
Cloud-friendly APT repository publishing

Contents1

Why we need a new APT publisher 22

Alternatives to reprepro 33

Aptly . 34

Pulp . 45

Conclusion 56

Implementation plan . 67

Why we need a new APT publisher8

Apertis relies on OBS1 for building and publishing binary packages. However,9

upstream OBS provides an APT publisher based on dpkg-scanpackages, which10

is not suitable for a project the scale of Apertis, where a single OBS project11

contains a lot of packages.12

Therefore, our OBS instance uses a custom publisher based on reprepro, but it13

is still subject to some limitations that are now more noticeable as the scale of14

Apertis has grown considerably:15

• When branching a release reprepro has to be invoked manually to initialize16

the exported repositories17

• When branching a release the OBS publisher has to be manually disabled18

or it will cause severe lock contention with the manual invocation men-19

tioned above20

• Removing a package requires manual intervention21

• Snapshots are not supported natively22

• Cloud storage is not supported23

In order to address these shortcomings, we need to develop a new APT publisher24

(based on a backend other than reprepro) which should be capable of:25

• Publishing the whole Apertis release on non-cloud storage26

• Publishing the whole Apertis release on cloud storage27

• Natively supporting snapshots28

• Automatic branching of an Apertis release, not requiring manual interven-29

tion on the APT publisher30

• Synchronize OBS and APT repositories; as an example, removing a pack-31

age from OBS should trigger the removal of the package from the APT32

repositories as well33

1https://www.apertis.org/architecture/distribution/workflow-guide/

2

https://www.apertis.org/architecture/distribution/workflow-guide/
https://www.apertis.org/architecture/distribution/workflow-guide/

Alternatives to reprepro34

The Debian wiki includes a page2 listing most of the software currently available35

for managing APT repositories. However, a significant portion of those tools36

cover only one of the following use-cases:37

• managing a small repository, containing only a few packages38

• replicating a (sometimes simplified) official Debian infrastructure39

A few of the mentioned tools, however, are aimed at managing large-scale repos-40

itories within a custom infrastructure, and offer more advanced features which41

could be of interest to Apertis. Those are:42

• aptly43

• pulp44

Laniakea3 was also considered, but as it’s meant to work within a full Debian-like45

infrastructure and doesn’t offer any cloud-based storage option, it was dismissed46

as well.47

Extended search did not point to other alternative solutions covering our use-48

case.49

Aptly50

Aptly4 is a complete solution for Debian repository management, including51

mirroring, snapshots and publication.52

It uses an internal, locally-stored package pool and database, and provides cloud53

storage options for publishing ready-to-serve repositories. Aptly also provides a54

full-featured CLI client and an almost complete REST API. It could therefore55

run either directly on the same server as OBS, or on a different one. The REST56

API misses mirroring support for now, so these features can only be used from57

the command-line client.58

Package import and repository publication are separate operations:59

• The package is first imported to the internal package pool and associated60

to the requested repository in a single operation61

• When all required packages are imported, the repository can be published62

atomically63

Repositories can be published both to the local filesystem and to a cloud-based64

storage service (Amazon S3 or OpenStack Swift).65

Moreover, Aptly identifies each package using the (name, version, architecture)66

triplet: by doing so, it allows keeping multiple versions of the same package in67

2https://wiki.debian.org/DebianRepository/Setup
3https://github.com/lkhq/laniakea
4https://www.aptly.info/

3

https://wiki.debian.org/DebianRepository/Setup
https://github.com/lkhq/laniakea
https://www.aptly.info/
https://wiki.debian.org/DebianRepository/Setup
https://github.com/lkhq/laniakea
https://www.aptly.info/

a single repository, while reprepro kept only the latest package version. This68

requires additional processing for Aptly to replicate the current behavior.69

Finally, attention should be paid to regularly cleaning up the database and70

package pool: unused packages are kept in the pool, even when obsoleted by71

a newer version and/or removed from all repositories, until a database cleanup72

is triggered. A daily cleanup job should be sufficient to make sure the internal73

pool doesn’t carry unused packages over time.74

Pros75

• tailored for APT repository management: includes some interesting fea-76

tures such as multi-component publishing77

• command-line or REST API interface (requires an additional HTTP server78

for authentication and permissions management)79

Cons80

• uses a local package pool which can grow large if a lot of packages and81

versions are used simultaneously82

• requires additional processing to keep only the latest version of each pack-83

age84

• needs regular database cleanups85

Pulp86

Pulp5 is a generic solution for storing and publishing binary artifacts. It uses87

plugins for managing specific artifact types, and offers a plugin for DEB pack-88

ages.89

It offers flexible storage options, including S3 and Azure, which can also be ex-90

tended as the storage backend is built on top of django-storages, which provides91

a number of additional options.92

Pulp can be used through a REST API, and provides a command-line client93

for wrapping a significant portion of the API calls. Unfortunately, the DEB94

plugin isn’t handled by this client, meaning only the REST API is available for95

managing those packages.96

Its package publication workflow involves several Pulp objects:97

• the binary artifact (package) itself98

• a Repository99

• a Publication100

• a Distribution101

5https://pulpproject.org/

4

https://pulpproject.org/
https://pulpproject.org/

Each Distribution is tied to a single Publication, which is itself tied to a specific102

Repository version. As each Repository modification increments the Repository103

version, adding or removing a package involves the following steps:104

• add or remove the package from the Repository105

• retrieve the latest Repository version106

• create a new Publication for this repository version107

• update the Distribution to point to the new Publication108

• remove the previous Publication109

This workflow feels too heavy and error-prone when working with a distribution110

the scale of Apertis, where lots of packages are often added or updated. Addi-111

tionally, each Distribution must have its own base URL, preventing publishing112

multiple Apertis versions and components in the same repository.113

Pros114

• generic artifacts management solution: can be re-used for storing non-115

package artifacts too116

• flexible storage options117

Cons118

• complex workflow for publishing/removing packages119

• unable to store multiple repositories on the same base URL120

• can only be used through REST API121

Conclusion122

Based on the above software evaluation, aptly seems to be the more appropriate123

choice:124

• supports snapshots125

• can make use of both local and cloud-based storage for publishing reposi-126

tories127

• provides useful features aimed specifically at APT repository management128

• allow publishing several repositories and components to a single endpoint129

Its main shortcoming (locally-stored package pool) can be addressed by imple-130

menting an option for storing the pool on cloud-based storage. This would be131

the most efficient approach when compared to the alternative (hosting aptly on132

a remote server and using it through the REST API).133

Moreover, the following points must be kept in mind when implementing the134

publisher:135

• aptly doesn’t remove previous versions of an updated package; although136

this behavior could be implemented in aptly itself, it will be less effort to137

have the publisher handle removing obsoleted packages138

5

• the package pool will keep growing as new and updated packages are139

added, it should therefore be cleaned up on a regular basis by triggering140

database cleanups141

• publishing large repositories with aptly can take a long time; decoupling142

the action of adding a package from the actual repository publication143

would be a useful optimization, however it would be outside the scope of144

the initial implementation145

Finally, aptly is actively maintained upstream, with a new team of developers146

having taken over its development last year. The chances of it being abandoned147

and/or replaced with a different project are therefore very low.148

Implementation plan149

• Update OBS to a more recent upstream version: this will provide a more150

up-to-date base on which we can develop and upstream the new APT151

publisher152

• Start with a prototype, local-only version capable of:153

– adding a package to a (manually created) local repository154

– publishing the repository to local storage155

– deleting a package from the repository when removing it from OBS156

• Implement automated branching and repository creation for new OBS157

projects158

• Automate periodic database cleanups159

• Add configuration options for publishing to cloud-based storage160

• Implement cloud-based storage options for aptly’s internal package pool161

6

	Why we need a new APT publisher
	Alternatives to reprepro
	Aptly
	Pulp

	Conclusion
	Implementation plan

