values, whereas the client library725

API may be sensor-specific strongly typed interfaces.726

Hardware and app APIs727

The vehicle device daemon will have two APIs: the D-Bus SDK API exposed728

to applications, and the hardware API it consumes to provide access to the729

CAN and LIN buses (for example). The SDK API is specified by Apertis, and730

is standardised across all Apertis deployments in vehicles, so that a bundle731

written against it will work in all vehicles (subject to the availability of the732

devices whose properties it uses).733

Open question: The exact definition of the SDK API is yet to be finalised. It734

should include support for accessing multiple properties in a single IPC round735

trip, to reduce IPC overheads.736

The hardware API is also specified by Apertis, and implemented by one or more737

backend services which connect to the vehicle buses and devices and expose the738

information as properties understandable by the vehicle device daemon, using739

the hardware API.740

At least one backend service must be provided by the vehicle OEM, and it741

must expose properties from the vehicle’s standard devices from the vehicle742

buses. Other backend services may be provided by the vehicle OEM for other743

devices, such as optional devices for premium vehicle models; or truck installa-744

tions. Similarly, backend services may be provided by third parties for other745

29https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
30https://www.w3.org/Submission/vsso/#Vehicle
31http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectma

nager

22

https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
https://www.w3.org/Submission/vsso/#Vehicle
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
https://www.w3.org/Submission/vsso/#Vehicle
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager


devices, such as after-market devices like roof boxes. Application bundles may746

provide backend services as well, to expose hardware via application-specific747

protocols. Consequently, backend services will likely be developed in isolation748

from each other.749

Each backend service must expose zero or more properties —it is possible for750

a backend to expose zero properties if the device it targets is not currently751

connected, for example.752

Each backend service must run as a separate process, communicating with the753

vehicle device daemon over D-Bus using the hardware API. The hardware API754

needs the following functionality:755

• Bulk enumeration of vehicles756

• Bulk notification of changes to vehicle availability757

• Bulk enumeration of properties of a vehicle, including readability and758

writability759

• Bulk notification of changes to property availability, readability or760

writability761

• Subscription to and unsubscription from property change notifications762

• Bulk property change notifications for subscribed properties763

The hardware API will be roughly a similar shape to the SDK API, and hence764

a lot of complexity of the vehicle device daemon will be in the vehicle-specific765

backends (both operate on properties —Properties vs devices).766

As vehicle networks differ, the backend used in a given vehicle has to be de-767

veloped by the OEM developing that vehicle. Apertis may be able to provide768

some common utility functions to help in implementing backends, but cannot769

abstract all the differences between vehicles. (See Background on intra-vehicle770

networks).771

It is expected that the main backend service for a vehicle, provided by that ve-772

hicle’s OEM, will be access the vehicle-specific network implementation running773

in the automotive domain, and hence will use the inter-domain communications774

connection32. In order to avoid additional unnecessary inter-process communi-775

cation (IPC) hops, it is suggested that the main backend service acts as the776

proxy for sensor data on the inter-domain connection, rather than communicat-777

ing with a separate proxy in the CE domain —but only if this is possible within778

the security requirements on inter-domain connection proxies.779

The path for a property to pass from a hardware sensor through to an application780

is long: from the hardware sensor, to the backend service, through the D-Bus781

daemon to the vehicle device daemon, then through the D-Bus daemon again782

32https://www.apertis.org/concepts/archive/application/inter-domain-communication/

23

https://www.apertis.org/concepts/archive/application/inter-domain-communication/
https://www.apertis.org/concepts/archive/application/inter-domain-communication/
https://www.apertis.org/concepts/archive/application/inter-domain-communication/
https://www.apertis.org/concepts/archive/application/inter-domain-communication/


to the application. This is at least 5 IPC hops, which could introduce non-783

negligible latency. See High bandwidth or low latency sensors for discussion784

about this.785

Interactions between backend services In order to keep the security786

model for the system simple, backend services must not be able to interact.787

Each device must be exposed by exactly one backend service —two backend788

services cannot expose the same device; and neither can they extend devices789

exposed by other backend services.790

The vehicle device daemon must aggregate the properties exposed by its back-791

ends and choose how to merge them. For example, if one backend service792

provides a ‘lights’property as an array with one element, and another backend793

service does similarly, the vehicle device daemon should append the two and794

expose a ‘lights’array with both elements in the SDK API.795

For other properties, the vehicle device daemon should combine scalar values.796

For example, if one backend service exposes a rain sensor measurement of 4/10,797

and another exposes a second measurement (from a separate sensor) of 6/10,798

the SDK API should expose an aggregated rain sensor measurement of (for799

example) 6/10 as the maximum of the two.800

Open question: The exact means for aggregating each property in the Vehicle801

Signal Specification is yet to be determined.802

Recommended hardware API design Below is a pseudo-code recommen-803

dation for the hardware API. It is not final, but indicates the current best804

suggestion for the API. It has two parts —a management API which is imple-805

mented by the vehicle device daemon; and a property API which is implemented806

by each backend service and queried by the vehicle device daemon.807

Types are given in the D-Bus type system notation33.808

Management API Exposed on the well-known name org.apertis.Rhosydd1809

from the main daemon, the /org/apertis/Rhosydd1 object implements the stan-810

dard org.freedesktop.DBus.ObjectManager34 interface to let client discover and811

get notified about the registered vehicles.812

Vehicles are mapped under /org/apertis/Rhosydd1/${vehicle_id} and implement813

the org.apertis.Rhosydd1.Vehicle interface:814

interface org.apertis.Rhosydd1.Vehicle {815

readonly property s VehicleId;816

method GetAttributes (817

in s node_path,818

33http://dbus.freedesktop.org/doc/dbus-specification.html#type-system
34http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectma

nager

24

http://dbus.freedesktop.org/doc/dbus-specification.html#type-system
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
http://dbus.freedesktop.org/doc/dbus-specification.html#type-system
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager


out x current_time,819

out a(s(vdx)a{sv}(uu)) attributes)820

method GetAttributesMetadata (821

in s node_path,822

out x current_time,823

out a(sa{sv}(uu)) attributes_metadata)824

method SetAttributes (825

in a{sv} attributes_value)826

method UpdateSubscriptions (827

in a(sa{sv}) subscriptions,828

in a(sa{sv}) unsubscriptions)829

signal AttributesChanged (830

x current_time,831

a(s(vdx)a{sv}(uu)) changed_attributes,832

a(sa{sv}(uu)) invalidated_attributes))833

signal AttributesMetadataChanged (834

x current_time,835

a(sa{sv}(uu)) changed_attributes_metadata)836

}837

Backends register themselves on the bus with well-known names under the838

org.apertis.Rhosydd1.Backends. prefix and implement the same interfaces and839

the main daemon, which will monitor the owned names on the bus and register840

to the object manager signals to multiplex access to the backends.841

Each attribute managed via the vehicle attribute API is identified by a prop-842

erty name. Properties names come from the Vehicle Signal Specification, for843

example:844

• Sunroof.Position35845

• Horn.IsActive36846

• Seat.FancySeatController.BackTemperature (oem specific property)847

Each attribute has three values associated:848

• its value (of type v)849

• its accuracy (as a standard deviation of type d, set to 0.0 for non-numeric850

values)851

• the timestamp when it was last updated (of type x)852

In addition the current time is also returned for comparison to the time the853

value was last updated.854

Values also have two set of metadata (of type u) associated:855

• availability enum856

35https://www.w3.org/Submission/vsso/#SunroofPositionSensor
36https://www.w3.org/Submission/vsso/#HornIsActive

25

https://www.w3.org/Submission/vsso/#SunroofPositionSensor
https://www.w3.org/Submission/vsso/#HornIsActive
https://www.w3.org/Submission/vsso/#SunroofPositionSensor
https://www.w3.org/Submission/vsso/#HornIsActive


– AVAILABLE = 1857

– NOT_SUPPORTED = 0858

– NOT_SUPPORTED_YET = 2859

– NOT_SUPPORTED_SECURITY_POLICY = 3860

– NOT_SUPPORTED_BUSINESS_POLICY = 4861

– NOT_SUPPORTED_OTHER = 5862

• access flags863

– NONE = 0864

– READABLE = (1 « 0)865

– WRITABLE = (1 « 1)866

The GetAttributes method must return the value of all properties in the given867

branch indicated by the node path. If the node path represents a leaf node, then868

only the value corresponding to that property is returned. If no such branch or869

property exists on that vehicle, it must return an error. To get all properties of870

the vehicle an empty node path shall be passed.871

To receive notification of attribute changes via the AttributesChanged and At-872

tributesMetadataChanged signals, clients must first register their subscription873

with the UpdateSubscriptions method to specify the kind of properties for which874

they have some interest.875

A backend service must emit an AttributesChanged signal when one of the876

properties it exposes changes, but it may wait to combine that signal with those877

from other changed properties —the trade-off between latency and notification878

frequency should be determined by backend service developers.879

Hardware API compliance testing880

As the vehicle-specific and third party backend services to the vehicle device881

daemon contain a large part of the implementation of this system, there should882

be a compliance test suite which all backend services must pass before being883

deployed in a vehicle.884

If a backend service is provided by an application bundle, that application bun-885

dle must additionally undergo more stringent app store validation, potentially886

including a requirement for security review of its code. See Checks for backend887

services.888

The compliance test suite must be automated, and should include a variety of889

tests to ensure that the hardware API is used correctly by the backend service.890

It should be implemented as a mock D-Bus service which mocks up the hardware891

management API ( Recommended hardware API design), and which calls the892

hardware property API. The backend service must be run against this mock893

service, and call its methods as normal. The mock service should return each894

of the possible return values for each method, including:895

• Success.896

26



• Each failure code.897

• Timeouts.898

• Values which are out of range.899

It must call property API methods with various valid and invalid input.900

The backend service must not crash or obviously misbehave (such as consuming901

an unexpected amount of CPU time or memory).902

As the backend service pushes data to the vehicle device daemon, the compliance903

test could be trivially passed by a backend service which pushes zero properties904

to it. This must not be allowed: backend services must be run under a test905

harness which triggers all of their behaviour, for all of the devices they support.906

Whether this harness simulates traffic on an underlying intra-vehicle network,907

or physically provides inputs to a hardware sensor, is implementation defined.908

The behaviour must be consistently reproducible for multiple compliance test909

runs.910

SDK API compliance testing and simulation911

Application bundle developers will not be able to test their bundles on real912

vehicles easily, so a simulator should be made available as part of the SDK, which913

exposes a developer-configurable set of properties to the bundle under test. The914

simulator must support all properties and configurations supported by the real915

vehicle device daemon, including multiple vehicles and third-party accessories;916

otherwise bundles will likely never be tested in such configurations. Similarly,917

it must support varying properties over time, simulating dynamic addition and918

removal of vehicles and devices, and simulating errors in controlling actuators919

(for example, Automatic window feedback).920

The emulator should be implemented as a special backend service for the vehicle921

device daemon, which is provided by the emulator application. That way, it can922

directly feed simulated device properties into the daemon. This backend, and923

the emulator should only be available on the SDK, and must never be available924

on production systems.925

Compliance testing of application bundles is harder, but as a general principle,926

any of the Apertis store validation checks which can be brought forward so they927

can be run by the bundle developers, should be brought forward.928

SDK hardware929

If a developer has appropriate sensors or actuators attached to their development930

machine, the development version of the sensors and actuators system should931

have a separate backend service which exposes that hardware to applications932

for development and testing, just as if it were real hardware in a vehicle.933

27



This backend service must be separate from the emulator backend service (934

SDK API compliance testing and simulation), in order to allow them to be used935

independently.936

Trip logging of sensor data937

As well as an emulator for application developers to use when testing their938

applications, it would be useful to provide pre-recorded ‘trip logs’of sensor data939

for typical driving trips which an application should be tested against. These940

trip logs should be replayable in order to test applications.941

The design for this is covered in the ‘Trip logging of SDK sensor data’section of942

the Debug and Logging design.943

Properties vs devices944

A major design decision was whether to expose individual sensors to bundles945

via the SDK API, or to expose properties of the vehicle, which may correspond946

to the reading from a single sensor or to the aggregate of readings from multiple947

sensors. For example, if exposing sensors, the API would expose a gyroscope948

plus several accelerometers, each returning individual one-dimensional measure-949

ments. Bundles would have to process and aggregate this data themselves —in950

the majority of cases, that would lead to duplication of code (and most likely951

to bugs in applications where they mis-process the data), but it would also952

allow more advanced bundles access to the raw data to do interesting things953

with. Conversely, if exposing properties, the vehicle device daemon would pre-954

aggregate the data so that the properties exposed to bundles are filtered and955

averaged acceleration values in three dimensions and three angular dimensions.956

This would simplify implementation within bundles, at the cost of preventing a957

small class of interesting bundles from accessing the raw data they need.958

For the sake of keeping bundles simpler, and hence with potentially fewer bugs,959

this design exposes properties rather than sensors in the SDK API. This also960

means that the potentially latency sensitive aggregation code happens in the961

daemon, rather than in bundles which receive the data over D-Bus, which has962

variable latency.963

Similarly, the hardware API must expose properties as well, rather than indi-964

vidual devices. It may aggregate data where appropriate (for example, if it has965

information which is useful to the aggregation process which it cannot pass on966

to the vehicle device daemon). This also means that a set of device semantics,967

separate from the W3C Vehicle Data property semantics, does not have to be968

defined; nor a mapping between it and the properties.969

28



Property naming970

Properties exposed in the SDK API must be named following the Vehicle Signal971

Specification (VSS) naming guidelines37. VSS defines a ’tree-like’logical taxon-972

omy of the vehicle, (formally a Directed Acyclic Graph), where major vehicle973

structures (e.g. body, engine) are near the top of the tree and the logical assem-974

blies and components that comprise them, are defined as their child nodes. Each975

of the child nodes in the tree is further decomposed into its logical constituents,976

and the process is repeated until leaf nodes are reached. A leaf node is a node977

at the end of a branch that cannot be decomposed because it represents a single978

signal or data attribute value. For example some of the properties of DriveTrain979

transmission and fuel system are exposed with these names:980

• Drivetrain.Transmission.Speed38981

• Drivetrain.Transmission.TravelledDistance39982

• DriveTrain.FuelSystem.TankCapacity40983

The element hops from the root to the leaf is called path. Properties are named984

according to their path from the root of the tree toward the node itself and each985

element in the path is delimited by using the dot notation.986

Property names are formed of components in the data tree (which may contain987

the letters a-z, A-Z, and the digits 0-9; they must start with a letter a-z or A-Z,988

and must be in CamelCase) separated by dots. Property names must start and989

end with a component (not a dot) and contain one or more components.990

If an OEM needs to expose a custom (non-standardised) property, they must991

define them underneath the private branch41 which is provided by VSS to facil-992

itate OEM specific properties.993

High bandwidth or low latency sensors994

Sensors which provide high bandwidth outputs, or whose outputs must reach the995

bundle within certain latency bounds (as opposed to simply being aggregated996

by the vehicle device daemon within certain latency bounds), will be handled997

out of band. Instead of exposing the sensor data via the vehicle device daemon,998

the address of some out of band communications channel will be exposed. For999

video devices, this might be a V4L device node; for audio devices it might be a1000

PulseAudio device identifier. Multiplexing access to the device is then delegated1001

to the out of band mechanism.1002

This considerably relaxes the performance requirements on the vehicle device1003

37https://covesa.github.io/vehicle_signal_specification/rule_set/basics/#addressing-
nodes

38https://www.w3.org/Submission/vsso/#VehicleSpeed
39https://www.w3.org/Submission/vsso/#TravelledDistance
40https://www.w3.org/Submission/vsso/#tankCapacity
41https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/

29

https://covesa.github.io/vehicle_signal_specification/rule_set/basics/#addressing-nodes
https://www.w3.org/Submission/vsso/#VehicleSpeed
https://www.w3.org/Submission/vsso/#TravelledDistance
https://www.w3.org/Submission/vsso/#tankCapacity
https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
https://covesa.github.io/vehicle_signal_specification/rule_set/basics/#addressing-nodes
https://covesa.github.io/vehicle_signal_specification/rule_set/basics/#addressing-nodes
https://www.w3.org/Submission/vsso/#VehicleSpeed
https://www.w3.org/Submission/vsso/#TravelledDistance
https://www.w3.org/Submission/vsso/#tankCapacity
https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/


daemon, and allows the more specialist high bandwidth use cases to be handled1004

by more specialised code designed for the purpose.1005

Timestamps and uncertainty bounds1006

The W3C Vehicle Signal Specification does not define uncertainty fields for1007

any of its data types (for example, VehicleSpeed42 contains a single speed field1008

measured in kilometres per hour). However, it allows the extensibility, so the1009

data types exposed by the vehicle device daemon should all include an extension1010

field specifying the uncertainty (accuracy) of the measurement, in appropriate1011

units; and another specifying the timestamp when the measurement was taken,1012

in monotonic time (in the CLOCK_MONOTONIC43 sense).1013

For example, the Apertis VehicleSpeed update looks like this:1014

[('Drivetrain.Transmission.Speed', -> property name1015

(110, 0.3, 38003116), -1016

> value field (speed, uncertainty, timestamp)1017

{'description': 'Latereal vehicle accelaration', -> metadata1018

'id': 54,1019

'type': 'Int32',1020

'unit': 'km/h'})1021

]1022

which represents a measurement of speed ± uncertainty (110 ± 0.3) kilometres1023

per hour.1024

Registering triggers and actions1025

When subscribing to notifications for changes to a particular property using the1026

VehicleSignalInterface44 interface, a program is also subscribing to be woken up1027

when that property changes, even if the program is suspended or otherwise not1028

in the foreground.1029

Once woken up, the program can process the updated property value, and poten-1030

tially send a notification to the user. If the user interacts with this notification,1031

the program may be brought to the foreground. The program must not be au-1032

tomatically brought to the foreground without user interaction or it will steal1033

the user’s focus, which is distracting.1034

See the draft compositor security design1035

Alternatively, the program could process the updated property value in the1036

background without notifying the user.1037

42https://covesa.github.io/vehicle_signal_specification/rule_set/data_entry/sensor_act
uator/

43https://manpages.debian.org/unstable/manpages-dev/clock_gettime.2.en.html
44http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-

subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone

30

https://covesa.github.io/vehicle_signal_specification/rule_set/data_entry/sensor_actuator/
https://manpages.debian.org/unstable/manpages-dev/clock_gettime.2.en.html
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
https://covesa.github.io/vehicle_signal_specification/rule_set/data_entry/sensor_actuator/
https://covesa.github.io/vehicle_signal_specification/rule_set/data_entry/sensor_actuator/
https://manpages.debian.org/unstable/manpages-dev/clock_gettime.2.en.html
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone


The VehicleSignalInterface interface may be extended to support notifications1038

only when a property value is in a given range; a degenerate case of this, where1039

the upper and lower bounds of the range are equal, would support notifica-1040

tions for property values crossing a threshold. This would most likely be imple-1041

mented by adding optional min and max parameters to the VehicleSignalInter-1042

face.subscribe() method.1043

Bulk recording of sensor data1044

This is a slightly niche use case for the moment, and can be handled by an1045

application bundle running an agent process which is subscribed to the relevant1046

properties and records them itself. This is less efficient than having the vehicle1047

device daemon do it, as it means more processes waking up for changes in sensor1048

data, but avoids questions of data formats to use and how and when to send bulk1049

data between the vehicle device daemon and the application bundle’s agent.1050

If the implementation of this is moved into the vehicle device daemon, the1051

lifecycle of recorded data must be considered: how space is allocated for the1052

data’s storage, when and how the application bundle is woken to process the1053

data, and what happens when the allocated storage space is filled.1054

Security1055

The vehicle device daemon acts as a privilege boundary between all bundles1056

accessing devices, between the bundles and the devices, and between each back-1057

end service. Application bundles must request permissions to access sensor data1058

in their manifest (see the Applications Design document), and must separately1059

request permissions to interact with actuators. The split is because being able1060

to control devices in the vehicle is more invasive than passively reading from1061

sensors —it is safety critical. A sensible security policy may be to further split1062

out the permissions in the manifest to require specific permissions for certain1063

types of sensors, such as cabin audio sensors or parking cameras, which have1064

the potential to be used for tracking the user. As adding more permissions1065

has a very low cost, the recommendation is to err on the side of finer-grained1066

permissions.1067

The manifest should additionally separate lists of device properties which the1068

bundle requires access to from device properties which it may access if they1069

exist. This will allow the Apertis store to hide bundles which require devices1070

not supported by the user’s vehicle.1071

From the permissions in the manifest, AppArmor and polkit rules restricting1072

the program’s access to the vehicle device daemon’s API can be generated on1073

installation of the bundle. See Security domains for rationale.1074

When interacting with the vehicle device daemon, a program is securely identi-1075

fied by its D-Bus connection credentials, which can be linked back to its manifest1076

—the vehicle device daemon can therefore check which permissions the program’1077

31



s bundle holds and accept or reject its access request as appropriate. Therefore,1078

the vehicle device daemon acts as ‘the underlying operating system’in controlling1079

access, in the phrasing used by45 the W3C specification. It enforces the security1080

boundary between each bundle accessing devices, and between the intra- and1081

inter-vehicle networks. The vehicle device daemon forms a separate security1082

domain from any of the applications.1083

Each backend service is a separate security domain, meaning that the vehicle1084

device daemon is in a separate security domain from the intra-vehicle networks.1085

The daemon may rate-limit API requests from each program in order to prevent1086

one program monopolising the daemon’s process time and effectively causing a1087

denial of service to other bundles by making API calls at a high rate. This1088

could result from badly implemented programs which poll sensors rather than1089

subscribing to change notifications from them, for example; as well as malicious1090

bundles.1091

Due to its complexity, low level in the operating system, and safety criticality,1092

the vehicle device daemon requires careful implementation and auditing by an1093

experienced developer with knowledge of secure software development at the1094

operating system level and experience with relevant technologies (polkit, Ap-1095

pArmor, D-Bus).1096

The threat model under consideration is that of a malicious or compromised1097

bundle which can execute any of the D-Bus SDK APIs exposed by the daemon,1098

with full manifest privileges for sensor access. A second threat model is that of1099

a compromised backend service, which can execute any of the D-Bus hardware1100

APIs exposed by the daemon.1101

Security domains There are various security technologies available in Aper-1102

tis for use in restricting access to sensors and actuators. See the Security Design1103

for background on them; especially §9, Protecting the driver assistance system1104

from attacks. These technologies can only be used on the boundaries between1105

security domains. In this design, each application bundle is a single security1106

domain (encompassing all programs in the bundle, including agents and helper1107

programs); the vehicle device daemon is another domain; and each of the back-1108

end services are in a separate domain (including the vehicle networks they each1109

use).1110

Application bundle and another application bundle or the rest of the1111

system Separation of the security domains of different application bundles1112

from each other and from the rest of the system is covered in the Applications1113

and Security designs.1114

Application bundle and vehicle device daemon The boundary between1115

an application bundle and the vehicle device daemon is the Sensors and Actu-1116

45http://www.w3.org/2014/automotive/vehicle_spec.html#security

32

http://www.w3.org/2014/automotive/vehicle_spec.html#security
http://www.w3.org/2014/automotive/vehicle_spec.html#security


ators SDK API, implemented by the daemon and exposed over D-Bus. The1117

bundle’s AppArmor profile will grant access to call any method on this interface1118

if and only if the bundle requests access to one or more devices in its manifest.1119

Note that AppArmor is not used to separate access to different sensors or actua-1120

tors —it is not fine-grained enough, and is limited to allowing or denying access1121

to the API as a whole.1122

A separate set of polkit46 rules for the bundle control which devices the bundle is1123

allowed to access; these rules are generated from the bundle’s manifest, looking1124

at the specific devices listed. Given a set of polkit actions defined by the vehicle1125

device daemon, these rules should permit those actions for the bundle.1126

For example, the daemon could define the polkit actions:1127

• org.apertis.vehicle_device_daemon.EnumerateVehicles: To list the avail-1128

able vehicles or subscribe to notifications of changes in the list.1129

• org.apertis.vehicle_device_daemon.EnumerateDevices: To list the avail-1130

able devices on a given vehicle (passed as the vehicle variable on the action)1131

or subscribe to notifications of changes in the list.1132

• org.apertis.vehicle_device_daemon.ReadProperty: To read a property, i.e.1133

access a sensor, or subscribe to notifications of changes to the property1134

value. The vehicle ID and property name are passed as the vehicle and1135

property variables on the action.1136

• org.apertis.vehicle_device_daemon.WriteProperty: To write a property,1137

i.e. operate an actuator. The vehicle ID, property name and new value1138

are passed as the vehicle, property and value variables on the action.1139

The default rules for all of these actions must be polkit.Result.NO.1140

If a bundle has access to any device, it is safe and necessary to grant it access to1141

enumerate all vehicles and devices (the Enumerate* actions above) —otherwise1142

the bundle cannot check for the presence of the devices it requires. Knowledge1143

of which devices are connected to the vehicle should not be especially sensitive1144

—it is expected that there will not be a sufficient variety of devices connected1145

to a single vehicle to allow fingerprinting of the vehicle from the device list, for1146

example.1147

An application bundle, org.example.AccelerateMyMirror, which requests1148

access to the vehicle.throttlePosition.value property (a sensor) and the vehi-1149

cle.mirror.mirrorPan property (an actuator) would therefore have the following1150

polkit rule generated in /etc/polkit-1/rules.d/20-org.example.AccelerateMyMirror.rules:1151

polkit.addRule (function (action, subject) {1152

if (subject.credentials != 'org.example.AccelerateMyMirror') {1153

/* This rule only applies to this bundle.1154

* Defer to other rules to handle other bundles. */1155

46http://www.freedesktop.org/software/polkit/docs/master/polkit.8.html

33

http://www.freedesktop.org/software/polkit/docs/master/polkit.8.html
http://www.freedesktop.org/software/polkit/docs/master/polkit.8.html


return polkit.Result.NOT_HANDLED;1156

}1157

1158

if (action.id == 'org.apertis.vehicle_device_daemon.EnumerateVehicles' ||1159

action.id == 'org.apertis.vehicle_device_daemon.EnumerateDevices') {1160

/* Always allow these. */1161

return polkit.Result.YES;1162

}1163

1164

if (action.id == 'org.apertis.vehicle_device_daemon.ReadProperty' &&1165

action.lookup ('property') == 'vehicle.throttlePosition.value') {1166

/* Allow access to this specific property. */1167

return polkit.Result.YES;1168

}1169

1170

if (action.id == 'org.apertis.vehicle_device_daemon.WriteProperty' &&1171

action.lookup ('property') == 'vehicle.mirror.mirrorPan') {1172

/* Allow access to this specific property,1173

* with user authentication. */1174

return polkit.Result.AUTH\_USER;1175

}1176

1177

/* Deny all other accesses. */1178

return polkit.Result.NO;1179

});1180

In the rules, the subject is always the program in the bundle which is requesting1181

access to the device.1182

Open question: What is the exact security policy to implement regarding1183

separation of sensors and actuators? For example, bundle access to sensors1184

could always be permitted without prompting by returning polkit.Result.YES1185

for all sensor accesses; but actuator accesses could always be prompted to the1186

user by returning polkit.Result.AUTH_SELF. The choice here depends on the1187

desired user experience.1188

Vehicle device daemon and a backend service The boundary between1189

the vehicle device daemon and one of its backend services is the Sensors and1190

Actuators hardware API, implemented by the daemon and exposed over D-Bus.1191

The backend service’s AppArmor profile will grant access to call any method on1192

this interface. Note that AppArmor is not used to grant or deny permissions1193

to expose particular properties —it is not fine-grained enough, and is limited to1194

allowing or denying access to the API as a whole.1195

In order to limit the potential for a compromised backend service to escalate its1196

compromise into providing malicious sensor data for any sensor on the system,1197

each backend service must install a file which lists the Vehicle Data properties1198

34



it might possibly ever provide to the vehicle device daemon. The vehicle device1199

daemon must reject properties from a backend service which are not in this list.1200

The list must not be modifiable by the backend service after installation (i.e. it1201

must be read-only, readable by the vehicle device daemon).1202

Furthermore, if a backend service is found to be exploitable after being deployed,1203

it must be possible for the vehicle device daemon to disable it. This is expected1204

to typically happen with backend services provided by application bundles, as1205

opposed to those provided by OEMs or third parties (as these should go through1206

stricter review, and disabling them would have a much larger impact). The1207

vehicle device daemon must have a blacklist of backend services which it never1208

loads. It must check the credentials of D-Bus messages from backend services1209

against this blacklist.1210

Using GetConnectionCredentials, which returns an unforgeable iden-1211

tifier for the peer: http://dbus.freedesktop.org/doc/dbus-specificat1212

ion.html#bus-messages-get-connection-credentials1213

In order to support one (vulnerable) version of a backend service being black-1214

listed, but not the next (fixed) version, the blacklist must contain version num-1215

bers, which should be compared against the installed version number of the1216

backend service as listed in the system-wide application bundle manifest store.1217

Vehicle device daemon and the rest of the system The vehicle device1218

daemon itself must not be able to access any of the vehicle buses or any networks.1219

It must be run as a unique user, which owns the daemon’s binary, with its DAC1220

permissions set such that other users (except root) cannot run it. It must not1221

have access to any device files. See §9, Protecting the driver assistance system1222

from attacks, of the Security design for more details.1223

Backend service and another backend service or the rest of the system1224

In order to guarantee it is the only program which can access a particular vehicle1225

bus or network, each backend service should run as a unique user. The service’1226

s binary must be owned by that user, with its DAC permissions set such that1227

other users (except root) cannot run it. Any device files which it uses for access1228

to the underlying vehicle networks must be owned by that user, with their DAC1229

permissions set such that other users cannot access them, and udev rules in place1230

to prevent access by other users. If the backend needs access to a (local) network1231

interface to communicate with the vehicle network buses, that interface must1232

be put in a separate network namespace, and the CLONE_NEWNET flag used1233

when spawning the backend service to put it in that namespace. This prevents1234

the service from accessing other network interfaces; and prevents other processes1235

from accessing the buses. See §9, Protecting the driver assistance system from1236

attacks, of the Security design for more details.1237

SDK emulator Typically, it should not be possible for one program to have1238

access to both the vehicle device daemon’s SDK API and its hardware API (this1239

35

http://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-get-connection-credentials
http://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-get-connection-credentials
http://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-get-connection-credentials


access is controlled by AppArmor). However, the SDK emulator is a special case1240

which needs access to both —so either this must be possible as a special case, or1241

the SDK emulator must be split into a backend service process and a UI process,1242

which communicate via another D-Bus connection.1243

Apertis store validation Application bundles which request permissions to1244

access devices must undergo additional checks before being put on the Apertis1245

store. This is especially important for bundles which request access to actuators,1246

as those bundles are then potentially safety critical.1247

Checks for access to sensors Suggested checks for bundles requesting read1248

access to sensors:1249

• The bundle does not send privacy-sensitive data to services outside the1250

user’s control (for example, servers not operated by the user; see the User1251

Data Manifesto47), either via network transmission, logging to local stor-1252

age, or other means, without the user’s consent. Any data sent with the1253

user’s consent must only be sent to services which follow the User Data1254

Manifesto. For example (this list is not exhaustive):1255

– Tracking the vehicle’s movements.1256

– Monitoring the user’s conversations (audio recording).1257

• The bundle does not have access to uniquely identifiable information, such1258

as a vehicle identification number (VIN). Any exceptions to this would1259

need stricter review.1260

• The bundle clearly indicates when it is gathering privacy-sensitive data1261

from sensors. For example, a ‘recording’light displayed in the UI when1262

listening using a microphone.1263

1.1264

Suggested checks for bundles requesting write access to actuators:1265

1266

• The bundle does not additionally have network access.1267

• Actuators are only operated while the vehicle is not driving. Any excep-1268

tions to this would need even stricter review.1269

• Manual code review of the entire bundle’s source code by a developer with1270

security experience. The entire source code must be made available for1271

review by the bundle developer, as it is all run in the same security domain.1272

For example (this list is not exhaustive):1273

1274

47https://userdatamanifesto.org/

36

https://userdatamanifesto.org/
https://userdatamanifesto.org/
https://userdatamanifesto.org/
https://userdatamanifesto.org/


– Looking for ways the bundle could potentially be exploited by an1275

attacker.1276

– Checking that the bundle cannot use the actuator inappropriately1277

during normal operation if it encounters unexpected circumstances.1278

(For example, checking that arithmetic bugs don’t exist which could1279

cause an actuator to be operated at a greater magnitude than in-1280

tended by the bundle developer.)1281

Open question: The specific set of Apertis store validation checks for bundles1282

which access devices is yet to be finalised.1283

1284

Checks for backend services Suggested checks for backend services for the1285

vehicle device daemon, whether they are provided by an OEM, a third party or1286

as part of an application bundle:1287

• The backend service does not additionally have network access.1288

• The backend service does not have write access to any of the file system1289

except devices it needs, and the D-Bus socket.1290

• The backend service cannot access any more device nodes than it needs1291

to support its devices.1292

• Manual code review of the entire bundle’s source code by a developer with1293

security experience. The entire source code must be made available for1294

review by the bundle developer, as it is all run in the same security domain.1295

For example (this list is not exhaustive):1296

– Looking for ways the backend service could potentially be exploited1297

by an attacker.1298

– Checking that the backend service cannot use any of its actuator1299

inappropriately during normal operation if it encounters unexpected1300

circumstances. (For example, checking that arithmetic bugs don’1301

t exist which could cause an actuator to be operated at a greater1302

magnitude than intended by the developer.)1303

• The backend service’s D-Bus service is only accessible by the vehicle device1304

daemon (as enforced by AppArmor).1305

• If other software is shipped in the same application bundle, it must be1306

considered to be part of the same security domain as the backend service,1307

and hence subject to the same validation checks.1308

• The backend service must pass the automated compliance test ( Hardware1309

API compliance testing).1310

• The backend service must not expose any properties which are not sup-1311

ported by the version of the vehicle device daemon which it targets as its1312

37



minimum dependency (see Vehicle device daemon for information about1313

the extension process).1314

Suggested roadmap1315

Due to the large amount of work required to write a system like this from scratch,1316

it is worth exploring whether it can be developed in stages.1317

The most important parts to finalise early in development are the SDK and hard-1318

ware APIs, as these need to be made available to bundle developers and OEMs1319

to develop bundles and the backend services. There seems to be little scope for1320

finalising these APIs in stages, either (for example by releasing property access1321

APIs first, then adding vehicle and device enumeration), as that would result in1322

early bundles which are incompatible with multi-vehicle configurations.1323

Similarly, it does not seem to be possible to implement one of the APIs before1324

the other. Due to the fragmented nature of access to vehicle networks, the1325

backend needs to be written by the OEM, rather than relying on one written1326

by Apertis for early versions of the system.1327

Furthermore, the security implementation for the vehicle device daemon must1328

be part of the initial release, as it is safety critical.1329

One area where phased development is possible is in the set of properties itself1330

—initial versions of the daemon and backends could implement a small, core set1331

of the properties defined in the VSS Ontology (VSSo)48, and future versions1332

could expand that set of properties as time is available to implement them. As1333

each property is a public API, it must be supported as part of the SDK one it1334

has appeared in a released version of the daemon, so it is important to design1335

the APIs correctly the first time.1336

Similarly, the scope for backend services could be expanded over time. Initial1337

releases of the system could allow only backend services written by vehicle OEMs1338

to be used; with later releases allowing third-party backend services, then ones1339

provided by installed application bundles.1340

The emulator backend service ( SDK API compliance testing and simulation)1341

and any SDK hardware backend services ( SDK hardware) should be imple-1342

mented early on in development, as they should be relatively simple, and hav-1343

ing them allows application developers to start writing applications against the1344

service.1345

Requirements1346

• Enumeration of devices: The availability of known properties of the vehicle1347

can be checked through the Availability interface49. The W3C approach1348

48https://www.w3.org/Submission/vsso/
49http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability

38

https://www.w3.org/Submission/vsso/
http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
https://www.w3.org/Submission/vsso/
http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability


considers properties, rather than devices, to be the enumerable items, but1349

they are mostly equivalent (see Properties vs devices).1350

• Enumeration of vehicles: The availability of objects implementing the1351

W3C Vehicle interface on D-Bus is exposed using an interface like the1352

D-Bus ObjectManager API.1353

• Retrieving data from sensors: Properties can be retrieved through the1354

VehicleInterface interface50. For high bandwidth sensors, or those with1355

latency requirements for the end-to-end connection between sensor and1356

bundle, data is transferred out of band (see High bandwidth or low latency1357

sensors).1358

• Sending data to actuators: Properties can be set through the VehicleSig-1359

nalInterface51 interface. As with getting properties, data for high band-1360

width or low latency sensors is transferred out of band.1361

• Network independence: The vehicle device daemon abstracts access to the1362

underlying buses, so bundles are unaware of it.1363

• Bounded latency of processing sensor data: The vehicle device daemon1364

should have its scheduling configuration set so that it can provide latency1365

guarantees for the underlying buses.1366

• Extensibility for OEMs: Extensions are standardised through Apertis and1367

released in the next version of the Sensors and Actuators API for use by1368

the OEM.1369

• Third-party backends: Backend services for the vehicle device daemon1370

can be installed as part of application bundles (either built-in or store1371

bundles).1372

• Third-party backend validation: Backend services must be validated be-1373

fore being installed as bundles (see Checks for backend services).1374

• Notifications of changes to sensor data: Property changes are notified1375

via a publish–subscribe interface on VehicleSignalInterface52. Notification1376

thresholds are supported by optional parameters on that interface.1377

• Uncertainty bounds: The W3C API is extended to include uncertainty1378

bounds for measurements.1379

• Failure feedback: Through its use of Promises53, the API allows for failure1380

to set a property.1381

50https://www.w3.org/Submission/vsso/#Vehicle
51http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-

subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
52http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-

subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
53http://www.w3.org/TR/2013/WD-dom-20131107/#promises

39

https://www.w3.org/Submission/vsso/#Vehicle
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/TR/2013/WD-dom-20131107/#promises
https://www.w3.org/Submission/vsso/#Vehicle
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/TR/2013/WD-dom-20131107/#promises


• Timestamping: The W3C API is extended to include timestamps for mea-1382

surements.1383

• Triggering bundle activation: Programs are woken by subscriptions to1384

property changes (see Registering triggers and actions).1385

• Bulk recording of sensor data: Not currently implemented, but may1386

be implemented in future as a straightforward extension to the API. See1387

Bulk recording of sensor data.1388

• Sensor security: Access to the Sensors and Actuators API is controlled by1389

an AppArmor profile generated from permissions in the manifest. Access1390

to individual sensors is controlled by a polkit rule generated from the same1391

permissions. See Security.1392

• Actuator security: As with Sensor security; sensors and actuators are1393

listed and controlled by the polkit profile separately.1394

• App-store knowledge of device requirements: As devices required by an1395

application bundle are listed in the bundle’s manifest (see Security), the1396

Apertis store knows whether the bundle is supported by the user’s vehicle.1397

• Accessing devices on multiple vehicles: Each vehicle is exposed as a sepa-1398

rate D-Bus object, each implementing the W3C Vehicle interface.1399

• Third-party accessories: Properties for third-party accessories must be1400

standardised through Apertis and exposed as separate interfaces on the1401

vehicle object on D-Bus.1402

• SDK hardware support: SDK hardware should be supported through a1403

separate development-only backend service written specifically for that1404

hardware.1405

Open questions1406

1. Hardware and app APIs: The exact definition of the SDK API is yet to1407

be finalised. It should include support for accessing multiple properties in1408

a single IPC round trip, to reduce IPC overheads.1409

2. Interactions between backend services: The exact means for aggregating1410

each property in the Vehicle Data specification is yet to be determined.1411

3. Security domains: What is the exact security policy to implement re-1412

garding separation of sensors and actuators? For example, bundle access1413

to sensors could always be permitted without prompting by returning1414

polkit.Result.YES for all sensor accesses; but actuator accesses could al-1415

ways be prompted to the user by returning polkit.Result.AUTH_SELF.1416

The choice here depends on the desired user experience.1417

4. Apertis store validation: The specific set of Apertis store validation checks1418

for bundles which access devices is yet to be finalised.1419

40



Summary of recommendations1420

As discussed in the above sections, we recommend:1421

• Implementing a vehicle device daemon which exposes the W3C Vehicle1422

Information Access API; this will probably need to be developed from1423

scratch.1424

• Documenting the hardware API and distributing it to OEMs, third parties1425

and application developers along with a compliance test suite and a com-1426

mon utility library to allow them to build backend services for accessing1427

vehicle networks.1428

• Documenting the SDK API and distributing it to application bundle de-1429

velopers along with a validation suite and simulator to allow them to build1430

programs which use the API.1431

• Provide example trip logs for journeys to test against and a method for1432

replaying them via the vehicle device daemon, so application developers1433

can test their applications.1434

• Defining how to aggregate multiple values of each property in the W3C1435

Vehicle Data API.1436

• Extending the W3C Vehicle Information Service Specification to expose1437

uncertainty and timestamp data for each property.1438

• Extending the W3C Vehicle Information Service Specification to expose1439

multiple vehicles and notify of changes using an interface like D-Bus Ob-1440

jectManager.1441

• Extending the W3C Vehicle Information Service Specification to support1442

a range of interest for property change notifications.1443

• Adding a property to the application bundle manifest listing which device1444

properties programs in the bundle may access if they exist.1445

• Adding a property to the application bundle manifest listing which device1446

properties programs in the bundle require access to.1447

• Extending the Apertis store validation process to include relevant checks1448

when application bundles request permissions to access sensors (privacy1449

sensitive) or actuators (safety critical). Or when application bundles re-1450

quest permissions to provide a vehicle device daemon backend service1451

(safety critical).1452

• Modifying the Apertis software installer to generate AppArmor rules to1453

allow D-Bus calls to the vehicle device daemon if device properties are1454

listed in the application bundle manifest.1455

• Modifying the Apertis software installer to generate polkit rules to grant1456

an application bundle access to specific devices listed in the application1457

41



bundle manifest.1458

• Implementing and auditing strict DAC and MAC protection on the vehicle1459

device daemon and each of its backend services, and identity checks on all1460

calls between them.1461

• Defining a feedback and standardisation process for OEMs to request new1462

properties or device types to be supported by the vehicle device daemon’1463

s API.1464

Sensors and Actuators API1465

This sections aims to compare the current status of the Vehicle device daemon1466

for the sensors and actuators SDK API (Rhosydd54) with the latest W3C spec-1467

ifications: the Vehicle Information Service Specification55 API and the Vehicle1468

Signal Specification56 data model.1469

It will also explain the required changes to align Rhosydd to the new W3C1470

specifications.1471

Rhosydd API Current State1472

The current Rhosydd API is stable and usable implementing the Vehicle Infor-1473

mation Service Specification57 and using the data model specified by the Vehicle1474

Signal Specification58.1475

Considerations to align Rhosydd to the new VISS API1476

1. The original Vehicle API and the Rhosydd API don’t exactly match 1:1 as1477

the latter has been adapted to follow the inter-process D-Bus constraints1478

and best-practice, which are somewhat different than the ones for a in-1479

process JavaScript API.1480

New vs Old Specification1481

1. The Vehicle Data Specification59 data model uses attributes (data) and1482

interface objects, where VISS uses the Vehicle Signal Specification60 data1483

model which is based on a signal tree structure containing different entities1484

types (branches, rbranches, signals, attributes, and elements).1485

54https://gitlab.apertis.org/pkg/rhosydd
55https://www.w3.org/TR/vehicle-information-service/
56https://github.com/COVESA/vehicle_signal_specification
57https://www.w3.org/TR/vehicle-information-service/
58https://github.com/COVESA/vehicle_signal_specification
59http://www.w3.org/2014/automotive/data_spec.html
60https://github.com/COVESA/vehicle_signal_specification

42

https://gitlab.apertis.org/pkg/rhosydd
https://www.w3.org/TR/vehicle-information-service/
https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vehicle_signal_specification
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vehicle_signal_specification
http://www.w3.org/2014/automotive/data_spec.html
https://github.com/COVESA/vehicle_signal_specification
https://gitlab.apertis.org/pkg/rhosydd
https://www.w3.org/TR/vehicle-information-service/
https://github.com/COVESA/vehicle_signal_specification
https://www.w3.org/TR/vehicle-information-service/
https://github.com/COVESA/vehicle_signal_specification
http://www.w3.org/2014/automotive/data_spec.html
https://github.com/COVESA/vehicle_signal_specification


2. The Vehicle Information Service Specification61 API objects are defined as1486

JSON objects that will be passed between the client and the VIS Server,1487

where Rhosydd is currently based on accessing attributes values using1488

interface objects.1489

3. VISS defines a set of Request Objects and Response Objects (de-1490

fined as JSON schemas), where the client must pass request messages to1491

the server and they should be any of the defined request objects, in the1492

same way, the message returned by the server must be one of the defined1493

response objects.1494

4. The request and response parameters contain a number of attributes,1495

among them the Action attribute which specify the type of action re-1496

quested by the client or delivered by the server.1497

5. VISS lists well defined actions for client requests: authorize, getMetadata,1498

get, set, subscribe, subscription, unsubscribe, unsubscribeAll.1499

6. The Vehicle Signal Specification62 introduces the concept of signals. They1500

are just named entities with a producer (or publisher) that can change its1501

value over time and have a type and optionally a unit type defined.1502

7. The Vehicle Signal Specification63 data model introduces a signal specifica-1503

tion format. This specification is a YAML list in a single file called vspec1504

file. This file can also be generated in other formats (JSON, FrancaIDL),1505

and basically defines the signal and data structure tree.1506

8. The Vehicle Signal Specification introduces the concept of signal ID1507

databases. These are generated from the vspec files, and they basically1508

map signal names to ID’s that can be used for easy indexing of signals1509

without the need of providing the entire qualified signal name.1510

Rhosydd New Changes1511

• The Vehicle Information Service Specification64 API defines the Request1512

and Response Objects using a JSON schema format. The Rhosydd API1513

(both the application-facing and backend-facing ones) has been updated1514

to provide a similar API based on idiomatic DBus methods and types.1515

• Maps the different VISS Server actions to handle client requests to their1516

respective DBus methods in Rhosydd.1517

• The internal Rhosydd data model has been updated to support all the1518

element types defined in the Vehicle Signal Specification65.1519

61https://www.w3.org/TR/vehicle-information-service/
62https://github.com/COVESA/vehicle_signal_specification
63https://github.com/COVESA/vehicle_signal_specification
64https://www.w3.org/TR/vehicle-information-service/
65https://github.com/COVESA/vehicle_signal_specification

43

https://www.w3.org/TR/vehicle-information-service/
https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vehicle_signal_specification
https://www.w3.org/TR/vehicle-information-service/
https://github.com/COVESA/vehicle_signal_specification
https://www.w3.org/TR/vehicle-information-service/
https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vehicle_signal_specification
https://www.w3.org/TR/vehicle-information-service/
https://github.com/COVESA/vehicle_signal_specification


• It might also be required to add support to process signal ID databases1520

in order for Rhosydd to recognize signals specified by the Vehicle Signal1521

Specification.1522

Advantages1523

• The new VISS spec is based on a WebSocket API, and it resembles more1524

closely the inter-process mechanism based on D-Bus in Rhosydd rather1525

than the previous JavaScript in-process mechanism defined by the previous1526

specification.1527

Conclusion1528

The main effort will be about updating the internal Rhosydd data model to1529

reflect the changes introduced in the Vehicle Signal Specification66 data model,1530

with the extended types and metadata.1531

The DBus APIs, both on the application and backend sides, will need to be1532

updated to map to the new data model. From a high-level point of view the1533

old and new APIs are relatively similar, but a non-trivial amount of changes is1534

expected to map the new concepts and to align to the new terminology.1535

The Rhosydd67 client APIs for applications (librhosydd) and backends (libcroe-1536

sor) will need to be updated to reflect the changes in the underlying DBus1537

APIs.1538

Appendix: W3C API1539

For the purposes of completeness, the Vehicle Information Service Specifica-1540

tion68 is reproduced below. This is the version from the Final Business Group1541

Report 26 June 2018, and does not include the Vehicle Signal Specification69 for1542

brevity. The API is described as WebIDL70, and partial interfaces have been1543

merged.1544

[Constructor,1545

Constructor(VISClientOptions options)]1546

interface VISClient {1547

readonly attribute DOMString? host;1548

readonly attribute DOMString? protocol;1549

readonly attribute unsigned short? port;1550

1551

[NewObject] Promise< void> connect();1552

[NewObject] Promise< unsigned long> authorize(object tokens);1553

66https://github.com/COVESA/vehicle_signal_specification
67https://gitlab.apertis.org/pkg/rhosydd
68https://www.w3.org/TR/vehicle-information-service/
69https://github.com/COVESA/vehicle_signal_specification
70http://www.w3.org/TR/WebIDL/

44

https://github.com/COVESA/vehicle_signal_specification
https://gitlab.apertis.org/pkg/rhosydd
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://github.com/COVESA/vehicle_signal_specification
http://www.w3.org/TR/WebIDL/
https://github.com/COVESA/vehicle_signal_specification
https://gitlab.apertis.org/pkg/rhosydd
https://www.w3.org/TR/vehicle-information-service/
https://github.com/COVESA/vehicle_signal_specification
http://www.w3.org/TR/WebIDL/


[NewObject] Promise< Metadata> getMetadata(DOMString path);1554

[NewObject] Promise< VISValue> get(DOMString path);1555

[NewObject] Promise< void> set(DOMString path, any value);1556

VISSubscription subscribe(DOMString path, SubscriptionCallback subscriptionCallback, ErrorCallback errorCallback,optional VISSubscribeFilters filters);1557

[NewObject] Promise< void> unsubscribe(VISSubscription subscription);1558

[NewObject] Promise< void> unsubscribeAll();1559

[NewObject] Promise< void> disconnect();1560

};1561

1562

dictionary VISClientOptions {1563

DOMString? host;1564

DOMString? protocol;1565

unsigned short? port;1566

};1567

1568

dictionary VISValue {1569

any value;1570

DOMTimeStamp timestamp;1571

};1572

1573

dictionary VISError {1574

unsigned short number;1575

DOMString? reason;1576

DOMString? message;1577

DOMTimeStamp timestamp;1578

};1579

1580

enum Availability {1581

"available",1582

"not_supported",1583

"not_supported_yet",1584

"not_supported_security_policy",1585

"not_supported_business_policy",1586

"not_supported_other"1587

};1588

45


	Terminology and concepts
	Vehicle
	Intra-vehicle network
	Inter-vehicle network
	Sensor
	Actuator
	Device

	Use cases
	Augmented reality parking
	Virtual mechanic
	Petrol station finder
	Sightseeing application bundle
	Changing bundle functionality when driving at speed
	Changing audio volume with vehicle or cabin noise
	Night mode
	Weather feedback or traffic jam feedback
	Insurance bundle
	Driving setup bundle
	Odour detection
	Air conditioning control
	Agricultural vehicle
	Roof box
	Truck installations
	Compromised application bundle
	Ethernet intra-vehicle network
	Development against the SDK

	Non-use-cases
	Bluetooth wrist watch and the Internet of Things
	Car-to-car and car-to-infrastructure communications
	Buddied and vehicle fleet communications

	Requirements
	Enumeration of devices
	Enumeration of vehicles
	Retrieving data from sensors
	Sending data to actuators
	Network independence
	Bounded latency of processing sensor data
	Extensibility for OEMs
	Third-party backends
	Third-party backend validation
	Notifications of changes to sensor data
	Uncertainty bounds
	Failure feedback
	Timestamping
	Triggering bundle activation
	Bulk recording of sensor data
	Sensor security
	Actuator security
	App store knowledge of device requirements
	Accessing devices on multiple vehicles
	Third-party accessories
	SDK hardware support

	Background on intra-vehicle networks
	Existing sensor systems
	W3C Vehicle Information Service Specification (VISS)
	GENIVI Web API Vehicle
	Apple HomeKit
	Apple External Accessory API
	iOS CarPlay
	Android Auto
	MirrorLink
	Android Sensor API
	Automotive Message Broker
	AllJoyn

	Approach
	Overall architecture
	Vehicle device daemon
	Hardware and app APIs
	Hardware API compliance testing
	SDK API compliance testing and simulation
	SDK hardware
	Trip logging of sensor data
	Properties vs devices
	Property naming
	High bandwidth or low latency sensors
	Timestamps and uncertainty bounds
	Registering triggers and actions
	Bulk recording of sensor data
	Security
	Suggested roadmap
	Requirements

	Open questions
	Summary of recommendations
	Sensors and Actuators API
	Rhosydd API Current State
	Considerations to align Rhosydd to the new VISS API
	New vs Old Specification
	Rhosydd New Changes
	Advantages
	Conclusion
	Appendix: W3C API


