
Hard keys

Contents1

Definition 22

Out of scope . 23

Types of usage & example use-cases 34

System keys . 35

example use-cases . 36

Role specific keys . 37

Example use-case . 38

Application keys . 49

Example use-case . 410

Non-functional requirements 411

Design 412

Compositor Input sources . 513

Compositor Input processing . 514

System keys . 615

Application keys . 616

Role keys . 617

Key handling recommendations 618

Definition19

Hardkeys: Also known as Hardware keys; Any controls in the car system con-20

nected to the Head unit. Examples of hardkeys are volume controls, fixed21

function buttons (back, forward, home screen, play pause), rotary controls etc.22

Traditionally hardkeys referred only to physical controls (e.g. switches, rotary23

dails etc), hence hardware keys. But current systems are far more flexible and24

due to that this design can also refer to software buttons rendered by the system25

UI outside of the applications control or touch sensitive areas with software26

controlled functionality.27

As a simple guideline to determine if a control falls under this design concept28

is to sample ask the question: “Could this functionality have provided by a29

physical key/knob”. If the answer is yes, it fits into this design otherwise it30

doesn’t.31

Out of scope32

For the current design the following aspect our defined as out of scope. They33

are either addressed belong to other designs or could be addressed in future34

iterations.35

2

• Haptic feedback36

• Application controlled buttons (e.g. application configurable icons)37

• short vs. long key presses handling (part of the UI framework/toolkit)38

• Display systems other then wayland39

• Any requirements about the type of controls that need to be available.40

• Implementation design; This document explains the high-level concepts41

not the implementation42

Types of usage & example use-cases43

We recognize three different types of controls and the effect that they have on44

the system:45

• System controls: Effect the system as a whole (volume controls, home46

key).47

• Role controls: Effect the current system context (pause/play)48

• Application controls: Effect the current foreground application49

The following sections provide more detail for these various types of controls.50

System keys51

Buttons handled by “the system”. Regardless of application state. Example52

volume controls (always adjust the system volume), home screen buttons (always53

navigate back to the home screen), application shortcut buttons e.g. navigation54

(always open the specific application).55

example use-cases56

• Bob is using a webbrowser, presses the “home button”. The system goes57

back to the homescreen.58

• Alice presses the “navigation”button. The system opens the navigation59

application60

Role specific keys61

Buttons that should be handled by an agent or application furfilling a specific62

role. An example here are play/pause buttons which should get handled by the63

program currently playing audio (e.g. internet radio application, local media64

player etc).65

Example use-case66

• Simon starts playing music in the spotify application, switches to the web-67

browser application while the music streams keeps playing in the back-68

ground. Simon doesn’t like the current song and presses the “next song”69

3

button, the spotify agent running in the background switches to the next70

song.71

Application keys72

Buttons that should always be handled by the currently active application. For73

example up/down/left/right select buttons.74

Example use-case75

• Harry is browsing through a list of potential destinations in the navigation76

application. He turns the rotary dail on the center console, the focus moves77

to the next potential destination on the list.78

• Barry looks up a new radio station in the radio application. After listening79

a while he decides he likes the current station. Barry hold the “favourites”80

button for a while (long press), the radio application bookmarks the cur-81

rent station.82

Non-functional requirements83

Apart from the use-cases mentioned above, there are several requirements on84

the design that don’t directly impact the functionality but are important from85

e.g. a security point of view.86

• Applications should not be apple to eavesdrop on the input send to other87

processes88

• Applications should not be able to injects inputs into other processes (Syn-89

thesized input1)90

A more complete overview of issues surrounding input security (integrity, confi-91

dentiality) be found on the Compositor security2 page.92

Design93

On wayland systems the design of inputs is relatively straightforward, the com-94

positor is responsible for gathering all the inputs from the various sources and95

chooses how to handle them. The diagram below has a high-level overview of96

some example input sources and examples of the various types of controls.97

1https://www.apertis.org/concepts/archive/application_security/compositor_security/
#Synthesize_input

2https://www.apertis.org/concepts/archive/application_security/compositor_security/

4

https://www.apertis.org/concepts/archive/application_security/compositor_security/#Synthesize_input
https://www.apertis.org/concepts/archive/application_security/compositor_security/#Synthesize_input
https://www.apertis.org/concepts/archive/application_security/compositor_security/#Synthesize_input
https://www.apertis.org/concepts/archive/application_security/compositor_security/
https://www.apertis.org/concepts/archive/application_security/compositor_security/#Synthesize_input
https://www.apertis.org/concepts/archive/application_security/compositor_security/#Synthesize_input
https://www.apertis.org/concepts/archive/application_security/compositor_security/

98

Thanks to the Wayland input flow only having two actors (the compositor and99

the receiver) (as opposed to that of X11) that there is no way for applications100

to either spy on the inputs of other applications or to inject inputs into other101

applications.102

Compositor Input sources103

Various example inputs are shown in the diagram (though others could be de-104

fined as well):105

• Local inputs: evdev is the kernel input subsystem, directly attached con-106

trols will emit key events using that subsystem (e.g. i2c attached buttons)107

• External inputs: Any input sources that aren’t directly attached, e.g. in-108

puts via the CAN network or even an IP network109

• Software inputs: Software defined input sources, e.g. onscreen buttons110

drawn by the compositor or pre-defined touchscreen areas111

Note that the exact implementation of gathering input is left up to the imple-112

menter. E.g. for CAN inputs it’s not recommended for the compositor to have113

direct access to the CAN bus, however that design is part the implementation114

of the generic CAN handling.115

Each of these events input will feed into the input processing internally into the116

compositor.117

Compositor Input processing118

All input events are gathered into one consistent way of input processing in the119

compositor. From both the compositor internals and the applications/agents120

point of view the exact technology to gather the inputs is not relevant (Note121

that the device could be, e.g. steering wheel controls vs center console controls).122

The task of the input processing into the compositor is to determine where the123

key event should be delivered and via which method. Following the classification124

outlined earlier.125

5

System keys126

Keys meant for the system are processed directly by the compositor. Resulting127

in the compositor taking an action either purely by itself (e.g. switching to an128

overview screen) or by calling methods on external services. In the example129

given the diagram, the compositor processes the “volume up”key and as a result130

of that uses the libpulse API to ask pulseaudio to increase the system volume.131

Application keys132

Keys meant for the current foreground application are simply forward to the133

application using the wayland protocol. All further handling is up to the ap-134

plications and its toolkit, this includes but is not limited to the recognition of135

short-press vs. long-press, application specific interpretation of keys (e.g. open-136

ing the bookmarks if the favourites key is pressed) etc.137

Note that the current foreground application might well be the compositor itself.138

For example if the compositor is responsible of rendering the status bar, it could139

be possible to use key navigation to navigate the statusbar.140

Role keys141

Keys for a specific role are forwarded to the application or agent current furfilling142

that role. It is expected that each role implemements a role-specific D-Bus143

interface either for direct key handling or commands.144

For example for music players, assuming the MPRIS2 is mandated for media145

agents (including Radio), the compositor would determine which agent or appli-146

cation currently has the Media role and call the MPRIS2 method corresponding147

to the key on it (e.g. Next).148

The reason for requiring role-specific D-Bus interfaces rather than simply for-149

warding keys via e.g. the wayland protocol is that an agent doesn’t have to150

connect to the display server, only to the D-Bus session bus. It also means there151

is a clean separation between the actual key handling and the action taken. For152

example an OEM may define a short press on a “forward”key meaning a seek,153

while a long-press means “next track”, in this design that can purely be policy154

in the compositor.155

Key handling recommendations156

Even though it is out of scope for this design specifically. Some general recom-157

mendations about key handling:158

• Keys should be specific to one category even when used in long vs. short159

press or in combinations. As undoing key events is impossible.160

6

• Any combination keys or keys with long-press abilities should only be han-161

dled on key release (key down ignored), for the same reasoning. Cancelling162

an in-progress action is either confusing to the user or not possible.163

7

	Definition
	Out of scope

	Types of usage & example use-cases
	System keys
	example use-cases

	Role specific keys
	Example use-case

	Application keys
	Example use-case

	Non-functional requirements
	Design
	Compositor Input sources
	Compositor Input processing
	System keys
	Application keys
	Role keys

	Key handling recommendations

