
Automated License Compliance

Contents1

Scanners 32

Tooling . 33

CI Pipeline integration . 44

Binary to source file mapping 55

Tooling . 56

CI Pipeline integration . 67

Binary Licensing Reporting 78

Tooling . 79

CI Pipeline integration . 710

Step-by-step process 711

During package source build on Gitlab CI pipelines 812

During package build on OBS . 813

During image generation on Gitlab CI pipelines 914

A Linux system such as those assembled by Apertis contain components licensed15

under many different licenses. These various licenses impose different conditions16

and it is important to understand to a good degree of fidelity the terms under17

which each component is provided. We are proposing to implement an auto-18

mated process to generate software Bills Of Materials (BOMs) which detail19

both the components used in Apertis and the licensing that applies to them.20

Licensing isn’t static, nor is it always as simple as all the components from a21

given source package deriving the same license. Packages have been known to22

change licenses and/or provide various existing or new components under dif-23

ferent terms. Either now or at some point in the future, the licenses of some of24

the components in Apertis may start to be provided under terms that Apertis25

may wish to avoid1. For example, by default Apertis is careful not to include26

components to be used in the target system that are licensed under the GPL27

version 3, the licensing terms wouldn’t be acceptable in Apertis’target markets.28

In order to take advantage of new functionality and support being developed in29

the software community, Apertis needs to incorporate newer versions of exist-30

ing software packages and replace some with alternatives when better or more31

suitable components are created. To ensure that the licensing conditions remain32

favorable for the use cases targeted by Apertis, it is important to continually33

validate that the licensing terms under which these components are provided.34

These licensing terms should be documented in a way that is accessible to Aper-35

tis’users.36

Debian packages by default track licensing on a per source package level. The37

suitability of a package is decided at that level before it is included in Debian,38

1https://www.apertis.org/policies/license-expectations/

2

https://www.apertis.org/policies/license-expectations/
https://www.apertis.org/policies/license-expectations/
https://www.apertis.org/policies/license-expectations/
https://www.apertis.org/policies/license-expectations/

which meets the projects licensing goals2. Apertis will continue to evaluate39

licensing before the inclusion of source packages in the distribution, but also40

wishes to take a more nuanced approach, tracking licensing for each file in each41

of it’s binary packages. By tracking licensing to this degree we can look to42

exclude components with unsatisfactory licensing from the packages intended43

for distributed target systems, whilst still packaging them separately so they44

may be utilized during development. A good example of this situation is the45

gcc source package and the libgcc1 binary package produced by it. Unlike the46

other artifacts produced by the GCC source package, the libgcc1 binary package47

is not licensed under the stock GPLv3 license, a run time exception3 is provided48

and it is thus fine to ship it on target devices. The level of tracking we are49

providing will detect such situations and will offer a straight forward way to50

resolve them, maintaining compliance with the licensing requirements.51

To achieve this 2 main steps need to be taken:52

• Record the licensing of the project source code, per file53

• Determine the mapping between source code files and the binary/data54

files in each binary package55

These steps have been integrated into our CI pipelines to provide early detection56

of any change to the licensing status of each package. Extending our CI pipelines57

also enables developers to learn about new issues and to solve them during the58

merge request development flow.59

Scanners60

Tooling61

The current tool used to record the license of each package is the command62

line tool scan-copyrights from libconfig-model-dpkg-perl4 which is a standard63

Debian tool. It parses the output from licensecheck5 to generate a DEP56. More64

information about it can be found in lincense scanning7.65

Based on the challenges in detecting the right licenses for source codes, other66

tools are being evaluated, with FOSSology being one of the most interesting67

ones.68

FOSSology is an Open Source server based tool which provides a web front-end69

that is able to scan through source code (and to a degree binaries) provided to70

it, finding license statements and texts. To achieve this FOSSology employs a71

number of different scanning techniques to identify potential licenses, including72

2https://www.debian.org/social_contract.html#guidelines
3https://www.apertis.org/policies/license-exceptions/#gcc8
4https://gitlab.apertis.org/pkg/libconfig-model-dpkg-perl
5https://gitlab.apertis.org/pkg/licensecheck
6https://dep-team.pages.debian.net/deps/dep5/
7https://www.apertis.org/architecture/application/license-scanning/

3

https://www.debian.org/social_contract.html#guidelines
https://www.apertis.org/policies/license-exceptions/#gcc8
https://gitlab.apertis.org/pkg/libconfig-model-dpkg-perl
https://gitlab.apertis.org/pkg/licensecheck
https://dep-team.pages.debian.net/deps/dep5/
https://www.apertis.org/architecture/application/license-scanning/
https://www.debian.org/social_contract.html#guidelines
https://www.apertis.org/policies/license-exceptions/#gcc8
https://gitlab.apertis.org/pkg/libconfig-model-dpkg-perl
https://gitlab.apertis.org/pkg/licensecheck
https://dep-team.pages.debian.net/deps/dep5/
https://www.apertis.org/architecture/application/license-scanning/

using matching to known license texts and keywords. The scanning process errs73

on the side of caution, generating false positives over missing potential licens-74

ing information, as a result it will be necessary to “clear”the licenses that are75

found, deciding whether the matches are valid or not. The scanning and clear76

process during the first time is more time consuming and requires special atten-77

tion, however, subsequent runs should be much faster as FOSSology is able to78

use previous decisions to find the license information. Once completed, FOSSol-79

ogy records the licensing decisions and can apply this information to updated80

scans of the source. It is anticipated that, after an initial round of verification,81

FOSSology will only require additional clearing of license information should82

the scan detect new sources of potential licensing information in an updated83

projects source or when new packages are added to Apertis. It is possible to84

export and import reports which contain the licensing decisions that have pre-85

viously been made, if a trusted source of reports can be found then these could86

also be imported, potentially reducing the work required.87

FOSSology is backed by the Linux Foundation, it appears to have an active user88

and developer base and a significant history and it is the de-facto Open Source89

Software solution for license compliance. As such, it is felt that this tool is likely90

to be maintained for the foreseeable future.91

As this tool provides a web bases UI, it presents an additional advantage, as92

it makes it easier for non-technical users, such as auditors or lawyers, to access93

and manage the reports, allowing a smooth integration in an audit process.94

For all the reasons mentioned above we understand this would a good choice for95

improving the current Apertis workflow.96

Apertis currently uses scan-copyrights as default scanner. Initial integration of97

FOSSology is already available but not enabled.98

CI Pipeline integration99

In order to avoid manual tasks, the license detection needs to be integrated into100

the CI process.101

Currently, scan-copyrights is integrated in the CI script ci-license-scan8 which102

is automatically triggered on package upgrades. This is straight forward since103

scan-copyrights is a command line tool.104

FOSSology provides a REST API9 to enable such integration.105

FOSSology is able to consume branches of git repositories, thus allowing scan-106

ning of the given source code straight from GitLab. This process should be107

triggered after updating a package from external sources, as in this cases a108

8https://gitlab.apertis.org/infrastructure/apertis-docker-images/-/blob/apertis/v2023dev
3/package-source-builder/overlay/usr/bin/ci-license-scan

9https://www.fossology.org/get-started/basic-rest-api-calls/

4

https://gitlab.apertis.org/infrastructure/apertis-docker-images/-/blob/apertis/v2023dev3/package-source-builder/overlay/usr/bin/ci-license-scan
https://www.fossology.org/get-started/basic-rest-api-calls/
https://gitlab.apertis.org/infrastructure/apertis-docker-images/-/blob/apertis/v2023dev3/package-source-builder/overlay/usr/bin/ci-license-scan
https://gitlab.apertis.org/infrastructure/apertis-docker-images/-/blob/apertis/v2023dev3/package-source-builder/overlay/usr/bin/ci-license-scan
https://www.fossology.org/get-started/basic-rest-api-calls/

license change can be introduced. A report will be generated and retrieved, us-109

ing the REST API, which describes (among other things) the licensing status of110

each file. The report can be generated in a number of formats, including various111

SPDX flavors that are easily machine parsable, using DEP510 as the preferred112

option. It is suggested that each component should require a determination of113

the licensing to have been made for every file in the project. Due to the large114

volume of licensing matches that will result from the initial licensing scan, we115

recommend that the absence of license information initially generates a warn-116

ing. In some cases, to achieve the fine grained licensing information desired, the117

licensing of some files may need to be clarified with the components author(s).118

Once an initial pass of all Apertis components had been made we would expect119

missing license information to result in an error, as such errors would be as a120

result of new matches being found, which would need to be resolved in FOSSol-121

ogy before CI would complete without an error. The generated report should122

be saved in the Debian metadata archive so that it is available for the following123

processing.124

In a possible future integration, the adoption of FOSSology would be gradual125

and in parallel with the current license scanning process in order to compare the126

results and improve the workflow. At a later stage, once the new process is fully127

reviewed and tested with all the packages in the target repository, FOSSology128

would potentially become the default scanner.129

Binary to source file mapping130

Tooling131

Binaries are built from many different source files, but the exact list of them132

depends on build options. For this reason a reliable mechanism needs to be put133

in place to extract this list after the build process in order to determine the134

license information.135

Compilers store information in the binaries it outputs, that can be used by a136

debugger to pause execution of a process at a point corresponding to a selected137

line of source code. This information provides a mapping between the lines of138

source code and the compiled machine code operations. Executable binaries139

in Linux are generally stored in the Executable and Linkable Format11 (ELF),140

the associated DWARF12 debugging data format is generally used to store this141

debugging information inside the ELF in specific “debug”sections.142

The tool dwarf2sources parses this information and extracts the name of the143

source files that were used to generate each binary, generating a json file that can144

easily be parsed later. Combining this with the licensing information provided145

10https://dep-team.pages.debian.net/deps/dep5/
11https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
12https://en.wikipedia.org/wiki/DWARF

5

https://dep-team.pages.debian.net/deps/dep5/
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/DWARF
https://dep-team.pages.debian.net/deps/dep5/
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/DWARF

in the licensing report, a mapping can be made between each binary and it’s146

associated licenses.147

CI Pipeline integration148

Apertis uses the Open Build Service (OBS) platform to build the binary pack-149

ages in a controlled manner across several architectures and releases. OBS uti-150

lizes dpkg-buildpackage behind the scenes to build each package. This utility has151

access to the source licensing report as it is contained in the Debian metadata152

archive. As well as the source licensing, the Debian metadata archive contains153

configuration to help dpkg-buildpackage determine how to build the source. This154

is typically done with the help of debhelper13, which provides helpers that sim-155

plify this process.156

Apertis extended debhelper by including a new command dh_setup_copyright to157

perform the source file name extraction using dwarf2sources as described above,158

as well as copy in any copyright reports coming from source files that are part159

of external packages. Typically the binaries are stripped (using a debhelper160

command called dh_strip) prior to packaging, removing the debug symbols from161

the binary and reducing its size. For this reason dh_setup_copyright is placed162

before this step in the dh sequence. Whilst the debug symbols are kept, packaged163

separately in the dbgsym package, it’s easier to perform the mapping before this164

is done. All the results from this command are stored in the binary package165

under /usr/share/doc/<package>/.166

Following this same idea, Apertis also extends debhelper the command167

dh_installdocs to install the license report generated by the scanner under168

/usr/share/doc/<package>/copyright_report.169

Despite that, this solution should work for most packages. Some packages might170

instead need special handing, for instance because they are not using debhelper.171

An example of that is the linux kernel package. These special cases will be172

covered with further improvements.173

As these reports are provided by each binary package, the reports from installed174

packages can be accessed at image build time and amalgamated into an image175

wide report at that point should it be required. As a binary can be built from176

multiple sources, each with differing licenses, it is necessary for the report to177

detail each file that is used to create each binary and the licensing under which178

it is provided. In some circumstances dual licensed source code may allow for179

a binary to be effectively licensed under the terms of a single license, that is180

the user has the option to pick a license that results in the whole binary being181

able to be provided under the terms of a single license. Where dual licensed182

source code isn’t used, the terms of all applicable licenses should be declared.183

The terms of the various licenses may be considered compatible14, allowing the184

13https://manpages.debian.org/jessie/debhelper/debhelper.7.en.html
14https://en.wikipedia.org/wiki/License_compatibility

6

https://manpages.debian.org/jessie/debhelper/debhelper.7.en.html
https://en.wikipedia.org/wiki/License_compatibility
https://manpages.debian.org/jessie/debhelper/debhelper.7.en.html
https://en.wikipedia.org/wiki/License_compatibility

binary to effectively be managed under the terms of the more restrictive license.185

For example, a binary derived from source code licensed with the GPLv2 license186

and other source code licensed with the MIT license, the terms of both apply to187

the binary, though as the terms of the MIT license will be met if the binary is188

used in accordance with the terms of the GPLv2, then handling the binary as189

though it was licensed under the GPLv2 will ensure the terms of both are met.190

Not all possible combinations of licenses work out this way and thus why it is191

important to ensure that licensing is properly tracked.192

Binary Licensing Reporting193

Tooling194

The approach each project using Apertis takes with regards to the reporting of195

licensing information should be driven by how this information is to be utilized,196

i.e. some projects may wish to parse the license information and present it in a197

single BOM file in HTML, XML or human readable text.198

For the images provided by the Apertis project, the script generate_bom.py com-199

bines the reports saved in /usr/share/doc/<package>/, using the binary-to-sources200

JSON mappings and the external package copyright information, into a single201

json file which is provided with the image. This file can be generated with dif-202

ferent levels of verbosity allowing to list licenses per image, package, binary or203

source file.204

This same scripts also issues a warning in case a problematic license is found.205

CI Pipeline integration206

Apertis utilizes Debos15 in its image generation pipeline, which provides a very207

versatile way of customizing them. During the final stage of the image cre-208

ation, the script generate_bom.py is used to build the BOM file with the license209

information of the image and export it as an additional artifact. Finally as210

both fixedfunction and hmi images should not ship extra data, the contents of211

/usr/share/doc/ are dropped from the image.212

Step-by-step process213

This is a description of the steps in the process as currently implemented:214

The following step-by-step process is followed for all the packages, however it215

is only valid for packages that use standard dh rules and build binaries. Other216

packages only provide copyright information which currently is not included in217

BOM file.218

15https://github.com/go-debos/debos

7

https://github.com/go-debos/debos
https://github.com/go-debos/debos

During package source build on Gitlab CI pipelines219

1. when a package is imported from Debian to Apertis the scan-license job in220

the packaging pipeline16 will call ci-license-scan17 to submit the sources221

to the scanner, be it scan-copyrights, FOSSology or any other tool222

2. metadata in debian/apertis/copyright.yml18 can be used to override things223

where the scanner gives the wrong results, which would no longer be224

needed if using FOSSology for example, where the correct licensing in-225

formation would be stored in its database226

3. the output is committed in the debian/apertis/copyright file in the227

sources19228

4. if some files have problematic licenses but they do not really affect us for229

any reason, the reason is documented in debian/apertis/copyright.whitelist20230

5. for packages meant to be installed on production devices, the packaging231

pipeline will fail if problematic licenses are detected and the affected files232

are not whitelisted233

During package build on OBS234

1. when the sources are submitted to OBS, during the build the235

dh_setup_copyright subcommand for Debhelper21 calls the dwarf2sources236

tool22 to generate a mapping from binaries to the source files used to237

build them and determine if any of those source files came from external238

packages239

2. the output is included in the same .deb file as the processed li-240

brary/executable:241

• /usr/share/doc/$packagename/$packagename_bin2sources_$packagearch.json,242

containing the mapping from binaries to source files243

• /usr/share/doc/$packagename/external_copyrights/, a directory con-244

taining all the copyrights of packages whose source files were directly245

embedded into this package’s binaries246

• /usr/share/doc/$packagename/$packagename_metadata_$packagearch.json,247

containing any other metadata related to copyrights (at the moment,248

this maps source files from external packages to the package names249

that provided them)250

16https://gitlab.apertis.org/infrastructure/ci-package-builder/-/blob/master/ci-package-
builder.yml

17https://gitlab.apertis.org/infrastructure/apertis-docker-images/-/blob/apertis/v2023dev
2/package-source-builder/overlay/usr/bin/ci-license-scan

18https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyr
ight.yml

19https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyr
ight

20https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyr
ight.whitelist

21https://gitlab.apertis.org/pkg/debhelper/-/blob/apertis/v2023dev2/dh_setup_copyrig
ht

22https://gitlab.apertis.org/pkg/dwarf2sources/

8

https://gitlab.apertis.org/infrastructure/ci-package-builder/-/blob/master/ci-package-builder.yml
https://gitlab.apertis.org/infrastructure/ci-package-builder/-/blob/master/ci-package-builder.yml
https://gitlab.apertis.org/infrastructure/ci-package-builder/-/blob/master/ci-package-builder.yml
https://gitlab.apertis.org/infrastructure/apertis-docker-images/-/blob/apertis/v2023dev2/package-source-builder/overlay/usr/bin/ci-license-scan
https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyright.yml
https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyright
https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyright
https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyright
https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyright.whitelist
https://gitlab.apertis.org/pkg/debhelper/-/blob/apertis/v2023dev2/dh_setup_copyright
https://gitlab.apertis.org/pkg/dwarf2sources/
https://gitlab.apertis.org/pkg/dwarf2sources/
https://gitlab.apertis.org/pkg/dwarf2sources/
https://gitlab.apertis.org/infrastructure/ci-package-builder/-/blob/master/ci-package-builder.yml
https://gitlab.apertis.org/infrastructure/ci-package-builder/-/blob/master/ci-package-builder.yml
https://gitlab.apertis.org/infrastructure/apertis-docker-images/-/blob/apertis/v2023dev2/package-source-builder/overlay/usr/bin/ci-license-scan
https://gitlab.apertis.org/infrastructure/apertis-docker-images/-/blob/apertis/v2023dev2/package-source-builder/overlay/usr/bin/ci-license-scan
https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyright.yml
https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyright.yml
https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyright
https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyright
https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyright.whitelist
https://gitlab.apertis.org/pkg/gnutls28/-/blob/apertis/v2023dev2/debian/apertis/copyright.whitelist
https://gitlab.apertis.org/pkg/debhelper/-/blob/apertis/v2023dev2/dh_setup_copyright
https://gitlab.apertis.org/pkg/debhelper/-/blob/apertis/v2023dev2/dh_setup_copyright
https://gitlab.apertis.org/pkg/dwarf2sources/

3. during the same build on OBS, a custom hook in the dh_installdocs251

step stores the debian/apertis/copyright sourcefile-to-licenses mapping as252

/usr/share/doc/$packagename/copyright_report.gz in the binary .deb pack-253

ages, to make it available when the packages get installed254

4. for each installed .deb package, /usr/share/doc/$packagename/$packagename_bin2sources_$packagearch.json,255

/usr/share/doc/$packagename/$packagename_metadata_$packagearch.json,256

/usr/share/doc/$packagename/external_coprights/, and /usr/share/doc/$packagename/copyright_report.gz257

get unpacked during image generation258

During image generation on Gitlab CI pipelines259

1. the generate_bom.py script23 is invoked at the end of each image recipe24,260

loading all the /usr/share/doc/$packagename/$packagename_bin2sources_$packagearch.json261

binary-to-sourcefiles mappings, /usr/share/doc/$packagename/copyright_report.gz262

sourcefile-to-licenses mappings, and /usr/share/doc/$packagename/external_copyrights263

external package copyrights to combine them and produce a JSON .li-264

censes report25 with the binary-to-licenses mapping to match each library265

and executable shipped in the image to the licenses of the sources used to266

build them267

2. the check_bom.py script26 is invoked afterwards to ensure that the license268

files conform to the Apertis license expectations27269

3. human-readable reports in any format can be generated by the JSON data270

describing the licenses that apply to the libraries and executables shipped271

in the image itself272

23https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2023dev
2/scripts/generate_bom.py

24https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/apertis/v2023dev2/ima
ge-uboot.yaml

25https://images.apertis.org/release/v2023dev2/v2023dev2.0/arm64/fixedfunction/apertis
_v2023dev2-fixedfunction-arm64-rpi64_v2023dev2.0.img.licenses.gz

26https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2023dev
2/scripts/check_bom.py

27https://www.apertis.org/policies/license-expectations/

9

https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2023dev2/scripts/generate_bom.py
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/apertis/v2023dev2/image-uboot.yaml
https://images.apertis.org/release/v2023dev2/v2023dev2.0/arm64/fixedfunction/apertis_v2023dev2-fixedfunction-arm64-rpi64_v2023dev2.0.img.licenses.gz
https://images.apertis.org/release/v2023dev2/v2023dev2.0/arm64/fixedfunction/apertis_v2023dev2-fixedfunction-arm64-rpi64_v2023dev2.0.img.licenses.gz
https://images.apertis.org/release/v2023dev2/v2023dev2.0/arm64/fixedfunction/apertis_v2023dev2-fixedfunction-arm64-rpi64_v2023dev2.0.img.licenses.gz
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2023dev2/scripts/check_bom.py
https://www.apertis.org/policies/license-expectations/
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2023dev2/scripts/generate_bom.py
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2023dev2/scripts/generate_bom.py
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/apertis/v2023dev2/image-uboot.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/apertis/v2023dev2/image-uboot.yaml
https://images.apertis.org/release/v2023dev2/v2023dev2.0/arm64/fixedfunction/apertis_v2023dev2-fixedfunction-arm64-rpi64_v2023dev2.0.img.licenses.gz
https://images.apertis.org/release/v2023dev2/v2023dev2.0/arm64/fixedfunction/apertis_v2023dev2-fixedfunction-arm64-rpi64_v2023dev2.0.img.licenses.gz
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2023dev2/scripts/check_bom.py
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2023dev2/scripts/check_bom.py
https://www.apertis.org/policies/license-expectations/

	Scanners
	Tooling
	CI Pipeline integration

	Binary to source file mapping
	Tooling
	CI Pipeline integration

	Binary Licensing Reporting
	Tooling
	CI Pipeline integration

	Step-by-step process
	During package source build on Gitlab CI pipelines
	During package build on OBS
	During image generation on Gitlab CI pipelines

