
Lifetime of documents

Contents1

Document types 32

Architecture . 33

Concept Designs . 34

Guides . 35

Policies . 36

Reference hardware . 37

Releases . 48

Default review period 49

Metadata 410

Dates . 411

Status . 512

Tags . 513

Process 714

Creation . 715

Evolution . 716

End-of-life . 717

Examples 818

Statistics 919

Changes and contributors . 920

Visits . 921

Surveys . 922

Dashboard . 1023

Automated tasks 1024

Apertis is an already mature distribution which fully supports the development25

of systems for embedded devices as well as a whole infrastructure to make that26

possible. During its evolution changes are necessary and updating documenta-27

tion is a key point to making it user friendly.28

With the goal of having documentation that really expresses the current state29

of the distribution, having a process and procedure to manage the lifetime of30

documents is crucial since each new release introduces changes than can lead to31

documentation to become outdated. This document describes the process and32

procedure to follow from creation until the end-of-life of documents to achieve33

the desired goal.34

2

Document types35

After the migration to the new website a massive restructuring of the documen-36

tation has been made. As a result of this process, a clear organization has been37

implemented, leading to different document types being identified.38

Architecture39

Documents of this type are meant to show the current state of the distribution,40

from a high level point of view. They are the result of design decision that were41

adopted in the past to provide users with the basis to build their solutions.42

Concept Designs43

Information under this category express a concept that has been analyzed to44

improve Apertis in some way. They are an essential part of the development45

process since they set the basis for future work.46

Since these documents reflect an implementation plan, their validity should47

match the one of the plan they describe and reflect the adaptations that may48

have chosen during the implementation to provide better results. It is expected49

that once the plan has been executed the document should be refactored and50

moved to more suitable sections, since it should describe the current state of51

one aspect of Apertis.52

Guides53

Guides are meant to be more practical documents describing the steps for exe-54

cuting a procedure. These documents generally include command line examples,55

sample sources and logs.56

The information validity for this type of document is expected to be short since57

new application releases might introduce changes or even simplify the described58

workflow. Therefore, the default time limit for a guide should be shorter than59

for other types of documents.60

Policies61

This category encompasses documents that cover the rules or principles that are62

the basis for Apertis as a distribution.63

Reference hardware64

Under this section is the list of devices currently supported by Apertis, as well as65

small guides, which are very hardware specific. The information here is meant66

to help users bring up Apertis on those devices.67

3

Releases68

Documents under this section are meant to be kept as a historical reference,69

to show how Apertis has been evolving across time. Therefore they should be70

preserved without any modification, except for links updates.71

Default review period72

Based on the above comments the following table shows the default review73

period for each type of document expressed in months.74

Type Default review period Notes
Architecture 24 months Based on Apertis release support period
Concept Designs 12 months
Guides 6 months
Policies 24 months
Reference hardware 12 months Based on Apertis release cadence
Releases - Not meant to have an end of life

Metadata75

Based on the concepts and categories already described a process needs to be76

created to reduce the gap in-between current status and what the documentation77

reflects.78

To make this possible, documents should include metadata which will make it79

easier to determine the moment an update or review is required.80

Dates81

Currently each document provides its creation date, which is useful to provide82

information about its age. However, this does not express if the document is still83

valid. In order to provide additional information on this topic some additional84

fields should be added, leading to the following list:85

• date, which indicates the date the document was published. This date is86

important since it brings information about how old the document is and87

the type of review it will require. Most probably, older documents should88

require a deeper review than a newer one.89

• lastmod, date which advertises when the document was last updated with90

non-trivial changes. This modification implies that the document is still91

valid as the committer needed to check the information on it. However92

this does not imply that all the information on it is valid. This date is93

important as some documents could be updated with minor changes, like94

URL updates, which does not say anything about the validity of the page.95

4

• lastreview, date which shows when the document was last reviewed to96

ensure that it is still valid and the information in it is still accurate. This97

implies that the whole document has been reviewed and the committer is98

confident about its state.99

• reviewperiod, which shows the number of months after a document requires100

a review to confirm it is still valid if the default value from the table is not101

adequate. This could be helpful to highlight documents that might need102

to be reviewed sooner than the default as they could be affected by the103

natural evolution of the project.104

All the dates from the previous list should match the format “YYYY-MM-DD”105

which is currently widely used in the documentation, while the period should106

use an integer to match the default review period.107

The following example shows a header in a document tracking different stages108

in its lifetime:109

date = "2020-06-09"110

lastmod = "2021-02-03"111

lastreview = "2021-05-05"112

Status113

Some fields can be used to advertise the status of a document, allowing readers114

to quickly spot important information about a document:115

• status, a string which gives a clear idea of the validity of a document, Al-116

lowed values are: “”, “Requires Review”, “Requires Update”, “Deprecated”117

and “Not Applicable”. A value of ”” or empty indicates that the docu-118

ment is valid. The value “Not Applicable”can be used to mark a page as119

invalid for e.g. a specific release. Further information shall be given in120

the statusDescription field.121

• statusDescription, a short sentence giving additional information about122

the status123

The use of these fields is recommended to support a healthy documentation.124

As an example:125

status = "Deprecated"126

statusDescription = "This document covers frameworks that have been removed in v2022dev2."127

Tags128

Tags are a good way to connect different documents that are related. Based on129

them it is easy to perform a quick search on a specific topic and retrieve the130

most significant results. While searching by keywords instead of tags is useful,131

5

sometimes it results in a long list of documents where the keyword appears but132

it is only referenced, giving it little value.133

Tags are useful as they can efficiently connect documents and ideas, but to make134

this true they should follow these guidelines:135

• Tags should be meaningful, the name should condense an important con-136

cept leading to significant search results. For instance a tag like Apertis137

will have little value, since it will bring thousands of results. On the other138

hand, a tag like licensing will probably be useful.139

• In order to enforce the previous comment, the tags used in a document140

should be checked against a list of valid tags. This list should be part of141

the documentation so new tags can be added by developers in the same142

way documentation is updated.143

• Tags can be implemented gradually, as tagging will require a manual work144

in order to highlight the relevant information. Initially tags can appear at145

the top of the page to summarize the topics the document covers. Once146

the tagging process is complete, additional pages to list all the available147

tags can be added to improve the user experience, by creating a link to148

https://www.apertis.org/tags. However, this should be done only when149

all the documents have a valid tag to avoid showing misleading results.150

• Order tagged documents. When searching using tags it will be useful to151

have the list ordered by relevance if the number of matches is higher than152

5, to highlight the most important documents. This is true only when153

searching for tags, other searching and listing should follow the current154

approach of sorting by title.155

As an example this is a list of proposed tags, the list is not meant to be exhaus-156

tive:157

• Application Framework158

• Connectivity159

• Licensing160

• Packaging161

• Security162

• Upgrade163

• Infrastructure164

The inclusion of tags is done by adding a list of strings in the header of the165

document, as in the example above:166

tags = ["licensing"]167

6

https://www.apertis.org/tags

Process168

This section describes the process that should be put in place to keep track of169

each document’s life, from its creation until its end-of-life.170

Creation171

When a new document needs to be created to help users of Apertis take full172

advantage of it, a set of steps should be followed to ensure that it will be173

supported over time:174

• Choose the type of document as described in document types175

• Choose a title which describes the document176

• Add date metadata as creation date177

• Add lastmod metadata as a placeholder with empty value178

• Add lastreview metadata as a placeholder with empty value179

• Add tags to link the document to other (when tags are widely available)180

documents181

• Use neutral language, focus on simplicity, since many Apertis users are182

not native English speakers183

• Use links as references to reduce the number of changes if the referenced184

URL is updated185

Evolution186

As time passes, Apertis evolves adding, updating and dropping packages and187

functionalities. Documentation should evolve as well, continuously reflecting188

these changes as part of the standard development process.189

During the documentation update it is important to follow some guidelines:190

• lastmod should be updated in case the document has been modified with191

non-trivial changes as the committer considers it still has value192

• lastreview should be updated in case the whole document has been re-193

viewed during the modification, as the committer considers it is still valid194

and up to date195

• As needed, update the tags used in the document in case of a review.196

• reviewperiod should be added/updated if for some reason the default value197

does not fit198

• status and statusDescription should be updated to reflect important as-199

pects of a document, for instance that the document requires a review or200

update201

End-of-life202

Following the description in the section above, at some point in time a document203

probably becomes obsolete and should be dropped. Sometimes this is straight204

forward, since during the update process it can be easily spotted. However, in205

7

most cases documentation that references dropped packages or functionalities206

are kept unnoticed.207

In order to minimize the amount of documents in this state a task should be208

created to review any document where reviewperiod from lastreview has expired,209

in order to confirm that it still has value and the information it provides is210

accurate and up to date.211

In case the document is obsolete but need to be published for different rea-212

sons, such as historical reason, this fact should be reflected with the status and213

statusDescription fields.214

Examples215

In this section some examples will be introduced to described how the workflow216

is implemented with some real scenarios.217

Case 1: Developer edits a document to update an URL218

Since the problem is minimal and does not invalidate the usefulness of the219

document the metadata does not need to be updated. However, if during this220

process the developer performs a review of it, he should update the lastreview221

date accordingly.222

Case 2: Developer needs to update a section of a document223

In this case, a minimal understanding of the document is required, which should224

be sufficient to find the value of keeping it updated. As consequence, lastmod225

date should be updated to reflect that this document is alive and that it is worth226

to keep it updated. As in the previous case, if during this process the developer227

performs a review of it, he should update the lastreview date accordingly.228

However, if during this process the developer understands that the document is229

outdated or with no value for the project he should rise a warning. To do it he230

should change the status to document following:231

• Requires Review: The developer suspects that some information in the232

document is not accurate or updated as there were changes in the project233

after the last document update.234

• Requires Update: The developer is confident that the document requires235

an update to show the current state of the project.236

In both cases the field statusDescription should be updated to provide additional237

information.238

Case 3: Developer reviews a document239

The purpose of reviewing a document is to validate that it still has value, it240

is accurate and updated. During this process the developer should read the241

8

whole document and make an statement, according to the best of his knowledge.242

There can be different situations:243

• The document has value, is accurate and updated, in which case the de-244

veloper is confident to approve it and updates lastreview to the current245

date.246

• The document has value but some minor updates are needed. In this case,247

in order to avoid any overhead, the developer updates the document as248

required and sets lastmod and lastreview accordingly.249

• The document has value but some major updates are needed. In this case,250

the status should be updated to “Requires update”and statusDescription251

should be used to describe the situation.252

• The document has no longer value, in which case the developer should253

submit a MR to drop the document.254

Statistics255

The main purpose of documentation is to be consumed by users. In this regard,256

having feedback on different aspects of its usage is a key element to design a257

documentation strategy. Feedback can be collected from different sources, such258

as analyzing visits or performing simple pools. The results of this feedback259

should be summarized in a web interface in order to provide information to260

help improve documentation.261

Changes and contributors262

Apertis website is kept under revision control using git, which makes it easy263

to keep track of changes and contributors. Having this information recorded264

allows to have an overall idea of how documents are changing. Based on this in-265

formation it is possible to customize the reviewperiod and to suggest a reviewer.266

Visits267

The first and easiest statistics that can be included is the number of visits for268

each document. This information should help to put the focus on those docu-269

ments that bring more attention, in order to provide a better user experience.270

For this reason, documents with a high number of visits should be analyzed271

and set a reviewperiod accordingly, and given high priority when the time for a272

review comes. It can also help to spot on which topic additional documentation273

should be created.274

Surveys275

Besides just analyzing visits, additional information can be obtained by simple276

surveys to visitors. The key point on the survey should be its simplicity in277

9

order to avoid discouraging visitors from using them. A suggested approach is278

to use simple questions that can be answered by just selecting an option, such279

as yes/no questions.280

Suggested questions:281

• Did you find the information useful?282

• Did you find the information up to date?283

It is important to note that any survey sent, should comply with legal aspects284

such as GDPR1 to ensure personal data protection.285

Dashboard286

The information generated based on the previous comments should be available287

through a web page with administrator restrictions, to have a single point to288

generate queries.289

As an initial approach, the report should present a table with the following290

information:291

• Lines changed in the last week, month, year292

• Top contributor in the last week, month, year293

• Visits in the last week, month, year294

• Surveys results in the last week, month, year295

The result obtained from statistics should provide the basis to infer:296

• Documents that need to be updated297

• Documents that need to be reworked298

• Topics where documentation is more consumed299

• Possible reviewers300

The recommendation is to include these reports in a dashboard similar to current301

package dashboard2302

Automated tasks303

Keeping documentation reliable is impossible without setting an automated task.304

There are two kinds of automated tasks that can help to address potential issues305

which can be implemented with CI pipelines.306

• Pipeline for work in progress branches: on every branch change, several307

checks should be performed to ensure the health of documentation:308

– Documents updated should provide title and date309

1https://ec.europa.eu/info/law/law-topic/data-protection_en
2https://infrastructure.pages.apertis.org/dashboard/

10

https://ec.europa.eu/info/law/law-topic/data-protection_en
https://infrastructure.pages.apertis.org/dashboard/
https://ec.europa.eu/info/law/law-topic/data-protection_en
https://infrastructure.pages.apertis.org/dashboard/

– Documents updated with non-trivial changes should have a valid310

lastmod, in a time window of one month. Since it is not easy to decide311

whether a change is trivial or not, as a default rule, this check should312

be performed for every document that has been updated where the313

diff shows a difference of more than 20 lines314

– Documents should be checked to provide valid internal and external315

links316

– Documents should provide tags to link them to other documents317

(once tags are enabled)318

– Ensure formatting follows a standard319

– Test code blocks for syntax errors320

Any issue with the performed checks should make the pipeline fail prevent-321

ing a merge request to be merged and reported in the pipeline log to help322

the submitter to fix it.323

• Scheduled pipeline: a pipeline should be triggered on a weekly basis to324

ensure:325

– Documents provide valid external links. A task should be automati-326

cally created to address any update requirement327

– Documents which have reached their lifetime period since the las-328

treview are highlighted. A MR should be automatically created to329

change the status to “Requires review”for each document in this sit-330

uation. A separated task should be created to review each of these331

documents332

– Documents with status “Requires review”or “Requires update”have a333

task associated to address the issue on them334

– A task is created to ensure documents that have reached their lifetime335

period since the lastreview will be reviewed336

– Update statistics reports available trough the dashboard based on:337

∗ Changes and contributors338

∗ Visits339

∗ Surveys340

11

	Document types
	Architecture
	Concept Designs
	Guides
	Policies
	Reference hardware
	Releases

	Default review period
	Metadata
	Dates
	Status
	Tags

	Process
	Creation
	Evolution
	End-of-life

	Examples
	Statistics
	Changes and contributors
	Visits
	Surveys
	Dashboard

	Automated tasks

