
Apertis test strategy

Contents1

Real life challenges in embedded Linux projects 32

Development workflow in binary package distribution 43

Testing in binary package distribution 54

Classifications 55

Components . 56

Component metrics . 67

Loops and types . 78

Priorities . 99

Constraints . 910

Strategy 1011

Classify components . 1012

Define tests required for each component 1113

Current status and gaps . 1214

Considerations for product teams 1315

Follow up tasks 1416

Apertis is an Open Source project which consists of multiple parts that are17

reflected in the current structure of Apertis Gitlab1:18

• Packages as the fundamental building blocks of the images19

• Infrastructure to provide the tools and automation to build the images20

• Tests which ensure that Apertis provides high quality standards21

This structure also shows that tests are one of the pillars of this distribution.22

The QA process takes advantage of the tests to confirm that the behavior of each23

component is the expected one. During the testing any deviation is reported24

for further investigation, as described in the Apertis QA page2.25

For a successful QA process a test strategy should be followed in order to:26

• Make sure all the relevant parts are tested, with more focus in critical ones27

• Provide reliable reports of the status of the different components28

• Provide a reliable base to build additional checks29

The goal of this document is to provide a strategy to maximize the profits of30

testing by putting the focus in the components with higher impact in case of an31

issue.32

1https://gitlab.apertis.org
2https://www.apertis.org/qa/

2

https://gitlab.apertis.org
https://www.apertis.org/qa/
https://gitlab.apertis.org
https://www.apertis.org/qa/

Real life challenges in embedded Linux projects33

Testing is what ties all the pieces together in a project to convert it in a success.34

Without testing, a project will most probably fail, since the output of one stage35

won’t meet the expectations of a next one. Also, management and risk assess-36

ment is not possible for projects where a test strategy does not provide certainty.37

In the end, a product derived from this type of project will be a failure due to38

different possible reasons:39

• The product might fail to meet the expectations of the consumer40

• The budget associated to the project will be overspent41

• The times constraints associated to the project will not be met42

This is true in general; however, in embedded Linux projects there are spe-43

cific challenges to take into account. Traditionally, embedded Linux projects44

are thought as monolithic software, which basically consists in building full im-45

ages from several pieces of software with product specific customizations on top.46

While for small projects this usually includes only small customizations and a47

custom application on top, usually not requiring any special feature, for more48

complex projects this approach does not scale well.49

The reason behind this fact is that on complex projects there are many more50

variables to be considered:51

• Simple projects consist of standard embedded Linux image and an applica-52

tion on top of it, while more complex ones usually require customizations53

of many different pieces of software.54

• Simple projects usually have a local team working on one piece of software,55

while complex ones tend to have globally distributed teams working in56

many different pieces of software.57

• Simple projects are usually meant to run on well-known and reliable hard-58

ware, while complex ones are likely to run in hardware which is also being59

developed, adding extra uncertainty.60

• Simple projects usually are self contained with little interaction with other61

systems, on the other hand complex are challenged by interactions with62

other embedded systems or with external services, such as cloud infras-63

tructure.64

It is clear that with so many variables involved, a way to decouple and validate65

changes through testing is vital for the success of a project. With this in mind,66

the Apertis test strategy is based on the concept of a binary package distribution,67

from which Apertis inherits its strengths.68

3

Development workflow in binary package distri-69

bution70

A test strategy is tied to a development workflow since it should provide cer-71

tainty to the different stages of development. In this context it is important to72

highlight the development workflow on Apertis, since it is quite different from73

other embedded Linux projects.74

Apertis is a binary package oriented distribution which means that development75

is based on packages, which are the buildings blocks of images. This approach76

makes it natural to develop new pieces of software or improving existing ones77

by changing packages which can be tested isolated from the rest of the system.78

With a package centric approach each package is self contained, including:79

• Source code80

• Unit tests81

• Documentation82

• Custom patches83

• Rules to build and install84

• Copyright information85

• Custom CI configuration86

This isolation helps in different ways:87

• Developers can apply changes on a package without being affected by88

changes in other packages89

• Developers can test their changes locally in an well known environment90

decoupled from external systems91

• Changes can be tested in CI in a well known environment before they get92

merged93

• Potential issues are caught earlier during the development process94

Additionally, the fact that Apertis supports multiple architectures helps both95

development and testing as changes in a package can be validated in a different96

environment. Also, taking into account that Apertis SDK is built using the exact97

same packages, the development and testing is straightforward. Therefore:98

• Developers can build their changes in Apertis SDK99

• Developers can test their changes locally in Apertis SDK by only installing100

the new version of the package101

• Changes can be tested in CI using a runner with a different architecture102

before they get merged103

Finally, integration is easily done by installing a custom set of packages to build104

the desired image. Since packages are prebuilt, integration is a simple process105

and packages can be reused to build different types of images, providing higher106

flexibility as well as faster build times for images.107

The mentioned characteristics from Apertis overcome the difficulties presented108

4

in the traditional monolithic approach of embedded Linux, making it the best109

option for complex projects.110

Testing in binary package distribution111

To take advantage of the benefits of a binary package distribution source pack-112

ages needs to be designed to be self contained in terms of functionality and113

testing. This means that a source packages should include not only the func-114

tionality it is meant to provide, but also a way to validate it. Providing the test115

functionality could be very challenging in some scenarios, but the benefits of it116

are worth the price, since it allows scaling in complex projects.117

The following guidelines allow source packages to provide the test functionality:118

• From source packages several packages can be built, which could poten-119

tially include:120

– Binary packages meant to be used in target devices121

– Alternative binary packages with limited functionality based on ar-122

chitecture that can be used in development to test basic functionality123

– Alternative binary packages meant to be used in development which124

provide functionality to emulate the interaction with other systems125

– Alternative binary packages meant to be used in development with126

additional monitoring and diagnostic functionalities127

• During development, the use of alternative packages allows testing the128

core of the source code129

• On building, unit tests should be run to ensure basic functionality130

• During review, both the main and the test functionality should be checked131

to provide as much coverage as possible132

• Before integrating changes into main branches, basic automated integra-133

tion tests on different hardware should be performed.134

• After integrating changes into main branches, integration tests need to be135

run to ensure no regressions are found.136

Classifications137

The first step towards solving a problem is to understand and describe it. This138

section aims to do that by describing how different components are classified139

and the criteria used for the classifications.140

Components141

For the purpose of this document the term component is used to refer to an142

item to be tested. A component can match a package or a set of packages that143

work together to provide a certain functionality. A component can be further144

divided in sub-components if it is necessary to improve the testing of some145

specific functionality.146

5

Component metrics147

The level of testing required in each case should be determined taking into148

account different aspects:149

• Component source: One of the key elements to understand the level of150

test required is the source of the component. Under this category we can151

find different cases:152

– Upstream components, for example systemd.153

– Upstream components with significant Apertis-specific changes, like154

the Linux kernel.155

– Apertis-specific components, such as the Apertis Update Man-156

ager.157

• Upstream activity: Another key element to evaluate is how much a158

component is actively developed:159

– High upstream activity, as an example the mainline Linux kernel,160

systemd, rust-coreutils.161

– Medium upstream activity, like OpenSSL or GnuPG.162

– No or minimal upstream activity, like the tool lqa.163

• Component commonality: Some components are more common than164

others, depending on the functionality they provide, thus having them165

used by a wider range of users:166

– High: Components under this category are common to any Apertis167

image. A good example of this is systemd.168

– Normal: Components that are common to an important set of use169

cases, such as Docker.170

– Low: This component has a very specific use case, like the Maynard171

graphical shell (the reference shell).172

• Component criticality: Some components are more critical than oth-173

ers, depending on the functionality they provide and the use case. Since174

Apertis is an Open Source distribution the criticality is evaluated from a175

general perspective. However, product teams and Apertis derivatives in176

general are encouraged to adjust this metric according to their specific177

needs/use cases. The different criticalities used by Apertis are:178

– High: Components under this category provide a critical functionality179

which is essential for the system. A good example of this is the Linux180

kernel.181

– Normal: Components under this class provide a functionality that is182

not critical for the system, but still required. For instance, tracker.183

– Low: This group provides functionality desirable but not required for184

the system. An example for this category is cups.185

• Component target: We use this category to differentiate components186

6

based on their target environment:187

– Target: Components aimed to be shipped on target devices.188

– Development: Components specific to development environment.189

Loops and types190

There are different stages of testing in the QA process which help to define191

different level of loops. The purpose of testing is to spot deviations from the192

expected behavior which is the first part in the loop. The second part is to193

correct such deviations to provide the desired behavior. The iterations in each194

loop are run until the result of the tests show the expected behavior. It is195

important to note that every loop includes the previous ones as prerequisites,196

making sure that any change in the code is evaluated in all the defined loops.197

Additionally, it is interesting to note that, inner loops have less impact, since198

they affect smaller groups.199

The current defined loops are:200

• Local loop: This loop is the closer one to development, which includes201

developer testing and unit tests that are used during development. Based202

on the results and after several iterations, the developer improves the203

quality of the changes he is preparing before submitting a Merge Request.204

As result of this loop a Merge Request is submitted.205

• CI loop: This loop includes the previous one and goes a step beyond,206

taking advantage of the Gitlab CI and its OBS integration. The proposed207

changes in a Merge Request are tested with linters, license scanners and208

built in OBS, which includes running its unit tests. Additionally simple209

integration tests can be run to confirm the changes will not introduce any210

regression. As result of this loop all the pipelines associated to the Merge211

Request pass.212

• Review loop: The review process is a key element in the Open Source cul-213

ture, which allows developers to receive feedback of the proposed changes.214

During this process the reviewer can suggest small changes/fixes or even215

a complete different approach to reach the same goal. The feedback needs216

to be addressed and any change will trigger additional iterations in this217

loop. As a result the Merge Request is then merged or discarded/replaced.218

• Image loop: This next loop focus in the image generation and initial in-219

tegration testing, and is the first loop going beyond component isolation.220

Here, some aspects of integration are evaluated, like the installation, pack-221

age dependencies availability check, as well as license compliance checks.222

As a result a set of reference images are made available for all the sup-223

ported architectures.224

• Orchestrator loop: One step further, a new loop is formed by the daily or-225

chestrator runs, which builds the different types of images used by Apertis,226

7

including Docker images used for development and CI, toolchains, flatpak227

runtimes, apart from the standard Apertis images.228

• Integration tests, automated (LAVA) or manual: This next loop also in-229

cludes automated tests that are run in LAVA on actual devices of different230

architectures to confirm some behavior works as expected. Manual inte-231

gration tests aid to the process to cover for some functionality that cannot232

be tested automatically for example. In this loop platform specific tests233

can be added to validate hardware specific functionality.234

• General use of daily images: An important loop is the general use235

by the community, developers and downstream distributions of236

daily/development images, which can fill the gap in case deviations237

from the expected behavior are detected and reported. Daily images238

use -security and -updates repositories which provide newer versions239

of the available packages. The distinction between these two types of240

repositories is important, since -security is used to publish high critical241

updates that should be applied without delay, while -updates is used242

for non-critical ones. The recommendation for production is to use243

the base repository plus -security to provide a reliable platform, while244

development can take advantage of the newer features already available245

in -updates which will include in the next release.246

• Common use of release images: Similar to the previous loop, this one takes247

advantage of the common use of release images. The main difference here248

is the audience, since release images are the recommended ones in general249

and thus have a bigger userbase. During a release, the folding is applied,250

which consists in merging the changes from -updates and -security into251

the main branch, used as a starting point for the next release.252

253

During these loops different types of tests are performed:254

• Functional: Tests aimed to confirm that the desired functionality behaves255

as expected.256

• Performance: Tests meant to verify the performance parameters are within257

a defined range.258

8

• Security: Tests used to confirm that no known security vulnerability is259

found.260

The way of implementing these types of tests is tied to the component under261

analysis, but all the aspects described above should be taken into account. As262

a result, guideline tests should be able to mimic real life usage as much as263

possible including very unlikely ones. It is a common issue that a component is264

tested only taking into account the functional aspect of it, but later on when it265

is tested under real life conditions and stress, performance parameters do not266

comply with the expectations.267

The main purpose of testing is to spot deviations from the expected behavior268

which is the first step in any loop. The second step is to correct such deviation269

to provide the desired behavior.270

Priorities271

The testing process will result in either a success or a failure, in the last case,272

a bug report should be filled and triaged in order to prioritize the more critical273

issues:274

• Critical: Deviations from the expected behavior in critical components275

that are unacceptable for a release use this priority. This type of issue276

is considered a release blocker and should be addressed with the highest277

priority. A good example of such issue would be when an image fails to278

boot.279

• High: Deviations from the expected behavior in critical components that280

are not considered release blockers are triaged under this category. One281

example of such issue would be a crash in a critical component that only282

happens in a very specific scenario.283

• Normal: Deviations from the expected behavior in non-critical compo-284

nents are triaged under this category. An issue in the language support285

could be a good example of this type of issue.286

• Low: Deviations that do not affect the expected behavior fall into this287

category. As an example a log entry not expected or a minimal visual288

deviation.289

Constraints290

To develop a sustainable test strategy the constraints for testing also need to be291

taken into account, in order to provide the best possible trade off. Having this292

in mind, the following list describes the possible constraints.293

• Environment availability: Tests require some type of environment to be294

executed, depending on the type of test this can include:295

– Development computer.296

– Server/Virtual Machine: e.g. Gitlab runners.297

9

– External service: Gitlab, LAVA.298

– Reference boards: iMX6 Sabrelite, RenesRenesas R-Car M3, UP299

Squared 6000. From the previous list, the availability of reference300

boards to run a test is the most challenging one, since it implies hav-301

ing boards of different types, models and architectures, in order to302

be able to confirm the expected behavior of each test.303

• Time availability: Even with the right environment time is always a chal-304

lenge, due to different reasons:305

– Environment shared among different projects.306

– Test periodicity, since some tests are meant to be run regularly.307

• Maintenance costs: The number of tests and supported boards/environments308

have a direct impact in the maintenance costs of both software and hard-309

ware.310

Strategy311

Since both the number of components and possible tests is huge, plus the con-312

straints involved, it is not possible to test everything, be it functionality, behav-313

ior or component. Based on this, the test strategy should provide a guidance314

to where to put the focus on in order to maximize the cost-benefit.315

Additionally the test strategy should provide a reference to triage any issue316

found during the testing.317

The strategy should also take advantage of the loops previously defined in order318

to spot any issue in the loop nearest to the local one in order to reduce its319

impact.320

Classify components321

To help selecting what tests to include or to support, the strategy suggests322

classifying each component or component group as follows:323

Source324

• 1: Apertis specific components325

• 2: Upstream components with significant Apertis specific changes326

• 3: Upstream components that are unmodified or with minimal changes327

Upstream activity328

• 1: Component with no or with minimal upstream activity329

• 2: Component with medium upstream activity330

• 3: Component with high upstream activity331

Commonality332

• 1: Component has high commonality333

10

• 2: Component has normal commonality334

• 3: Component has low commonality335

Criticality336

• 1: Component has high criticality337

• 2: Component has normal criticality338

• 3: Component has low criticality339

Target340

• 1: Component in meant to be used on target devices341

• 2: Component is specific to development environment342

The following table uses a set of components as example to illustrate the ap-343

proach:344

Component Source Activity Commonality Criticality Target
Linux 3 3 1 1 1
Linux UML 3 1 1 1 1
AUM 1 1 1 1 1
OSTree 3 3 1 1 1
connman 3 3 1 1 1
rust-coreutils 2 2 1 1 1
dnsmasq 3 3 1 3 2
QA Report App 1 1 1 2 2
Pipewire 3 3 1 1 1
Bluez 3 3 2 1 1
Flatpak 3 2 2 1 1

Define tests required for each component345

Based on the previous evaluation the recommended tests for each component346

needs to be evaluated using a clear guideline.347

• Local loop348

– Developer tests349

∗ Required: all components350

– Unit tests351

∗ Required: components which support unit tests352

∗ Encouraged: components that are under development, typically353

this is the case of Apertis specific components354

• CI loop355

– Linters356

∗ Encouraged: components that are under development, typically357

this is the case of Apertis specific components358

– License scan359

11

∗ Required: all components included in target images360

– OBS build361

∗ Required: all components362

– Small integration tests363

∗ Required: components with low community activity and high364

commonality/criticality that are under development, typically365

this is the case of Apertis specific components366

∗ Encouraged: components with high commonality/criticality367

∗ Desired: components with high commonality/criticality368

• Review loop369

– Required: all components370

• Image loop371

– Installation372

∗ Required: components with normal or high commonal-373

ity/criticality374

∗ Desired: all components375

– License compliance376

∗ Required: all components included in target images377

• Orchestrator loop378

– Installation379

∗ Required: components with normal or high commonal-380

ity/criticality381

∗ Desired: all components382

• Integration tests automated(LAVA) or manual383

– Functional tests384

∗ Required: all normal or high commonality/criticality385

∗ Desired: all components386

– Performance tests387

∗ Required: Apertis specific components388

• Common use of daily images389

– Desired: User to test all components390

• Common use of released images391

– Desired: User to test all components392

Current status and gaps393

The following table summarizes for each component in the sample the status394

according to the guidelines previously presented:395

• 0: Some requirements are not meet for this loop396

• 1: All the required tests are performed, additional tests should be encour-397

aged398

• 2: All the encouraged tests are performed, additional improvements can399

be done400

• 3: All the desired tests are run401

12

Component Local CI Image Orchestrator Integration
Linux 3 1 3 3 2
Linux UML 1 0 3 3 2
AUM 2 0 3 3 3
OSTree 3 1 3 3 3
connman 2 1 3 3 3
rust-coreutils 2 0 3 3 3
dnsmasq 2 1 3 3 2
QA Report App 2 1 - - 3
Pipewire 2 1 3 3 3
Bluez 2 1 3 3 3
Flatpak 2 1 3 3 3

Considerations for product teams402

The previous sections provide general concepts around the Apertis test strat-403

egy from a general distribution perspective. However, since Apertis is used to404

build products these concepts needs to be applied in a way that supports the405

development process of such products.406

The flexibility given by Apertis is vital to create an efficient workflow, and to407

make that happen some guidelines should be followed:408

• Development should follow the Apertis workflow to enforce self contain-409

ment and isolation, adding unit tests and Gitlab CI customizations to410

packages411

• Components under development require special attention, so all the loops412

mentioned need to be used to maximize the benefits.413

• Components under development need to include unit tests which exercise414

different aspects of the software.415

• Components under development should include CI tests that are run in416

LAVA in the target hardware(s) where applicable. These tests should be417

run before changes are merged to confirm that certain functionality and/or418

performance of the new version are according to expectations.419

• Since multiple teams work on the same product, it is important that tests420

are designed also based on other teams’expectations on functionality and421

performance.422

• Close iteration between teams is needed when a team spots a regression423

introduced by other team. In that regard LAVA provides a single reference424

point to share tests, results and logs.425

• Experience gained during development should be used not to only improve426

the component itself but also to improve the tests around it. This is a427

good way to avoid having the same issue in the future.428

• Integration tests on target systems needs to be run, either automated or429

manual to validate the resultant image.430

13

Apertis provides the infrastructure to support these guidelines and already im-431

plements them. However, each product team needs to decide how to implement432

them since each project has its own restrictions, requirements and scope.433

As an example, a product team working in IOT project scenario3 can use Apertis434

Fixed Function image recipe as reference and add the additional packages to435

build its reference image. In such case, the product takes advantage of an436

already well proven base reference, but needs to follow the above guidelines to437

make sure that no regressions and to extend the test coverage to include the438

new features.439

In such scenario, new packages to provide application specific logic should:440

• Include unit tests4441

• Include CI tests running in LAVA5 if possible442

• Run Apertis test6 for the still valid functionality443

• Run additional either automate or manual tests7 to check the new func-444

tionality445

Follow up tasks446

As this strategy provides general guidelines to avoid gaps between expectations447

and actual results some follow up tasks are suggested:448

• Identify testing gaps: This document provides metrics for components and449

sets expectations regarding the test loops that should be in place. Based450

on these statements a more elaborated list of components and testing gaps451

needs to be built.452

• Provide CI integration tests to run before merging: As described, compo-453

nents under development are the ones that could add instability to the454

development of a product. To minimize this risk, CI should run different455

types of tests before merging changes. The support for these kind of test456

is described in Apertis package centric tests8 which takes into account the457

following considerations:458

– Should be based in pre-hooks to make it easier to extend to add459

additional checks, such as new linters.460

– Should include tests on LAVA on the target hardware when applica-461

ble.462

– Should be configurable to be able to avoid the overhead of building463

and testing components if it is not necessary, for instance during the464

folding.465

3https://www.apertis.org/overview/platform_overview/#industrial-iot-scenario
4https://www.apertis.org/guides/testing/unit_testing/
5https://www.apertis.org/guides/testing/apertis-packages-testing/
6https://www.apertis.org/qa/test-data-reporting/
7https://www.apertis.org/qa/test_cases_guidelines/
8https://www.apertis.org/guides/testing/apertis-packages-testing/

14

https://www.apertis.org/overview/platform_overview/#industrial-iot-scenario
https://www.apertis.org/guides/testing/unit_testing/
https://www.apertis.org/guides/testing/apertis-packages-testing/
https://www.apertis.org/qa/test-data-reporting/
https://www.apertis.org/qa/test_cases_guidelines/
https://www.apertis.org/guides/testing/apertis-packages-testing/
https://www.apertis.org/overview/platform_overview/#industrial-iot-scenario
https://www.apertis.org/guides/testing/unit_testing/
https://www.apertis.org/guides/testing/apertis-packages-testing/
https://www.apertis.org/qa/test-data-reporting/
https://www.apertis.org/qa/test_cases_guidelines/
https://www.apertis.org/guides/testing/apertis-packages-testing/

• Provide guidelines for developers to run local tests on different architec-466

tures using emulation, such as QEMU virtual machines or docker images.467

• Provide a way to work with an interactive remote hardware environment468

for developers for debugging. LAVA is not meant to run in an interactive469

session with developers, however, a low level service could be implemented470

to allow developers to share the hardware and run debugging sessions.471

• Provide a way to run visual regression tests. This type of test is very useful472

when developing applications that provide user interfaces since it allows473

catching unexpected changes earlier. An initial task should be to identify474

tools to be used to provide this types of tests and provide a sample test475

for a package.476

• Robot Framework integration with LAVA has been planned, from which477

an implementation phase should be started.478

15

	Real life challenges in embedded Linux projects
	Development workflow in binary package distribution
	Testing in binary package distribution
	Classifications
	Components
	Component metrics
	Loops and types
	Priorities
	Constraints

	Strategy
	Classify components
	Define tests required for each component
	Current status and gaps

	Considerations for product teams
	Follow up tasks

