
Thin proxies: REST APIs

Contents1

Current status 22

System APIs . 23

Application development . 34

Proposal 45

REST APIs . 46

REST APIs design . 47

REST APIs security . 58

REST APIs security for local services on embedded devices 79

Consuming REST APIs . 710

Conclusion 811

Links 812

Apertis is a distribution that aims to provide solid bases to build products from13

IOT devices to complex HMI systems. The workflows to build such variety of14

products involves many different technologies, tools and developers’background.15

A common issue during development is the need of high level APIs to interact16

with the system to allow application developers to focus on their use cases while17

hiding the complexity of low level system APIs.18

Additionally, to hide complexity, a nice-to-have goal is to make these APIs19

technology agnostic, allowing developers to write their application in the lan-20

guage/technology they choose without any additional complexity.21

An example of this situation is to let a developer with a basic network knowl-22

edge access a high level API to setup a simple network configuration in a HMI23

web application using Javascript. Unfortunately, currently, the only available24

solution to perform network configuration is to access the extremely complex25

connman C D-BUS APIs.26

In order to provide a solution that satisfies these objectives, Apertis encourages27

the use of Thin Proxies.28

Current status29

System APIs30

System APIs are used to allow application to interact with the system in order31

to:32

• Retrieve information, such as retrieving network configuration33

• Configure parameters, such as configuring network parameters34

• Perform actions, such as system reboot35

2

These kind of APIs are usually available in C language and bindings for other36

languages are built on top them, such as Python, Go and Rust. In the case of37

C++, usually the approach is to use the standard C API.38

Since these kind of APIs are meant to cover many different use cases, they39

usually provide low level functionality, making them extremely big and complex.40

In addition they are very tied to specific technologies, requiring a deep knowledge41

in order to properly use them.42

Lastly, as it is clearly seen, the use of this kind of API imposes security risks43

which should be minimized to provide a robust and reliable solution.44

As a summary the challenges are:45

• Usually built in the C language46

• Provide low level functionality47

• Very big and complex48

• Tied to specific technologies49

• Impose security risks50

Application development51

There is a wide range of applications which require access to system APIs to52

fulfill their goals. However, it is very common to only need to use a small53

number of high level operations. In such cases, accessing low level system APIs54

as described previously represents a huge barrier for development due to:55

• Big learning curve for system APIs56

• Big learning curve for technologies involved57

• No up to date binding for the language of preference58

• Error prone due to limited experience59

Additionally, it is common to build Flatpak applications, in order to provide an60

easy way to distribute and upgrade confined applications, improving the security61

and robustness of the solution. Under these premises, using system APIs directly62

from Flatpak is not natural since it goes against the principle of application63

confinement. To solve that Flatpak applications usually communicate with the64

system services via D-Bus, but in some cases this is not ideal given it may65

still require low-level knowledge of the components in question and is tied to a66

specific IPC mechanism.67

In these use cases a different approach should be to provide:68

• Easy to use APIs69

• Support for different languages/technologies70

• Allow access from confined applications71

3

Proposal72

As a solution to overcome these difficulties Apertis encourages the use of Thin73

Proxies, to provide easy to use high level APIs for system APIs. The idea behind74

this concept consists in building a small service which provides an API targeted75

to the specific use case to provide the required functionality. This service should76

use REST APIs to provide a technology agnostic API.77

There are other possible approaches, such as an IPC API which is used in other78

projects. However, a REST API is much more technology agnostic, allowing79

developers without experience in Linux systems to easily build applications.80

REST APIs81

A [REST API] uses HTTP to access resources using the standard methods82

GET, PUT, POST and DELETE. This type of API is based in the concept83

of representational state transfer (REST), with aims to allow scalability. The84

goals behind using these kind of APIs are:85

• Improve scalability of interactions between components86

• Stateless operations87

• Uniform interfaces88

• Independent deployment of components89

• Facilitate caching90

• Enforce security91

• Support layered system92

For these reasons REST APIs are the most common technology to provide access93

to remote resources on the Internet, allowing developers to build applications94

in the language they prefer.95

This same approach can be used to build applications that access local resources,96

such as system APIs, using similar workflows than the ones used in other appli-97

cations.98

REST APIs design99

Designing a REST API can be challenging since any change might impact in100

the clients that make use of it. In this context the following recommendations101

should help to reduce the possibility of having to deal with unexpected changes.102

Analyze use cases103

The first step in the process of designing an API is to understand what the104

requirements of the use cases are. This step should also try to think about105

possible new use cases with new requirements, to create an API that could be106

extended naturally in new versions.107

Data format108

4

REST APIs can used with different data such XML or JSON, however, nowa-109

days is recommended to use JSON, since it is de-facto format for sending and110

receiving data.111

URIs and endpoints112

Connected to the previous comment, designing URIs and endpoints, considering113

current and possible future uses cases will help developers using the REST API114

when developing their applications and supporting it across new versions of the115

API.116

Additionally, when choosing names for endpoints it is recommended to use117

nouns, since they represent objects, while the action on those objects is rep-118

resented by the HTTP method used. In relation to this, make use of logical119

nesting on endpoint to show relationships between them, making the API easier120

to use.121

Error handling122

In order to make the API easier to use, errors should be handled gracefully and123

standard HTTP codes, alongside additional text to describe the error, should124

be be returned when needed.125

Versioning126

Using versioning in the API ensures that the evolution of an API does not127

affect old unsupported clients which are tied to an old version of the API while128

allowing well supported clients to have access to the latest functionality.129

Documentation130

The process of documentation is important since this will allow to share the131

design with the people involved, which will provide valuable feedback regarding132

missing functionality or possible issues.133

REST APIs security134

As previously mentioned, one of the goals of this proposal is to provide a solution135

that helps developers reduce the overhead without sacrificing security.136

To do so, the same security principle that apply to any REST API on the137

Internet also applies to Thin Proxies. These security principles can be relaxed138

during development and testing but should be enforced in production.139

Block not allowed HTTP methods140

A common premise in security is to only allow the really needed functionality,141

in order to reduce the possibility of exploits and attacks. With that in mind142

only the HTTP methods that should be supported should be whitelisted, while143

other methods should be blocked. As an example, the HTTP method DELETE144

is usually not supposed to be used on common API calls and should be blocked.145

5

Use TLS and well supported security framework146

Nowadays, TLS is widely used on the Internet since it is the base for any se-147

cure service. A very good practice is to make use of a well supported security148

framework since this enables updates and security fixes to make the application,149

in this case the Thin Proxy, more robust. By using TLS on REST APIs, both150

confidentiality and server/service authentication are supported.151

During development and testing the use of encrypted channels can be disabled152

to help developers to debug their applications.153

Use solid authentication mechanism154

One of the most challenging aspects of security with REST APIs is to have a155

solid authentication mechanism to prevent unauthorized access to the services156

provided by the application.157

The following are recommended mechanisms:158

• API keys1: solution based in the generation of a secret for the user, which159

should be stored in the server/service.160

• OAuth2: solution to pass authentication information from one service to161

other, which offloads the authentication to a different service.162

• JSON Web Tokens (JWT)3: solution based on token generation from163

JSON data which are signed by the service.164

Data in URL165

It is discouraged to use sensitive data in the URL since this could lead to a166

security leak. Data such as usernames, passwords and tokens should not be167

included in the URLs since they could be easily captured by the server/service168

logs or a network sniffer for example.169

Validate input parameters170

One way in which security can be compromised is by assuming that input data171

is valid, since processing invalid data could lead to unexpected results. This172

can happen either by an error in the application which is using the API or by173

malicious users who are trying to get access to system resources.174

By validating the input data the system will be able to reject API calls that use175

invalid data minimizing the possibility of issues.176

Include timestamps177

Adding timestamps to HTTP request allows the server/service to check them178

against the current time and in this way filter old requests preventing reply179

attacks. This also adds value information to log records which could help during180

debugging.181

1https://en.wikipedia.org/wiki/Application_programming_interface_key
2https://en.wikipedia.org/wiki/OAuth
3https://en.wikipedia.org/wiki/JSON_Web_Token

6

https://en.wikipedia.org/wiki/Application_programming_interface_key
https://en.wikipedia.org/wiki/OAuth
https://en.wikipedia.org/wiki/JSON_Web_Token
https://en.wikipedia.org/wiki/Application_programming_interface_key
https://en.wikipedia.org/wiki/OAuth
https://en.wikipedia.org/wiki/JSON_Web_Token

Log failed requests182

Understanding what is happening is a key element to ensure security, and to183

quickly respond to a security breach. In this context, having information related184

to failed requests or abnormal situations, provides the data required to analyze185

potential security issues.186

REST APIs security for local services on embedded devices187

The use of REST APIs is widely used to access services on the Internet but188

as mentioned is this document the same principles can be used to access local189

services in embedded devices. In this context, the same security principles apply190

but some important differences need to be noted.191

Block requests from other hosts192

The fact that both client and server are in the same host allows to add addition-193

ally restrictions, such as only allowing requests from local host. This restriction194

could be relaxed on development environments to allow developers to easily test195

their code.196

Solid authentication mechanism for embedded devices197

This document has covered some authentication mechanisms that are used on198

the Internet, however not all of them are suitable for this use case. From the199

previous list, JWT is the most suitable for this scenario, since the token is signed200

with the service’s private key and contains all the required information in the201

token itself. In this way, the server/service does not need to know in advance202

which clients will use it and does not need to store specific data for the client203

application, which simplifies client deployments and avoid requiring a database.204

Consuming REST APIs205

The idea behind this document is to enable developers to consume the REST206

APIs provided by Thin Proxies from the language/technology of their preference.207

In this regard, only high level suggestions can be made that are tied to the208

recommendations already suggested.209

Use TLS and well supported security framework210

As mentioned in the previous section, the use of TLS and well supported security211

frameworks improves the security of the solution, since an attacker could make212

use of a vulnerability in the consumer code to gain access to the system.213

As commented before, during development and testing the use of encryption214

can be disabled to help developers to debug their applications.215

Sensitive data216

Sensitive data such as username, JWT tokens or any other data that could give217

useful information to attackers should be stored encrypted to minimize security218

7

risks. Additionally, following the same principles, this type of data should not219

be included in trace logs since it could be easily retrieved.220

Conclusion221

The use of Thin Proxies based on REST APIs provides a way for developers222

to build their application using the language/technology they prefer, hiding the223

complexity of low level APIs.224

Links225

• REST API Best Practices4226

• How to create a RESTful API5227

• Securing REST APIs6228

• How to secure REST API endpoints7229

• REST API web service security8230

4https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/
5https://yalantis.com/blog/how-to-create-a-restful-api/
6https://developer.okta.com/blog/2019/09/04/securing-rest-apis
7https://www.techtarget.com/searchcloudcomputing/tip/How-to-secure-REST-API-

endpoints-for-cloud-applications
8https://www.netsparker.com/blog/web-security/rest-api-web-service-security/

8

https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/
https://yalantis.com/blog/how-to-create-a-restful-api/
https://developer.okta.com/blog/2019/09/04/securing-rest-apis
https://www.techtarget.com/searchcloudcomputing/tip/How-to-secure-REST-API-endpoints-for-cloud-applications
https://www.netsparker.com/blog/web-security/rest-api-web-service-security/
https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/
https://yalantis.com/blog/how-to-create-a-restful-api/
https://developer.okta.com/blog/2019/09/04/securing-rest-apis
https://www.techtarget.com/searchcloudcomputing/tip/How-to-secure-REST-API-endpoints-for-cloud-applications
https://www.techtarget.com/searchcloudcomputing/tip/How-to-secure-REST-API-endpoints-for-cloud-applications
https://www.netsparker.com/blog/web-security/rest-api-web-service-security/

	Current status
	System APIs
	Application development

	Proposal
	REST APIs
	REST APIs design
	REST APIs security
	REST APIs security for local services on embedded devices
	Consuming REST APIs

	Conclusion
	Links

