
Security

Contents1

Terminology . 32

Privilege . 33

Trust . 44

Integrity, confidentiality and availability 45

Security boundaries and threat model 56

Security between applications . 57

Communication between applications 68

Security between users . 79

Security between platform services 710

Security between the device and the network 811

Physical security . 812

Solutions adopted by popular platforms 813

Android . 814

iOS . 1115

Mandatory Access Control . 1216

Linux Security Modules (LSM) 1217

Comparison . 1618

Performance impact . 1719

Conclusion . 1920

polkit (PolicyKit) . 2521

Motivation for polkit . 2522

polkit’s solution . 2623

Recommendation . 2724

Resource Usage Control . 2825

Imposing limits on I/O for block devices 2826

Network filtering . 2927

Protecting the driver assistance system from attacks 3028

Protecting devices whose usage is restricted 3129

Protecting the system from Internet threats 3130

Other sources of potential exploitation 3231

Secure Software Distribution . 3332

Secure Boot . 3433

Data encryption and removal . 3534

Data encryption . 3535

Data removal . 3536

Stack Protection . 3637

Confining applications in containers 3638

LXC Containment . 3639

The Flatpak framework . 3740

The IMA Linux Integrity Subsystem 3841

Conclusion regarding IMA and EVM 3942

Seccomp . 3943

The role of the app store process for security 4144

How does security affect developer usage of a device? 4145

2

Further discussion . 4246

This document discusses and details solutions for the security requirements of47

the Apertis system.48

Security boundaries and threat model describes the various aspects of the secu-49

rity model, and the threat model for each.50

Local attacks to obtain private data or damage the system, including those51

performed by malicious applications that get installed in the device somehow52

or through exploiting a vulnerable application are covered in Mandatory access53

control (MAC). It is also the main line of defense against malicious email attach-54

ments and web content, and for minimizing the damage that root is able to do55

are also mainly covered by the MAC infrastructure. This is the main security56

infrastructure of the system, and the depth of the discussion is proportional to57

its importance.58

Denial of Service attacks through abuse of system resources such as CPU and59

memory are covered by Resource usage control. Attacks coming in through60

the device’s network connections and possible strategies for firewall setup are61

covered in Network filtering62

Attacks to the driver assistance system coming from the infotainment system are63

handled by many of these security components, so it is discussed in a separate64

section: Protecting the driver assistance system from attacks. Internet threats65

are the main subject of 10, Protecting the system from internet threats.66

Secure software distribution discusses how to provide ways to make installing67

and upgrade software secure, by guaranteeing packages are unchanged, undam-68

aged and coming from a trusted repository.69

Secure boot for protecting the system against attacks done by having physical70

access to the device is discussed in Secure boot. Data encryption and removal,71

is concerned with features whose main focus is to protect the privacy of the72

user.73

Stack protection, discusses simple but effective techniques that can be used74

to harden applications and prevent exploitation of vulnerabilities. Confining75

applications in containers, discusses the pros and cons of using the lightweight76

Linux Containers infrastructure for a system like Apertis.77

The IMA Linux integrity subsystem, wraps up this document by discussing how78

the Integrity Measurement Architecture works and what features it brings to79

the table, and at what cost.80

Terminology81

Privilege82

A component that is able to access data that other components cannot is said83

to be privileged. If two components have different privileges –that is, at least84

3

one of them can do something that the other cannot –then there is said to be a85

privilege boundary between them.86

Trust87

A trusted component is a component that is technically able to violate the88

security model (i.e. it is relied on to enforce a privilege boundary), such that er-89

rors or malicious actions in that component could undermine the security model.90

The trusted computing base (TCB) is the set of trusted components. This91

is independent of its quality of implementation –it is a property of whether the92

component is relied on in practice, and not a property of whether the component93

is trustworthy, i.e. safe to rely on. For a system to be secure, it is necessary94

that all of its trusted components be trustworthy.95

One subtlety of Apertis’app-centric design1 is that there is a privilege boundary96

between application bundles even within the context of one user. As a result, a97

multi-user design has two main layers in its security model: system-level security98

that protects users from each other, and user-level security that protects a user’99

s apps from each other. Where we need to distinguish between those layers, we100

will refer to the TCB for security between users or the TCB for security101

between app bundles respectively.102

Integrity, confidentiality and availability103

Many documents discussing security policies divide the desired security proper-104

ties into integrity, confidentiality and availability. The definitions used here are105

taken from the USA National Information Assurance Glossary.106

Committee on National Security Systems, CNSS Instruction No.107

4009 National Information Assurance (IA) Glossary, April 2010. ht108

tp://www.ncsc.gov/publications/policy/docs/CNSSI_4009.pdf109

Integrity is the property that data has not been changed, destroyed, or lost in110

an unauthorized or accidental manner. For example, if a malicious application111

altered the user’s contact list, that would be an integrity failure.112

Confidentiality is the property that information is not disclosed to system113

entities (users, processes, devices) unless they have been authorized to access114

the information. For example, if a malicious application sent the user’s contact115

list to the Internet, that would be a confidentiality failure.116

Availability is the property of being accessible and usable upon demand by117

an authorized entity. For example, if an application used so much CPU time,118

memory or disk space that the system became unusable (a denial of service119

attack), or if a security mechanism incorrectly denied access to an authorized120

entity, that would be an availability failure.121

1https://www.apertis.org/concepts/archive/application/applications/

4

https://www.apertis.org/concepts/archive/application/applications/
http://www.ncsc.gov/publications/policy/docs/CNSSI_4009.pdf
http://www.ncsc.gov/publications/policy/docs/CNSSI_4009.pdf
http://www.ncsc.gov/publications/policy/docs/CNSSI_4009.pdf
https://www.apertis.org/concepts/archive/application/applications/

Security boundaries and threat model122

This section discusses the security properties that we aim to provide.123

Security between applications124

The Apertis platform provides for installation of Flatpak application bundles,125

which may come from the platform developer or third parties. These are de-126

scribed in the Application Framework2 design document.127

Our model is that there is a trust boundary between these applications, pro-128

viding confidentiality, integrity and availability. In other words, a Flatpak ap-129

plication bundle should not normally be able to read data stored by another130

application bundle, alter or delete data stored by the other application bundle,131

or interfere with the operation of the other application bundle. As a necessary132

prerequisite for those properties, processes from an application must not be able133

to gain the effective privileges of processes or programs from another application134

(privilege escalation).135

In addition to the application bundles, the Apertis platform (defined services,136

and any user-level services that are independent of in the Applications design137

document, and including libraries, system applications) has higher privilege than138

any particular Flatpak application. Similarly, an application bundle should not139

in general be able to read, alter or delete non-application data stored by the plat-140

form, except for where the application bundle has been granted permission to141

do so, such as a navigation application reading location data (a “least-privilege”142

approach); and the application bundle must not be able to gain the effective143

privileges of processes or programs from the platform.144

The threat model here is to assume that a user installs a malicious application,145

or an application that has a security flaw leading to an attacker being able to146

gain control over it. The attacker is presumed to be able to execute arbitrary147

code in the context of the application.148

Our requirement is that the damage that can be done by such applications is149

limited to: reading files that are non-sensitive (such as read-only OS resources)150

or are specifically shared between applications; editing or deleting files that151

are specifically shared between applications; reducing system performance, but152

to a sufficiently limited extent that the user is able to recover by terminating153

or uninstalling the malicious or flawed application; or taking actions that the154

application requires for its normal operation.155

Some files, particularly large media files such as music, might be specif-156

ically shared between applications; such files do not have any integrity,157

confidentiality or availability guarantees against a malicious or subverted158

application. This is a trade-off for usability, similar to Android’s Environ-159

ment.getExternalStorageDirectory().160

2https://www.apertis.org/concepts/archive/application_framework/application-framew
ork/

5

https://www.apertis.org/concepts/archive/application_framework/application-framework/
https://www.apertis.org/concepts/archive/application_framework/application-framework/
https://www.apertis.org/concepts/archive/application_framework/application-framework/

To apply this security model to new platform services, it is necessary for those161

platform services to have a coherent security model, which can be obtained by162

classifying any data stored by those platform services using questions similar to163

these:164

• Can it be read by all applications, applications with a specific privilege165

flag, specific applications (for example the application that created it), or166

by some combination of those?167

• Can it be written by all applications, applications with a specific privilege168

flag, specific applications, or some combination of those?169

It is also necessary to consider whether data stored by different users using the170

same application must be separated (see Security between users).171

For example, a platform service for downloads might have the policy that each172

application’s download history can be read by the matching application, or by173

applications with a “Manage Downloads”privilege (which might for instance be174

granted to a platform Settings application).175

As another example, a platform service for app-bundle installation might have a176

policy stating that the trusted “Application Installer”HMI is the only component177

permitted to install or remove app-bundles. Depending on the desired trade-off178

between privacy and flexibility, the policy might be that any application may179

read the list of installed app-bundles, that only trusted platform services may180

read the list of installed app-bundles, or that any application may obtain a181

subset of the list (bundles that are considered non-sensitive) but only trusted182

platform services may read the full list.183

A service can be considered to be secure if it implements its security policy as184

designed, and that security policy is appropriate to the platform’s requirements.185

Communication between applications186

In a system that supports capabilities such as data handover between applica-187

tions, it is likely that pairs of application bundles can communicate with each188

other, either mediated by platform services or directly. The Interface Discovery3189

and Data Sharing4 pages have more information on this topic.190

The mechanisms for communicating between application bundles, or between191

application bundle and the platform, are to be classified into public and non-192

public interfaces. Application bundles may enumerate all of the providers of193

public interfaces and may communicate with those providers, but it is not accept-194

able for application bundles to enumerate or communicate with the providers195

of non-public interfaces. The platform is considered to be trusted, and may196

communicate with any public or non-public interface.197

3https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
4https://www.apertis.org/architecture/application/data_sharing/

6

https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
https://www.apertis.org/architecture/application/data_sharing/
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
https://www.apertis.org/architecture/application/data_sharing/

The security policy described here is one of many possible policies that can be198

implemented via the same mechanisms, and could be replaced or extended with199

a finer-grained security policy at a later date, for example one where applications200

can be granted the capability to communicate with some but not all non-public201

interfaces.202

Security between users203

The Apertis platform is potentially a multi-user environment; see the Multiuser5204

design document for full details. This results in a two-level hierarchy: users are205

protected from each other, and within the context of a user, apps are protected206

from other apps.207

In at least some of the possible multi-user models described in the Multiuser208

design document, there is a trust boundary between users, again providing confi-209

dentiality, integrity and availability (see above). Once again, privilege escalation210

must be avoided.211

As with security between applications, some files (perhaps the same files that are212

shared between applications) might be specifically shared between users. Such213

files do not have any integrity, confidentiality or availability guarantees against214

a malicious user. Android’s Environment.getExternalStorageDirectory() is one215

example of a storage area shared by both applications and users.216

Security between platform services217

Within the platform, not all services and components require the same access218

to platform data.219

Some platform components, notably the Linux kernel, are sufficiently highly-220

privileged that it does not make sense to attempt to restrict them, because221

carrying out their normal functionality requires sufficiently broad access that222

they can violate one of the layers of the security model. As noted in Terminology,223

these components are said to be part of the trusted computing base for that layer;224

the number and size of these components should be minimized, to reduce the225

exposure of the system as a whole.226

The remaining platform components have considerations similar to those ap-227

plied to applications: they should have “least privilege”. Because platform com-228

ponents are part of the operating system image, they can be assumed not to be229

malicious; however, it is desirable to have “defence in depth”against design or230

implementation flaws that might allow an attacker to gain control of them. As231

such, the threat model for these components is that we assume an attacker gains232

control over the component (arbitrary code execution), and the desired property233

is that the integrity, confidentiality and availability impact is minimized, given234

the constraint that the component’s privileges must be sufficient for it to carry235

out its normal operation.236

5https://www.apertis.org/concepts/archive/application_security/multiuser/

7

https://www.apertis.org/concepts/archive/application_security/multiuser/
https://www.apertis.org/concepts/archive/application_security/multiuser/

Note that the concept of the trusted computing base applies to each of the two237

layers of the security policy. A system service that communicates with all users238

might be part of the TCB for isolation between users, but not part of the TCB239

for isolation between platform components or between applications. Conversely,240

a per-user service such as dconf might be part of the TCB for isolation between241

applications, but not part of the TCB for isolation between users. The Linux242

kernel is one example of a component that is part of the TCB for both layers.243

Security between the device and the network244

Apertis devices may be connected to the Internet, and should protect confiden-245

tiality and integrity of data stored on the Apertis device. The threat model246

here is that an attacker controls the network between the Apertis device and247

any Internet service of interest, and may eavesdrop on network traffic (passive248

attack) and/or substitute spoofed network traffic (active attack); we assume249

that the attacker does not initially control platform or application code running250

on the Apertis device. Our requirement is that normal operation of the Apertis251

device does not result in the attacker gaining the ability to read or change data252

on that device.253

Physical security254

An attack that could be considered is one where the attacker gains physical255

access to the Apertis system, for example by stealing the car in which it is256

installed. It is obviously impossible to guarantee availability in this particular257

threat model (the attacker could steal or destroy the Apertis system), but it is258

possible to provide confidentiality, via encryption “at rest”.259

A variation on this attack is to assume that the attacker has physical access260

to the system and then returns it to the user, perhaps repeatedly. This raises261

the question of whether integrity is provided (whether the user can be sure that262

they are not subsequently entering confidential data into an operating system263

that has been modified by the attacker).264

This type of physical security can come with a significant performance and265

complexity overhead; as a trade-off, it could be declared to be out-of-scope.266

Solutions adopted by popular platforms267

As background for the discussions of this document, the following sections pro-268

vide an overview of the approaches other mobile platforms have chosen for secu-269

rity, including an explanation of the trade-offs or assumptions where necessary.270

Android271

Android uses the Linux kernel, and as such relies on it being secure when it272

comes to the most basic security features of modern operating systems, such273

as process isolation and an access permissions model. On top of that, Android274

8

has a Java-based virtual machine environment which runs regular applications275

and provides them with APIs that have been designed specifically for Android.276

Regular applications can execute arbitrary native code within their application277

sandbox, for example by using the NDK interfaces.278

https://developer.android.com/training/articles/security-tips.htm279

l#Dalvik notes that “On Android, the Dalvik VM is not a security280

boundary”.281

However, some system functionality is not directly available within the appli-282

cation sandbox, but can be accessed by communicating with more-privileged283

components, typically using Android’s Java APIs.284

Early versions of Android worked under the assumption that the system will285

be used by a single user, and no attempt was made towards supporting any286

kind of multi-user use case. Based on this assumption, Android re-purposed the287

concept of UNIX user ID (uid), making each application run as a different user288

ID. This allows for very tight control over what files each application is able to289

access by simply using user-based permissions; this provides isolation between290

applications (Security between applications). In later Android versions, which291

do have multi-user support, user IDs are used to provide two separate security292

boundaries –isolating applications from each other, and isolating users from each293

other (Security between users) –with one user ID per (user, app) pair. This is294

discussed in more detail in the Multiuser design document6.295

The system’s main file system is mounted read-only to protect against unau-296

thorized tampering with system files (integrity for platform data, Security be-297

tween platform services). In addition, by default, the bootloader will check the298

integrity of the root filesystem built on hardware-backed key pairs, thus any299

tampering attempts would fail the boot process. The only way to skip these300

checks is by unlocking the bootloader, which requires a full device wipe, thus301

it is not possible to access the encrypted user data on a device with a locked302

bootloader, even with physical access (Physical security).303

Verified Boot in Android, https://source.android.com/security/veri304

fiedboot305

Encryption of the user data partition through the standard dm-crypt kernel306

facility (confidentiality despite physical access, Physical security) is supported307

if the user configures a password for their device. Users using gesture-based or308

other unlock mechanisms are unable to use this feature.309

Older versions of Android had an unrestricted root user, but recent versions310

have heavily utilized SELinux to restrict the access levels of system processes.311

This ensures that a compromised process is unable to access resources that it312

should not be able to interact with, even if the process is running as root. Even313

for services that have direct access to the block devices, verified boot would314

ensure that a compromised system partition would not be booted.315

6https://www.apertis.org/concepts/archive/application_security/multiuser/

9

https://developer.android.com/training/articles/security-tips.html#Dalvik
https://developer.android.com/training/articles/security-tips.html#Dalvik
https://developer.android.com/training/articles/security-tips.html#Dalvik
https://www.apertis.org/concepts/archive/application_security/multiuser/
https://source.android.com/security/verifiedboot
https://source.android.com/security/verifiedboot
https://source.android.com/security/verifiedboot
https://www.apertis.org/concepts/archive/application_security/multiuser/

Security-Enhanced Linux in Android, https://source.android.com316

/devices/tech/security/selinux/317

The idea of restricting the services an application can use to those specified in318

the application’s manifest also exists in Android. Before installation, Android319

shows a list of system services the application intends to access and installation320

only initiates if the user agrees. This differs slightly from the Applications321

design in Apertis7, in which some permissions are subject to prompting similar322

to Android’s, while other permissions are checked by the app store curator and323

unconditionally granted on installation.324

Android provides APIs to verify a process has a given permission, but no central325

control is built into the API layer or the IPC mechanism as planned for Apertis326

–checking whether a caller has the required permissions to make that call is left327

to the service or application that provides the IPC interface or API, similar to328

how most GNOME services work by using polkit8(see section 6 for more on this329

topic).330

See, for instance, how the A2DP service verifies the caller has the331

required permission: https://cs.android.com/android/platform/su332

perproject/+/master:packages/apps/Bluetooth/src/com/android/333

bluetooth/a2dp/A2dpService.java;l=629-632;drc=7ff83d0d573c51334

8a219ff2f3d5b803dade7d44b1335

No effort is made specifically towards thwarting applications misbehaving and336

causing a Denial of Service on system services or the IPC mechanism. Android337

uses two very simple strategies to forcibly stop an application: 1) it kills appli-338

cations when the device is out of memory; 2) it notifies the user of unresponsive339

applications9 and allows them to force the application to close, similar to how340

GNOME does it.341

An application is deemed to not be responding after about 5 seconds of not being342

able to handle user input. This feature is implemented by the Android window343

manager service, which is responsible for dispatching events read from the ker-344

nel input events interface (the files under /dev/input) to the application, in345

cooperation with the activity manager service, which shows the application not346

responding dialog and kills the application if the user decides to close it. After347

dispatching an event, the window manager service waits for an acknowledgement348

from the application with a timeout; if the timeout is hit, then the application349

is considered not responding.350

7https://www.apertis.org/concepts/archive/application/applications/
8https://www.freedesktop.org/software/polkit/docs/latest/polkit.8.html
9http://developer.android.com/guide/practices/design/responsiveness.html

10

https://source.android.com/devices/tech/security/selinux/
https://source.android.com/devices/tech/security/selinux/
https://source.android.com/devices/tech/security/selinux/
https://www.apertis.org/concepts/archive/application/applications/
https://www.apertis.org/concepts/archive/application/applications/
https://www.apertis.org/concepts/archive/application/applications/
https://www.freedesktop.org/software/polkit/docs/latest/polkit.8.html
https://cs.android.com/android/platform/superproject/+/master:packages/apps/Bluetooth/src/com/android/bluetooth/a2dp/A2dpService.java;l=629-632;drc=7ff83d0d573c518a219ff2f3d5b803dade7d44b1
https://cs.android.com/android/platform/superproject/+/master:packages/apps/Bluetooth/src/com/android/bluetooth/a2dp/A2dpService.java;l=629-632;drc=7ff83d0d573c518a219ff2f3d5b803dade7d44b1
https://cs.android.com/android/platform/superproject/+/master:packages/apps/Bluetooth/src/com/android/bluetooth/a2dp/A2dpService.java;l=629-632;drc=7ff83d0d573c518a219ff2f3d5b803dade7d44b1
https://cs.android.com/android/platform/superproject/+/master:packages/apps/Bluetooth/src/com/android/bluetooth/a2dp/A2dpService.java;l=629-632;drc=7ff83d0d573c518a219ff2f3d5b803dade7d44b1
https://cs.android.com/android/platform/superproject/+/master:packages/apps/Bluetooth/src/com/android/bluetooth/a2dp/A2dpService.java;l=629-632;drc=7ff83d0d573c518a219ff2f3d5b803dade7d44b1
https://cs.android.com/android/platform/superproject/+/master:packages/apps/Bluetooth/src/com/android/bluetooth/a2dp/A2dpService.java;l=629-632;drc=7ff83d0d573c518a219ff2f3d5b803dade7d44b1
https://cs.android.com/android/platform/superproject/+/master:packages/apps/Bluetooth/src/com/android/bluetooth/a2dp/A2dpService.java;l=629-632;drc=7ff83d0d573c518a219ff2f3d5b803dade7d44b1
http://developer.android.com/guide/practices/design/responsiveness.html
http://developer.android.com/guide/practices/design/responsiveness.html
http://developer.android.com/guide/practices/design/responsiveness.html
https://www.apertis.org/concepts/archive/application/applications/
https://www.freedesktop.org/software/polkit/docs/latest/polkit.8.html
http://developer.android.com/guide/practices/design/responsiveness.html

iOS351

iOS is a closed platform, so details are sometimes difficult to obtain10, but Apple352

does use some Open Source components (at the lower levels, in particular). iOS353

has an application sandbox11 that is very similar in functionality to AppArmor,354

discussed bellow. The technology is based on Mandatory Access Control pro-355

vided by the TrustedBSD12 project and has been marketed under the Seatbelt356

name.357

Like AppArmor, it uses configuration files that specify profiles, using path-based358

rules for file system access control. Also like AppArmor, other functionality such359

as network access can be controlled. The actual confinement is applied when the360

application uses system calls to request that the kernel carries out an action on361

the application’s behalf (in other words, when the privilege boundary between362

user-space and the kernel is crossed).363

Seatbelt is considered to be the single canonical solution to sandboxing applica-364

tions on iOS; this is in contrast with Linux, in which AppArmor is one option365

among many (system calls can be mediated by seccomp, the Secure Computing366

API13 described in section 17 of this document, in addition to up to one MAC367

layer such as AppArmor, SELinux or Smack).368

None of this complexity is exposed to apps developed for iOS, though; they are369

merely implementation details.370

Apparently, there are no central controls whatsoever protecting the system from371

applications that hang or try to DoS system services. The only real limitation372

imposed is the available system memory.373

Applications are free to use any APIs available, there are no explicit declarative374

permissions system like the one used in Android. However, some functionality375

are always mediated by the system, including through system-controlled UI.376

For instance, an application can query the GPS for location; when that happens,377

the system will take over and present the user with a request for permission. If378

the user accepts the request will be successful and the application will be white-379

listed for future queries. The same goes for interacting with the camera: the380

application can request a picture be taken, but the UI that is presented for381

taking the picture is controlled by the system as is actual interaction with the382

camera.383

This is analogous to the way in which Linux services can use polkit14 to mediate384

privileged actions (see section 6), although on iOS the authorization step is385

specifically considered to be an implementation detail of the API used, whereas386

10https://github.com/V3RL4223N3/Programming/blob/master/iOS/iOS_Security_May
12.pdf

11http://www.usefulsecurity.com/2007/11/apple-sandboxes-part-1/
12http://www.trustedbsd.org/mac.html
13http://lwn.net/Articles/475043/
14https://www.freedesktop.org/software/polkit/docs/latest/polkit.8.html

11

https://github.com/V3RL4223N3/Programming/blob/master/iOS/iOS_Security_May12.pdf
http://www.usefulsecurity.com/2007/11/apple-sandboxes-part-1/
http://www.trustedbsd.org/mac.html
http://lwn.net/Articles/475043/
http://lwn.net/Articles/475043/
http://lwn.net/Articles/475043/
https://www.freedesktop.org/software/polkit/docs/latest/polkit.8.html
https://github.com/V3RL4223N3/Programming/blob/master/iOS/iOS_Security_May12.pdf
https://github.com/V3RL4223N3/Programming/blob/master/iOS/iOS_Security_May12.pdf
http://www.usefulsecurity.com/2007/11/apple-sandboxes-part-1/
http://www.trustedbsd.org/mac.html
http://lwn.net/Articles/475043/
https://www.freedesktop.org/software/polkit/docs/latest/polkit.8.html

some Linux services do make the calling application aware of whether there was387

an interactive authorization step.388

Mandatory Access Control389

The goal of the Linux Discretionary Access Control (DAC) is a separation of390

multiple users and their data (Security between users, Security between plat-391

form services). The policies are based on the identity of a subject or their groups.392

Since in Apertis applications from the same user should not trust each other (393

Security between applications), the utilization of a Mandatory Access Control394

(MAC) system is recommended. MAC is implemented in Linux by one of the395

available Linux Security Modules (LSM).396

Linux Security Modules (LSM)397

Due to the different nature and objectives of various security models there is no398

real consensus about which security model is the best, thus support for loading399

different security models and solutions became available in Linux in 2001. This400

mechanism is called Linux Security Modules (LSM).401

Although it is in theory possible to provide generic support for any LSM, in402

practice most distributions pick one and stick to it, since both policies and403

threat models are very specific to any particular LSM module.404

The first implementation on top of LSM was SELinux developed by the US405

National Security Agency (NSA). In 2009 the TOMOYO Linux module was406

also included in the kernel followed by AppArmor in the same year. The sub-407

sections below gives a short introduction on the security models that are officially408

supported by the Linux Kernel.409

SELinux SELinux15 is one of the most well-known LSMs. It is supported by410

default in Red Hat Enterprise Linux and Fedora. It is infamous for how difficult411

it is to maintain the security policies; however, being the most flexible and not412

having any limitation regarding what it can label, it is the reference in terms of413

features. For every user or process, SELinux assigns a context which consists of414

a role, user name and domain/type. The circumstances under which the user is415

allowed to enter into a certain domain must be configured into the policies.416

SELinux works by applying rules defined by a policy when kernel-mediated417

actions are taken. Any file-like object in the system, including files, directories,418

and network sockets can be labeled. Those labels are set on file system objects419

using extended file system attributes. That can be problematic if the file system420

that is being used in a given product or situation lacks support for extended421

attributes. While support has been built for storing labels in frequently used422

networking file systems like NFS, usage in newer file systems may be challenging.423

Note that BTRFS does support extended attributes.424

15http://selinuxproject.org/page/Main_Page

12

http://selinuxproject.org/page/Main_Page
http://selinuxproject.org/page/Main_Page

Users and processes also have labels assigned to them. Labels can be of a more425

general kind like, for instance, the sysadm_t label, which is used to determine426

that a given resource should be accessible to system administrators, or of a more427

specific kind.428

Locking down a specific application, for instance, may involve creating new429

labels specifically for its own usage. A label “browser_cache_t”may be created,430

for instance, to protect the browser cache storage. Only applications and users431

which have their label assigned to them will be able to access and manage those432

files. The policy will specify that any files created by the browser on that specific433

directory are assigned that label automatically.434

Labels are automatically applied to any resources created by a process, based435

on the labels the process itself has, including sockets, files, devices represented436

as files and so on. SELinux, as other MAC systems, is not designed to impose437

performance-related limitations, such as specifying how much CPU time a pro-438

cess may consume, or how many times a process duplicates itself, but supports439

pretty much everything in the area it was designed to target.440

The SELinux support built into D-Bus allows enhancement of the existing D-441

Bus security rules by associating names, methods and signals with SELinux442

labels, thus bringing similar policy-making capabilities to D-Bus.443

TOMOYO Linux TOMOYO Linux16 focuses on the behavior of a system444

where every process is created with a certain purpose and allows each process445

to declare behaviors and resources needed to achieve their purposes. TOMOYO446

Linux is not officially supported by any popular Linux distribution.447

SMACK Simplicity is the primary design goal of SMACK17. It was used448

by MeeGo before that project was cancelled; Tizen18 appears to be the only449

general-purpose Linux distribution using SMACK as of 2015.450

SMACK works by assigning labels to the same system objects and to processes as451

SELinux does; similar capabilities were proposed by Intel for D-Bus integration,452

but their originators did not follow up on reviews19, and the changes were not453

merged. SMACK also relies on extended file system attributes for the labels,454

which means it suffers from the same shortcomings that come from that as455

SELinux.456

There are a few special predefined labels, but the administrator can create and457

assign as many different labels as desired. The rules regarding what a process458

with a given label is able to perform on an object with another given label are459

specified in the system-wide policy file /etc/smack/accesses, or can be set in460

run-time using the smackfs virtual file system.461

16https://tomoyo.sourceforge.net/
17http://schaufler-ca.com/
18https://developer.tizen.org/sdk.html
19https://bugs.freedesktop.org/show_bug.cgi?id=47581

13

https://tomoyo.sourceforge.net/
http://schaufler-ca.com/
https://developer.tizen.org/sdk.html
https://bugs.freedesktop.org/show_bug.cgi?id=47581
https://tomoyo.sourceforge.net/
http://schaufler-ca.com/
https://developer.tizen.org/sdk.html
https://bugs.freedesktop.org/show_bug.cgi?id=47581

MeeGo used SMACK by assigning a separate label to each service in the system,462

such as “Cellular”and “Location”. Every application would get their own labels463

and on installation the packaging system would read a manifest that listed the464

systems the application would require, and SMACK rules would then be created465

to allow those accesses.466

AppArmor Of all LSM modules that were reviewed, Application Armor (Ap-467

pArmor20) can be seen as the most focused on application containment.468

AppArmor allows the system administrator to associate an executable with a469

given profile in order to limit access to resources. These resource limitations can470

be applied to network and file system access and other system objects. Unlike471

SMACK and SELinux, AppArmor does not use extended file system attributes472

for storing labels, making it file system agnostic.473

Also in contrast with SELinux and SMACK, AppArmor does not have a system-474

wide policy, but application profiles, associated with the application binaries.475

This makes it possible to disable enforcement for a single application, for in-476

stance. In the event of shipping a policy with an error that leads to users not477

being able to use an application it is possible to quickly restore functionality for478

that application without disabling the security for the system as a whole, while479

the incorrect profile is fixed.480

Since AppArmor uses the path of the binary for profile selection, changing the481

path through manipulation of the file system name space (i.e. through links482

or mount points) is a potential way of working-around the limits that are put483

in place; while this is cited as a weakness, in practice it is not an issue, since484

restrictions exist to block anyone trying to do this. Creation of symbolic links485

is only allowed if the process doing so is allowed to access the original file, and486

links are followed to enforce any policy assigned to the binary they link to.487

Confined processes are also not allowed to mount file systems unless they are488

given explicit permission.489

Here’s an example of how restricting ping’s ability to create raw sockets cannot490

be worked around through linking –lines beginning with $ represent commands491

executed by a normal user, and those starting with # have been executed by492

the root user:493

20https://gitlab.com/apparmor/apparmor/-/wikis/home

14

https://gitlab.com/apparmor/apparmor/-/wikis/home
https://gitlab.com/apparmor/apparmor/-/wikis/home
https://gitlab.com/apparmor/apparmor/-/wikis/home
https://gitlab.com/apparmor/apparmor/-/wikis/home

1

2

3

4

5

6

7

8

9

10

11

12

13

$ ping debian.org

ping: icmp open socket: Operation not permitted

$ ln -s /bin/ping

$./ping debian.org

ping: icmp open socket: Operation not permitted

$ ln /bin/ping ping2

ln: failed to create hard link `ping2' => `/bin/ping': Operation not permitted

ping debian.org

ping: icmp open socket: Operation not permitted

ln -s /bin/ping /bin/ping2

ping2 debian.org

ping: icmp open socket: Operation not permitted

#

AppArmor restriction applying to file system links494

Copying the file would make it not trigger the containment. However, even if495

the user was able to symlink the binary or use mount points to work-around496

the path-based restrictions that should not mean privilege escalation, given the497

white-list approach that is being adopted. That approach means that any binary498

escaping its containment profile would in actuality be dropping privileges, not499

escalating them, since the restrictions imposed on binaries that do not have500

their own profile can be quite extensive.501

Note that Collabora is proposing mounting partitions that should only contain502

data with the option that disallows execution of code contained in them, so even503

if the user manages to escape the strict containment of the user session and504

copied a binary to one of the directories they have write access to, they would505

not be able to run it. Refer to the System updates & rollback and Application506

designs for more details on file system and partition configuration.507

Integration with D-Bus was developed by Canonical and shipped in Ubuntu for508

several years, before being merged upstream in dbus-daemon 1.9 and AppArmor509

2.9. The implementation includes patches to AppArmor’s user-space tools, to510

make the new D-Bus rules known to the profile parser, and to dbus-daemon, so511

that it will check with AppArmor before allowing a request.512

AppArmor will be used by shipping profiles for all components of the platform,513

and by requiring that third-party applications ship with their own profiles that514

specify exactly what requests the application should be allowed.515

Creating a new profile for AppArmor is a reasonably simple process: a new pro-516

file is generated automatically running the program under AppArmor’s profile517

generator, aa-genprof21, and exercising its features so that the profile generator518

can capture all of the accesses the application is expected to make. After the519

initial profile has been generated it must be reviewed and fine-tuned by manual520

21https://gitlab.com/apparmor/apparmor/-/wikis/Profiling_with_tools

15

https://gitlab.com/apparmor/apparmor/-/wikis/Profiling_with_tools
https://gitlab.com/apparmor/apparmor/-/wikis/Profiling_with_tools

editing to make sure the permissions that are granted are not beyond what is521

expected.522

In AppArmor there is no default profile applied to all processes, but a process523

always inherits limitations imposed to its parent. Setting up a proper profile524

for components such as the session manager is a practical and effective way of525

implementing this requirement.526

Comparison527

Since all those Linux Security Modules rely on the same kernel API and have the528

same overall goals, the features and resources they are able to protect are very529

similar, thus not much time will be spent covering those. The policy format and530

how control over the system and its components is exerted varies from framework531

to framework, though, which leads to different limitations. The table below has532

a summary of features, simplicity and limitations:533

SELinux AppArmor SMACK
Maintainability Complex Simple Simple
Profile creation Manual/Tools Manual/Tools Manual
D-Bus integration Yes Yes Not proposed upstream
File system agnostic No Yes No
Enforcement scope System-wide Per application System-wide

Comparison of LSM features534

Historically LSM modules have focused on kernel-mediated accesses, such as535

access to file system objects and network resources. Modern systems, though,536

have several important features being managed by user-space daemons. D-Bus is537

one such daemon and is specially important since it is the IPC mechanism used538

by those daemons and applications for communication. There is clear benefit539

in allowing D-Bus to cooperate with the LSM to restrict what applications can540

talk to which services and how.541

In that regard SELinux and AppArmor are in advantage since D-Bus is able to542

let these frameworks decide whether a given communication should be allowed543

or not, and whether a given process is allowed to acquire a particular name on544

the bus. Support for SMACK mediation was worked on by Intel for use in Tizen,545

but has not been proposed for upstream inclusion in D-Bus, and is believed to546

add considerable complexity to dbus-daemon. There is no work in progress to547

add TOMOYO support.548

Like D-Bus’built-in support for applying “policy”to message delivery, AppArmor549

mediation of D-Bus messages has separate checks for whether the sender may550

send a message to the recipient, and whether the recipient may receive a message551

from the sender. Either or both of these can be used, and the message will only552

succeed if both sending and receiving were allowed. The sender’s AppArmor553

16

profile determines whether it can send (usually conditional on the profile name554

of the recipient), and the recipient’s AppArmor profile determines whether it can555

receive (either conditional on the profile name of the sender, or unconditionally),556

so some coordination between profiles is needed to express a particular high-level557

security policy.558

The main difference between the SELinux and SMACK label-based mediation in559

terms of features is how granular you can get. With the D-Bus additions to the560

AppArmor profile language22, for instance, in addition to specifying which ser-561

vices can be called upon by the constrained process it is also possible to specify562

which interfaces and paths are allowed or denied. This is unlike SELinux media-563

tion23, which only checks whether a given client can talk to a given service. One564

caveat regarding fine-grained (interface- and path-based) D-Bus access control565

is that it is often not directly useful, since the interface and path is not nec-566

essarily sufficient to determine whether an action should be allowed or denied567

(for example, Motivation for polkit describes why this is the case for the udisks568

service).569

Software that is being used by large distributions is often more tested and tested570

in more diverse scenarios. For this reason Collabora believes that being used by571

one of the main distributions is a very important feature to look for in a LSM.572

Flexibility is also good to have, since more complex requirements can be modeled573

more precisely. However, there is a trade-off between complexity and flexibility574

that should be taken into consideration.575

The recommendation on the selection of the framework is a combination of the576

adoption of the framework by existing distributions, features, maintainability,577

cost of deployment and experience of the developers involved. The table below578

contains a comparison of the adoption of the existing security models. Only579

major distributions that ship and enable the module by default are listed.580

Name Distributions Merged to mainline Maintainer
SELinux Fedora, Red Hat Enterprise 08 Aug 2003 NSA, Network Associates, Secure Computing Corp., Trusted Computer Solutions, Tresys
AppArmor SUSE, OpenSUSE, Ubuntu 20 Oct 2010 SUSE, Canonical
SMACK Tizen 11 Aug 2007 Intel, Samsung2
TOMOYO 10 Jun 2009 NTT Data Corp.

Comparison of LSM adoption and maturity581

Performance impact582

The performance impact of MAC solutions depends heavily on the workload583

of the application, so it’s hard to rely upon a single metric. It seems major584

22https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference#
dbus-rules

23http://dbus.freedesktop.org/doc/dbus-daemon.1.html#lbAg

17

https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference#dbus-rules
https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference#dbus-rules
https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference#dbus-rules
http://dbus.freedesktop.org/doc/dbus-daemon.1.html#lbAg
http://dbus.freedesktop.org/doc/dbus-daemon.1.html#lbAg
http://dbus.freedesktop.org/doc/dbus-daemon.1.html#lbAg
https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference#dbus-rules
https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Core_Policy_Reference#dbus-rules
http://dbus.freedesktop.org/doc/dbus-daemon.1.html#lbAg

adopters of these technologies are not too concerned about their real-world585

impact, even though they may be expressive in benchmarks, since there are no586

recent measurements of performance impact for the major MAC solutions.587

That said, early tests indicate that SELinux has a performance impact floating588

around 7% to 10%24, with tasks that are more CPU intensive having less im-589

pact, since they are not making many system calls that are checked. SELinux590

performs checks on every operation that touches a labeled resource, so when591

reading or writing a file all read/write operations would cause a check. That592

means making larger operations instead of several smaller ones would also make593

the overhead go down.594

AppArmor generally does fewer checks than SELinux since only operations that595

open, map or execute a file are checked: the individual read/write operations596

that follow are not checked independently. Novell’s documentation and FAQs597

state a 0.2% overhead is expected on best-case scenarios –writing a big file, for598

instance, with a 2% overhead in worst-case scenarios (an application touching599

lots of files once). Collabora’s own testing on a 2012 x86-64 system puts the600

worst case scenario leaning towards the 5% range. The test measured reading601

3000 small files with a hot disk cache, and ranged from ~89ms to ~94ms average602

duration.603

SMACK’s performance characteristics should be similar to that of SELinux,604

given their similar approach to the problem. SMACK has been tested for a TV605

embedded scenario which has shown performance degradation from 0% all the606

way to 30% on a worst-case scenario of deleting a 0-length file. Degradation607

varied greatly depending on the benchmark used.608

The only conclusion Collabora believes can be drawn from these numbers is609

that an approach which checks less often (as is the case for AppArmor) can610

be expected to have less impact on performance, in general. That said, these611

numbers should be taken with a grain of salt, since they haven’t been measured612

in the exact same hardware and with the exact same methodology. They may613

also suffer from bias caused by benchmark tests which may not represent real-614

world usage scenarios.615

No numbers exist measuring the impact on performance of the existing D-Bus616

SELinux and AppArmor mediation, nor with the in-development SMACK me-617

diation. The overhead caused to each D-Bus call should be similar to that of618

opening a file, since the same procedure is involved: a check needs to be done619

each time a message is received from a client that is contained. It should be620

noted that D-Bus is not designed to be used for high-frequency communica-621

tion due to its per-message overhead, so the additional overhead for AppArmor622

should not be problematic unless D-Bus is already being misused.623

Where higher-frequency communication is required, D-Bus’file descriptor pass-624

ing feature can be used to negotiate a private channel (a pipe or socket) between625

24http://blog.larsstrand.no/2007/11/rhel5-selinux-benchmark.html

18

http://blog.larsstrand.no/2007/11/rhel5-selinux-benchmark.html
http://blog.larsstrand.no/2007/11/rhel5-selinux-benchmark.html
http://blog.larsstrand.no/2007/11/rhel5-selinux-benchmark.html
http://blog.larsstrand.no/2007/11/rhel5-selinux-benchmark.html

two processes. This negotiation can be as simple as a single D-Bus method call,626

and only incurs the cost of AppArmor checks once (when it is first set up). Sub-627

sequent messages through the private channel bypass D-Bus and are not checked628

individually by AppArmor, avoiding any per-message overhead in this case.629

A more realistic and reliable assessment of the overhead imposed on a real-world630

system would only be feasible on the target hardware, with actual applications,631

where variables like storage device and file system would also be better con-632

trolled.633

Conclusion634

Collabora recommends the adoption of a MAC solution, specifically AppArmor.635

It solves the problem of restricting applications to the privileges they require to636

work, and is an effective solution to the problem of protecting applications from637

other applications running for the same user, which a DAC model is not able638

to provide.639

SMACK and TOMOYO have essentially no adoption and support when com-640

pared to solutions like SELinux and AppArmor, without providing any clear641

advantages. MeeGo would have been a good testing ground for SMACK, but642

the fact that it was never really deployed in enforcing mode means that the643

potential was never realized.644

SELinux offers the most flexible configuration of security policies, but it intro-645

duces a lot of complexity on the setup and maintenance of the policies, not only646

for distribution maintainers but also for application developers and packagers,647

which impacts on the costs of the solution. It is quite common to see Fedora648

users running into problems caused by SELinux configuration issues.649

AppArmor stands out as a good middle-ground between flexibility and main-650

tainability while at the same time having significant adoption: by the biggest651

end-user desktop distribution (Ubuntu) and by one of the two biggest enterprise652

distributors (SUSE). The fact that it is the security solution already supported653

and included in the Ubuntu distribution, which is closely related to the base654

of the Apertis platform (Debian), minimizes the initial effort to create a secure655

baseline and reduces the effort needed to maintain it. Since Ubuntu ships with656

AppArmor, some of the services and applications will already be covered by657

the profiles that can be pulled from Ubuntu. Creation of additional profiles is658

made easy by the profile generator tool that comes with AppArmor. It records659

everything the application needs to do during normal operation, and allows for660

further refining after the recording session is done.661

Collabora will integrate and validate the existing Ubuntu profiles that are rele-662

vant to the Apertis platform as well as modify or write any additional profiles663

required by the base platform. Collabora will also assist in the creation of pro-664

files for higher level applications that ship with the final product and on the665

strategy for profile management for third party applications.666

19

AppArmor Policy and management examples Looking at a few exam-667

ples might help better visualize how AppArmor works, and what creating new668

policies entices. Let’s look at a simple policy file:669

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

$ cat /etc/apparmor.d/bin.ping

...

/bin/ping {

#include <abstractions/base>

#include <abstractions/consoles>

#include <abstractions/nameservice>

capability net_raw,

capability setuid,

network inet raw,

/bin/ping mixr,

/etc/modules.conf r,

Site-specific additions and overrides. See local/README for details.

#include \<local/bin.ping\>

}

$

AppArmor policy shipped for ping in Ubuntu670

This is the policy for the ping command. The binary is specified, then a few671

includes that have common rules for the kind of binary ping (console), and ser-672

vices it consumes (nameservice). Then we have two rules specifying capabilities673

that the program is allowed to use, and we state the fact that it is allowed to674

do perform raw network operations. Then it’s specified that the process should675

be able to memory map (m) /bin/ping, inherit confinement from the parent (i),676

execute the binary /bin/ping (x) and read it (r). It’s also specified that ping677

should be able to read /etc/modules.conf.678

If an attack was able to execute arbitrary code by hijacking the ping process,679

then that is all it would be able to do. No reading of /etc/password would be680

allowed, for instance. If ping was a very core feature of the device and starts681

failing because of a bad policy, it is possible to disable security enforcement just682

for ping, leaving the rest of the system secured (something that would not be683

easily done with SMACK or SELinux), by running aa-disable with ping’s path684

as the parameter, or by installing a symbolic link in /etc/apparmor.d/disable:685

20

1

2

3

4

5

6

$ aa-disable /bin/ping

Disabling /bin/ping.

$ ls -l /etc/apparmor.d/disable/

total 0

lrwxrwxrwx 1 root root 24 Feb 20 19:38 bin.ping ->

/etc/apparmor.d/bin.ping

A symbolic link to disable the ping AppArmor policy686

Note that aa-disable is only a convenience tool to unload a profile and link it687

to the /etc/apparmor.d/disable directory. Note that the convenience script688

is not currently shipped in the image intended for the target hardware. It is689

available in the repository though, and is available in the development and SDK690

images since it makes it more convenient to test and debug issues.691

Note, also, that writing to the /etc/apparmor.d/disable directory is required692

for creating the symlink there, and the UNIX DAC permissions system already693

protects that directory for writing - only root is able to write to this directory.694

As discussed in A note about root, if an attacker becomes root the system is695

already compromised.696

Also, as discussed in the System update & rollback, the system partition will697

be mounted read-only, so that is an additional protection layer already. And in698

addition to that, the white-list approach discussed in Implementing a white list699

approach will already deny writing to anywhere in the file system, so anything700

running under the application manager will have an additional layer of security701

imposed on them.702

For these reasons, Collabora doesn’t see any reason to add additional security703

such as AppArmor profiles specifically for protecting the system against unau-704

thorized disabling of profiles.705

Profiles for libraries AppArmor profiles are always attached to a binary.706

That means there is no way to attach a profile to every program that uses a707

given library. However, developers can write files called abstractions with rules708

that can be included through the #include directive, similar to how libraries709

work for programming. Using this feature Collabora has written rules for the710

WebKit library, for instance, that can be included by the browser application711

as well as by any application that uses the library.712

There is also concern with protecting internal, proprietary libraries, so that713

they cannot be used by applications. In the profiles and abstractions shipped714

with Apertis right now, all applications are allowed to use all libraries that are715

installed in the public library paths (such as /usr/lib).716

The rationale for this is libraries are only pieces of code that could be included717

by the applications themselves, and it would be very time-consuming and error718

prone having to specify each and every library and module the application may719

21

need to use directly or that would be used indirectly by a library used by the720

application.721

Collabora recommends that proprietary libraries that are used only by one or722

a few services should be installed in a private location, such as the application’723

s directory. That would put those libraries outside of the paths covered by724

the existing rules, and they would this be out of reach for any other applica-725

tion already, given the white-list approach to session lockdown, as discussed in726

Implementing a white list approach.727

If that is not possible, because the library hardcodes paths or some other issue,728

an explicit deny rule could be added to the chaiwala-base abstraction that729

implements the general rules that apply to most applications, including the one730

that allows access to all libraries. Collabora can help deciding what to do with731

specific libraries through support tickets opened in the bug tracking system.732

Chaiwala was a development codename for parts of the Apertis sys-733

tem. The name is retained here for compatibility reasons.734

Application installation and upgrades For installations and upgrades to735

be performed, no changes to the running system’s security are necessary, since736

the processes that manage upgrade, including the creation of the required snap-737

shots will have enough power given to them738

An application’s profile is read at startup time. That means an application that739

has been upgraded will only be contained with the new rules after it has been740

restarted. The D-Bus integration works by querying the kernel interface for the741

PID it is communicating with, not its own, so D-Bus itself does not need to be742

restarted when new profiles are installed.743

When a .deb package is installed its AppArmor profile will be installed to the744

system AppArmor profile location (/etc/apparmor.d/), but in the new snapshot745

created for the upgrade rather than on the running system.746

The new version of the upgraded package and its new profile will only take effect747

after the system has been rebooted. For details about how .deb packages will748

be handled when the system is upgraded please see the System Updates and749

Rollback document.750

For more details on how applications from the store will be handled, the Appli-751

cations document produced by Collabora goes into details about how the per-752

missions specified in the manifest will be transformed into AppArmor profiles753

and on how they will be installed and loaded.754

A note about root As has been demonstrated in listing AppArmor restric-755

tion applying to file system links, AppArmor can restrict even the powers of the756

root user. Most platforms do not try to limit that power in any way, since if an757

attacker has breached the system to get root privileges it’s likely that all bets758

are already off. That said, it should be possible to limit the root user’s ability to759

22

modify the AppArmor profiles, leaving that task solely for the package manager760

(see the Applications design for details).761

Implementing a white-list approach Collabora recommends the use of762

a white-list approach in which the app-launcher will be confined to a policy763

that denies almost everything, and specific permissions will be granted by the764

application profiles. This means all applications will only be able to access what765

is expressively allowed by their specific policies, providing Apertis with a very766

tight least-privilege implementation.767

A simple example of how that can be achieve using AppArmor is provided in the768

following examples. The examples will emulate the proposed solution by locking769

down a shell, which represents the Apertis application launcher, and granting770

specific privileges to a couple applications so that they are able to access the771

files they require.772

Listing Sample profiles for implementing white-listing shows a profile for the773

shell, essentially denying it access to everything by not allowing access to any774

files. It gives the shell permission to run both ls and cat. Note that flags rix775

are used for this, meaning the shell can read the binaries (r), and execute them776

(x); the i preceding the x tells AppArmor that these binaries should inherit the777

shell’s confinement rules, even if they have rules of their own.778

Then permission is given for the shell to run the dconf command. dconf is779

GNOME’s settings storage. Notice that we have p as the prefix for x this time.780

This means we want this application to use its own rules; if no rules had been781

specified, then AppArmor would have fallen back to using the shell’s confinement782

rules.783

23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

$ cat /etc/apparmor.d/bin.zsh4

Last Modified: Fri May 11 11:43:44 2012

#include <tunables/global>

/bin/zsh4 {

#include <abstractions/base>

#include <abstractions/consoles>

#include <abstractions/nameservice>

/bin/ls rix,

/bin/cat rix,

/usr/bin/dconf rpx,

/bin/zsh4 mr,

/usr/lib/zsh/*/zsh/* mr,

}

$ cat /etc/apparmor.d/usr.bin.dconf

Last Modified: Fri May 11 11:59:09 2012

#include <tunables/global>

/usr/bin/dconf {

#include <abstractions/base>

#include <abstractions/nameservice>

@{HOME}/.cache/dconf/user rw,

@{HOME}/.config/dconf/user r,

/usr/bin/dconf mr,

}

Sample profiles for implementing white-listing784

The profile for dconf allows reading (and only reading) the user configuration785

for dconf itself, and allows reading and writing to the cache. By using these786

rules we have both guaranteed that no application executed from this shell will787

be able to look at or interfere with dconf’s files, and that dconf itself is able to788

function when used. Here’s the result:789

% cat .config/dconf/user790

cat: .config/dconf/user: Permission denied791

% dconf read /apps/empathy/ui/show-offline792

true793

%794

Effects of white-list approach profiles795

As shown by this example, the application launcher itself and any applications796

which do not posses profiles can be restricted to the bare minimum permissions,797

and applications can be given the more specific privileges they require to do798

their job, using the p prefix to let AppArmor know that’s what is desired.799

24

polkit (PolicyKit)800

polkit (formerly PolicyKit) is a service used by various upstream components801

in Apertis, as a way to centralize security policy for actions delegated by one802

process to another. The central problems addressed by polkit are that the803

desired security policies for various privileged actions are system-dependent and804

non-trivial to evaluate, and that generic components such as the kernel’s DAC805

and MAC subsystems do not have enough context to understand whether a806

privileged action is acceptable.807

Motivation for polkit808

Broadly, there are two ways a process can carry out a desired action: it can809

do it directly, or it can use inter-process communication to ask a service to do810

that operation on its behalf. If the action is done directly, the components that811

say whether it can succeed are the Linux kernel’s normal discretionary access812

control (DAC) permissions checks, and if configured, a mandatory access control813

module (MAC, section 5).814

However, the kernel’s relatively coarse-grained checks are not sufficient to ex-815

press the desired policies for consumer-focused systems. A frequent example is816

mounting file systems on removable devices: if a user plugs in a USB stick with817

a FAT filesystem, it is reasonable to expect the user interface layer to either818

mount it automatically, or let the user choose to mount it. Similarly, to avoid819

data loss, the user should be able to unmount the removable device when they820

have finished with it.821

Applying the desired policy using the kernel’s permission checks is not possible,822

because mounting and unmounting a USB stick is fundamentally the same sys-823

tem call as mounting and unmounting any other file system, which is not desired:824

if ordinary users can make arbitrary mount system calls, they can mount a file825

system that contains setuid executables and achieve privilege escalation. As a826

result, the kernel disallows direct mount and unmount actions by unprivileged827

processes; instead, user processes may request that a privileged system process828

carries out the desired action. In the case of device mounting, Apertis uses the829

privileged udisks2 service to mount and unmount devices.830

In environments that use a MAC framework like AppArmor, actions that would831

normally be allowed can also become privileged: for instance, in a framework832

for sandboxed applications, most apps should not be allowed to record audio.833

The resulting AppArmor adjustments prevent carrying out these actions directly.834

The result is that, again, the only way to achieve them is that a service with a835

suitable privilege carries out the action (perhaps with a mandatory user interface836

prompt first, as in certain iOS features).837

These privileged requests are commonly sent via the D-Bus interprocess com-838

munication (IPC) system; indeed, this is one of the purposes for which D-Bus839

was designed. D-Bus has facilities for allowing or forbidding messages between840

25

particular processes in a somewhat fine-grained way, either directly or mediated841

by MAC frameworks. However, this has the same issue as the kernel’s checks for842

direct mount operations: the generic D-Bus IPC framework does not understand843

the context of the messages. For example, it can allow or forbid messages that844

ask to mount a device, but cannot discriminate based on whether the device in845

question is a removable device or a system partition, because it does not have846

that domain-specific information.847

This means that the security decision –having received this request, should the848

service obey it? –must be at least partly made by the service itself (for example849

udisks2), which does have the necessary domain-specific context to do so.850

The desired security policies for certain actions are also relatively complex. For851

example, udisks2 as deployed in a modern Linux desktop system such as Debian852

8 would normally allow mounting devices if and only if:853

• the requesting user is root, or854

• the requesting user is in group sudo, or855

• all of856

– the device is removable or external, and857

– the mount point is in /media, and858

– the mount options are reasonable, and859

– the device’s seat (in multi-seat computing) matches one of the seats860

at which the user is logged-in, and861

– either862

∗ the user is in group plugdev, or863

∗ all of864

· the user is logged-in locally, and865

· the user is logged-in on the foreground virtual console866

This is already complex, but it is merely a default, and is likely to be ad-867

justed further for special purposes (such as a single-user development laptop, a868

locked-down corporate desktop, or an embedded system like Apertis). It is not869

reasonable to embed these rules, or a sufficiently powerful parser to read them870

from configuration, into every system service that must impose such a policy.871

polkit’s solution872

polkit addresses this by dividing the authorization for actions into two phases.873

In the first phase, the domain-specific service (such as udisks2 for disk-874

mounting) interprets the request and classifies it into one of several actions875

which encapsulate the type of request. The principle is that the action876

26

combines the verb and the object for the desired operation: if a security877

policy would commonly produce different results when performing the same878

verb on different objects, then they are represented by different actions. For879

example, udisks2 divides the high-level operation “mount a disk”into the actions880

org.freedesktop.udisks2.filesystem-mount, org.freedesktop.udisks2.filesystem-881

mount-system, org.freedesktop.udisks2.filesystem-mount-other-seat and882

org.freedesktop.udisks2.filesystem-fstab depending on attributes of the disk. It883

also gathers information about the process making the request, such as the884

user ID and process ID. polkit clients do not currently record the LSM context885

(AppArmor profile, etc.) used by MAC frameworks, but could be enhanced to886

do so.887

In the second phase, the service sends a D-Bus request to polkit with the desired888

action, and the attributes of the process making the request. polkit processes889

this request according to its configuration, and returns whether the request890

should be obeyed.891

In addition to “yes”or “no”, polkit security policies can request that a user, or a892

user with administrative (root-equivalent) privileges, authenticates themselves893

interactively; if this is done, polkit will not respond to the request until the user894

has responded to the polkit agent, either by authenticating or by cancelling the895

operation.896

We recommend that this facility is not used with a password prompt in Apertis,897

since that user experience would be highly distracting. For operations that are898

deemed to be allowed or rejected by the platform designer, either the policy899

should return “yes”or “no”instead of requesting authorization, or the platform-900

provided polkit agent should return that result in response to authorization901

requests without any visible prompting. However, a prompt for authorization,902

without requiring authentication, might be a desired UX in some cases.903

Recommendation904

We recommend that Apertis should continue to provide polkit as a system ser-905

vice. If this is not done, many system components will need to be modified to906

refrain from carrying out the polkit check.907

If the desired security policy is merely that a subset of user-level components908

may carry out privileged actions via a given system service, and that all of909

those user-level components have equal access, we recommend that Apertis’910

polkit configuration should allow and forbid actions appropriately.911

If it is required that certain user-level components can communicate with a given912

system service with different access levels, we recommend enhancing polkit so913

that it can query AppArmor, giving the action as a parameter, before carrying914

out its own checks; this parallels what dbus-daemon currently does for SELinux915

and AppArmor.916

27

Alternative design: rely entirely on AppArmor checks The majority917

of services that communicate with polkit do so through the libpolkit-gobject918

library. This suggests an alternative design: the polkit service and its D-Bus919

API could be removed entirely, and the AppArmor check described above could920

be carried out in-process by each service, by providing a “drop-in”compatible921

replacement for libpolkit-gobject that performed an AppArmor query itself in-922

stead of querying polkit.923

We do not recommend this approach: it would be problematic for services such924

as systemd that do not use libpolkit-gobject, it would remove the ability for925

the policy to be influenced by facts that are not known to AppArmor (such926

as whether a user is logged-in and active), and it would be a large point of927

incompatibility with upstream software.928

Resource Usage Control929

Resource usage here refers to the limitation and prioritization of hardware re-930

sources usage. Common resources to limit usage of are CPU, memory, network,931

disk I/O and IPC.932

The proposed solution is Control Groups (cgroup-v125, cgroup-v226), which is933

a Linux kernel feature to limit, account, isolate and prioritize resource usage934

of process groups. It protects the platform from resource exhaustion and DoS935

attacks. The groups of processes can be dynamically created and modified. The936

groups are divided by certain criteria and each group inherits limits from its937

parent group.938

The interface to configure a new group is via a pseudo file system that contains939

directories to label the groups and each directory can have sub-directories (sub-940

groups). All those directories contain files that are used to set the parameters941

or provide information about the groups.942

By default, when the system is booted, the init system Collabora recommends943

for this project, systemd, will assign separate control groups to each of the sys-944

tem services. Collabora will further customize the cgroups of the base platform945

to clearly separate system services, built-in applications and third-party applica-946

tions. Support will be provided by Collabora for fine-tuning the cgroup profiles947

for the final product.948

Imposing limits on I/O for block devices949

The blkio subsystem is responsible for dealing with I/O operations concerning950

storage devices. It exports a number of controls that can be tuned by the951

cgroups subsystem. Those controls fall into one of two possible strategies: setting952

proportional weights for different cgroups or absolute upper bounds.953

25https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
26https://www.kernel.org/doc/Documentation/cgroup-v2.txt

28

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt

The main advantage of using proportional weights is that the it allows the I/O954

bandwidth to be saturated –if nothing else is running, an application always955

gets all of the available I/O bandwidth. If, however, two or more processes in956

different cgroups are competing for access to the I/O bandwidth, then they will957

get a share that is proportional to the weights of their cgroups.958

For example, suppose a process A is on a cgroup with weight 10 (the minimum959

value possible) is working on mass-processing of photos, and process B is on a960

cgroup with weight 1000 (the maximum). If process A is the only one making961

I/O requests, it has the full available I/O bandwidth available for itself. As962

soon as process B starts doing its own I/O requests, however, it will get around963

99% of all the requests that get through, while process A will have only 1% for964

its requests.965

The second strategy is setting an absolute limit on the I/O bandwidth,966

often called throttling. This is done by writing how many bytes per967

second a cgroup should be able to transfer into a virtual file called968

blkio.throttle.read_bps_device, that lives inside the cgroup. This969

allows a great deal of control, but also means applications belonging to that970

cgroup are not able to take advantage of the full I/O bandwidth even if they971

are the only ones running at a given point in time.972

Specifying a default weight to all applications, lower weights for mass-processing973

jobs, and higher weights for time-critical applications is a good first step in not974

only securing the system, but also improving the user experience. The hard-975

limit of an upper bound on I/O operations can also serve as a way to make sure976

no application monopolizes the system’s I/O.977

As is usual for tunables such as these, more specific details on what settings978

should be specified for which applications is something that needs to be devel-979

oped in an empirical, iterative way, throughout the development of the platform,980

and with actual target hardware. More details on the blkio subsystem support981

for cgroups can be obtained from Linux documentation27.982

Network filtering983

Collabora recommends the use of the Netfilter framework to filter network traffic.984

Netfilter provides a set of hooks inside the Linux kernel that allow kernel modules985

to register callback functions with the network stack. A registered callback986

function is then called back for every packet that traverses the respective hook987

within the network stack. Iptables is a generic table structure for the definition988

of rule sets. Each rule within an iptable consists of a number of classifiers989

(iptables matches) and one connected action (iptables target).990

Netfilter, when used with iptables, creates a powerful network packet filtering991

system which can be used to apply policies to both IPv4 and IPv6 network992

traffic. A base rule set that blocks all incoming connections will be added to the993

27https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt

29

https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt

platform by default, but port 80 access will be provided for devices connected994

to the Apertis hotspot, so they can access the web server hosted on the system.995

See the Connectivity document for more information on how this will work.996

The best way to do that seems to be to add acceptance rules for the prede-997

fined private network address space the DHCP server will use for clients of the998

hotspot.999

Collabora will offer support in refining the rules for the final product. Some1000

network interactions may be handled by means of an AppArmor profile instead.1001

Protecting the driver assistance system from attacks1002

All communication with the driver assistance system will be done through a1003

single service that can be talked to over D-Bus. This service will be the only1004

process allowed to communicate with the driver assistance system. This means1005

this service can belong to a separate user that will be the only one capable of1006

executing the binary, which is Collabora’s first recommendation.1007

The daemon will use an IP connection to the driver assistance system, through1008

a simple serial connection. This means that the character device entry for1009

this serial connection shall be protected both by an udev28 rule that assigns1010

permissions for only this particular user. Access to the device entry should also1011

be denied by the AppArmor profile which covers all other applications, making1012

sure the daemon’s profile allows it.1013

Additionally, process namespace functionality can be used to make sure the1014

driver assistance network interface is only seen and usable by the daemon that1015

acts as gatekeeper. This is done by using a Linux-specific flag to the clone291016

system call, CLONE_NEWNET, which creates a new process with its network1017

namespace limited to viewing the loopback interface.1018

Having the process in its own cgroup also helps making it more robust, since1019

Linux tries to be fair among cgroups, so is a good idea in general. Systemd1020

already puts each service it starts in a separate cgroup, so making the daemon1021

a system service is enough to take advantage of that fairness.1022

The driver assistance communication daemon shall be started with this flag on,1023

and have the network interface for talking to the driver assistance system be1024

assigned to its namespace. When a network interface is assigned to a namespace1025

only processes in that namespace can see and interact with it. This approach1026

has the advantage of both protecting the interface from processes other than the1027

proxy daemon, and protecting the daemon from the other network interfaces.1028

28http://en.wikipedia.org/wiki/Udev
29https://man7.org/linux/man-pages/man2/clone.2.html

30

http://en.wikipedia.org/wiki/Udev
https://man7.org/linux/man-pages/man2/clone.2.html
http://en.wikipedia.org/wiki/Udev
https://man7.org/linux/man-pages/man2/clone.2.html

Protecting devices whose usage is restricted1029

One or more cameras will be available for Apertis to control, but they should1030

not be accessed by any applications other than the ones required to implement1031

the driver assistance use cases. Cameras are made available as device files in1032

the /dev file system and can thus be controlled by both DAC permissions and1033

by making the default AppArmor policy deny access to it as well.1034

Protecting the system from Internet threats1035

The Internet is riddled with malicious or buggy code that present threats other1036

than those that come from direct attacks to the device’s IP connection. The1037

user of a system such as the Apertis may face attacks such as emails that link1038

to viruses, trojan horses and other kinds of malware, web sites that mislead the1039

user or that try to cause the system to misbehave or become unresponsive.1040

There is no single answer to such threats, but care should be exercised to make1041

each of the subsystems and applications involved in dealing with content from1042

the Internet robust to such malicious and buggy content. The solutions that1043

have been presented in the previous sections are essential for that.1044

The first line of defence is, of course, a good firewall setup that disallows incom-1045

ing connections, protecting the IP interfaces of the device. The second line of1046

defence is making sure that the applications that deal with those threats are1047

well-written. Web browsers have also grown many techniques to protect the1048

user from both direct attacks such as denial of service or private information1049

disclosure and indirect forms of attack such as social engineering.1050

The basic rule of protecting the user from web content in a browser is essentially1051

assuming all content is untrusted. There are fewer APIs that allow a web1052

application to interact with local resources such as local files than there are1053

for native applications. The ones that do exist are usually made possible only1054

through express user interaction, such as when the user selects a file to upload.1055

Newer API that allows access to device capabilities such as the geolocation1056

facilities only work after the user has granted permission.1057

Browsers also try to make sure users are not fooled into believing they are in1058

a different site than the one they are really at, known as “phishing”, which1059

is one of the main social engineering attacks used on the web. The basic SSL1060

certificate checks, along with proper UI to warn the user about possible problems1061

can help prevent man-in-the-middle30 attacks. The HTTP library used by the1062

clutter port of WebKit is able to verify certificates using the system’s trusted1063

Certificate Authorities.1064

The ca-certificates package in Debian and Ubuntu carry those1065

In addition to those basic checks, WebKit includes a feature called XSS Auditor1066

30https://en.wikipedia.org/wiki/Man-in-the-middle_attack

31

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack

which implements a number of rules and checks to prevent cross-site scripting311067

attacks, sometimes used to mix elements from both a fake and a legitimate site.1068

The web browser can be locked down, like any other application, to limit the1069

resources it can use up or get access to, and Collabora will be helping build an1070

AppArmor profile for it. This is what protects the system from the browser in1071

case it is exploited. By limiting the amount of damage the browser can do to1072

the system itself, any exploits are also hindered from reaching the rest of the1073

system.1074

It is also important that the UI of the browser behaves well in general. For1075

instance, user interfaces that make it easy to run executables downloaded from1076

the web make the system more vulnerable to attacks. A user interface that1077

makes it easier to distinguish the domain from the rest of the URI is sometimes321078

employed to help careful users be sure they are where they wanted to go.1079

Automatically loading pages that were loaded or loading when the browser had1080

to be terminated or crashed would make it hard for the user to regain control of1081

the browser too. Existing browsers usually load an alternate page with a button1082

the user can click to load the page, which is probably also a good idea for the1083

Apertis browser.1084

Collabora evaluated taking the WebKit Clutter port to the new WebKit2 archi-1085

tecture as part of the Apertis project; as of 2012 it was deemed risky given the1086

time and budget constraints.1087

As of 2015, it has been decided that Apertis will switch away from WebKit1088

Clutter and onto the GTK+ port, which is already built upon the WebKit21089

architecture. The main feature of that architecture is that it has several dif-1090

ferent classes of processes: the UI process deals with user interaction, the Web1091

processes render page contents, the Network process mediates access to remote1092

data, and the Plugin processes are responsible for running plugins.1093

The fact that the processes are separate provides a great way of locking them1094

down properly. The Web processes, which are the most likely to be exploited in1095

case of successful attack are also the one that needs the least privileges when it1096

comes to interfacing with the system, so the AppArmor policies that apply to1097

it can be very strict. If a limited set of plugins is supported, the same can be1098

applied to the Plugin processes. In fact, the WebKit codebase contains support1099

for using seccomp filters (see Seccomp) to sandbox the WebKit2 processes. It1100

may be a useful addition in the future.1101

Other sources of potential exploitation1102

Historically, document viewers and image loaders have had vulnerabilities ex-1103

ploited in various ways to execute arbitrary code. PDF and spreadsheet files, for1104

instance, feature domain-specific scripting languages. These scripting facilities1105

31https://en.wikipedia.org/wiki/Cross-site_scripting
32https://chrome.googleblog.com/2010/10/understanding-omnibox-for-better.html

32

https://en.wikipedia.org/wiki/Cross-site_scripting
https://chrome.googleblog.com/2010/10/understanding-omnibox-for-better.html
https://en.wikipedia.org/wiki/Cross-site_scripting
https://chrome.googleblog.com/2010/10/understanding-omnibox-for-better.html

are often sandboxed and limited in what they can do, but have been a source of1106

security issues nevertheless. Images do not usually feature scripting, but their1107

loaders have historically been the source of many security issues, caused by pro-1108

gramming errors, such as buffer overflows. These issues have been exploited to1109

cause denial of service or run arbitrary code.1110

Although these cases do deserve mention specifically for the inherent risk they1111

bring, there is no silver bullet for this problem. Keeping applications up-to-1112

date with security fixes, using hardening techniques such as stack protection,1113

discussed in Stack protection, and locking the application down to its minimum1114

access requirements are the tools that can be employed to reduce the risks.1115

Launching applications based on MIME type It is common in the desk-1116

top world to allow launching an application through the files that they are able1117

to read. For instance, while reading email the user may want to view an attach-1118

ment; by “opening”the attachment an application that is able to display that1119

kind of file would be launched with the attachment as an argument.1120

Collabora is recommending that all kinds of application launching always go1121

through the application manager. By doing that, there will be a centralized1122

way of controlling and limiting the launching of applications through MIME or1123

other types of content association, including being able to blacklist applications1124

with known security issues, for instance.1125

Secure Software Distribution1126

Secure software updates are a very important topic in the security of the plat-1127

form. Checking integrity and authenticity of the software packages installed in1128

the system is crucial; an altered package might compromise the security of the1129

whole platform.1130

This section is only related with security aspects, not the whole software distri-1131

bution update mechanism, which will be covered in a separate document. The1132

technology used for this is the same one used by Debian since 2005: Secure1133

APT33.1134

Every Debian package that is made available through an APT repository is1135

hashed and the hash is stored on the file that lists what packages are available,1136

called the “Packages”file. That file is then hashed and the hash is stored in the1137

Release file34, which is signed using a PGP private key.1138

The public PGP key is shipped along with the product. When the package1139

manager obtains updates or new packages it checks that the signature on the1140

Release file is valid, and that all hashes match. The security of this approach1141

relies on the fact that any tampering with the package or with the Packages1142

33https://wiki.debian.org/SecureApt
34https://wiki.debian.org/SecureApt#Secure_apt_groundwork:_checksums

33

https://wiki.debian.org/SecureApt
https://wiki.debian.org/SecureApt
https://wiki.debian.org/SecureApt
https://wiki.debian.org/SecureApt#Secure_apt_groundwork:_checksums
https://wiki.debian.org/SecureApt
https://wiki.debian.org/SecureApt#Secure_apt_groundwork:_checksums

file would make the hashes not match, and any changes done to the Release file1143

would render the signature invalid.1144

Additional public keys can be distributed through upgrades to a package that1145

ships installed; this is how Debian and Ubuntu distribute their public keys.1146

This mechanism can be used to add new third-party providers, or to replace the1147

keys used by the app store. Collabora will provide documentation and provide1148

assistance on setting up the package repositories and signing infrastructure.1149

Secure Boot1150

The objective of secure boot35 is to ensure that the system is booted using1151

sanctioned components. The extent to which this is ultimately taken will vary1152

between implementations, some may use secure boot avoid system kernel re-1153

placement, whilst others may also use it to ensure a Trusted Execution Envi-1154

ronment36 is loaded without interference.1155

The steps required to implement secure boot are vendor specific and thus the1156

full specification for the solution depends on a definition from the specific silicon1157

vendor, such as Freescale.1158

A solution that has been adopted by Freescale in the past is the High Assurance1159

Boot (HAB), which ensures two basic attributes: authenticity and integrity.1160

This is done by validating that the code image originated from a trusted source1161

(authenticity), and verify that the code is in its original form (integrity). HAB1162

uses digital signatures to validate the code images and thereby establishes the1163

security level of the system.1164

To verify the signature the device uses the Super Root Key (SRK) which is1165

stored on-chip in non-volatile memory. To enhance the robustness of HAB1166

security, multiple Super Root keys (RSA public keys) are stored in internal1167

ROM. Collabora recommends the utilization of SRK with 2048-bit RSA keys.1168

In case a signature check fails because of incomplete or broken upgrade it should1169

be possible to fall back to an earlier kernel automatically. Details of how that1170

would be achieved are only possible after details about the hardware support for1171

such a feature are provided by Freescale, and are probably best handled in the1172

document about safely upgrading, system snapshots and rolling back updates.1173

More discussion of system integrity checking, its limitations and alternatives1174

can be found later on, when the IMA system is investigated. See Conclusion1175

regarding IMA and EVM in particular.1176

The signature and verification processes are described in the Freescale white1177

paper “Security Features of the i.MX31 and i.MX31L”.1178

35https://www.apertis.org/architecture/platform/secure-boot/
36https://www.apertis.org/concepts/distribution/op-tee/

34

https://www.apertis.org/architecture/platform/secure-boot/
https://www.apertis.org/concepts/distribution/op-tee/
https://www.apertis.org/concepts/distribution/op-tee/
https://www.apertis.org/concepts/distribution/op-tee/
https://www.apertis.org/architecture/platform/secure-boot/
https://www.apertis.org/concepts/distribution/op-tee/

Data encryption and removal1179

Data encryption1180

The objective of data encryption is to protect the user data for security and1181

privacy reasons. In the event of the car being stolen, for instance, important1182

user data such as passwords should not be easily readable. While providing full1183

disk encryption is both not practical and harmful to overall system performance,1184

encryption of a limited set of the data such as saved passwords is possible.1185

The Secrets D-Bus service37 is a very practical way of storing passwords for1186

applications. Its GNOME implementation38 provides an easy to use API, uses1187

locked down memory39 when handling the passwords and encrypted storage for1188

the passwords on disk. Collabora will provide these tools in the base platform1189

and will support the implementation of secure password storage in the applica-1190

tions that will be developed.1191

One unresolved issue for data encryption, whether via the Secrets service, a1192

full-disk encryption system (as optionally used in Android) or some other im-1193

plementation, is that a secret token must be provided in order to decrypt the1194

encrypted data. This is normally a password, but prompting for a password is1195

likely to be undesired in an automotive environment. One possible implementa-1196

tion is to encode an unpredictable token in each car key, and use those tokens1197

to decrypt stored secrets, with any of the keys for a particular car equally able1198

to decrypt its data. In the simplest version of that implementation, loss of all1199

of the car keys would result in loss of access to the encrypted data, but the car1200

vendor could retain copies of the keys’tokens (and a record of which car is the1201

relevant one) if desired1202

Data removal1203

A data removal feature is important to guarantee that personal user data that1204

resides on the device can be removed before the car changes hands, for instance.1205

Returning the device configuration to factory is also important because it allows1206

resetting of any customization and preferences.1207

Collabora recommends these features be implemented by making sure user data1208

and settings are stored in a separate storage area. By removing this area both1209

user data and configuration are removed.1210

Proper data wiping is only necessary to defeat forensic analysis of the hardware1211

and would not pose a privacy risk for the simpler cases of the car changing1212

hands. Such procedures rely on hardware support, so would only be possible1213

if that is in place, and even in that case they may be very time consuming.1214

It’s also worth noting that flash storage will usually perform wear levelling,1215

37https://specifications.freedesktop.org/secret-service/latest/re01.html
38https://wiki.gnome.org/Projects/GnomeKeyring
39https://wiki.gnome.org/Projects/GnomeKeyring/Memory

35

https://specifications.freedesktop.org/secret-service/latest/re01.html
https://wiki.gnome.org/Projects/GnomeKeyring
https://wiki.gnome.org/Projects/GnomeKeyring/Memory
https://specifications.freedesktop.org/secret-service/latest/re01.html
https://wiki.gnome.org/Projects/GnomeKeyring
https://wiki.gnome.org/Projects/GnomeKeyring/Memory

which defeats software techniques such as writing over a block multiple times.1216

Collabora recommends not supporting this feature.1217

Stack Protection1218

It is recommended to enable stack protection, which provides protection against1219

stack-based attacks such as a stack buffer overflow. Debian, the distribution1220

used as a base for Apertis has enabled a stack protection mechanism offered by1221

GCC called SSP40. Modern processors have the capability to mark memory seg-1222

ments (like stack) executable or not, which can be used by applications to make1223

themselves safer. Some initial tests with the Freescale kernel 2.6.38 provided on1224

imx6 board shows correct enforcement behaviour.1225

Memory protection techniques like disabling execution of stack or heap memory1226

are not possible with some applications, in particular execution engines such as1227

programming language interpreters that include a just in time compiler, includ-1228

ing the ones for JavaScript currently present in most web engines. Cases such1229

as this and also cases in which the limitations should apply but are not being1230

respected will be documented.1231

Collabora will also document best practices for building software with this fea-1232

ture so that others can take advantage of stack protection for higher level li-1233

braries and applications.1234

Confining applications in containers1235

LXC Containment1236

LXC41 is a solution that was developed to be a lightweight alternative to virtu-1237

alization, built on top of cgroups and namespaces, mainly. Its main focus is on1238

servers, though. The goal is to separate processes completely, including using1239

a different file system and a different network. This means the applications1240

running inside an LXC container are effectively running in a different system,1241

for all practical purposes. While this does have the potential of helping protect1242

the main system, it also brings with it huge problems with the integration of1243

the application with the system.1244

For graphical applications the X server will have to run with a TCP port open, so1245

that applications running in a container are able to connect, 3D acceleration will1246

be impossible or very difficult to achieve for applications running in a container.1247

D-Bus setup will be significantly more complex.1248

Besides increasing the complexity of the system, LXC essentially duplicates1249

functionality offered by cgroups, AppArmor, and the Netfilter firewall. When1250

LXC was originally suggested it was to be used only for system services. By1251

using systemd the Apertis system will already have every service on the system1252

40https://wiki.ubuntu.com/GccSsp
41https://linuxcontainers.org/

36

https://wiki.ubuntu.com/GccSsp
https://linuxcontainers.org/
https://wiki.ubuntu.com/GccSsp
https://linuxcontainers.org/

running on their own cgroup, and properly locked down by AppArmor profiles.1253

This means adding LXC would only add redundancy and no additional value.1254

Protection for the driver assistance and limiting the damage root can do to the1255

system can both be achieved by AppArmor policies, which can be applied to1256

both system services and applications, as opposed to LXC, which would only1257

be safely applicable to services. There are no advantages at all in using LXC1258

for these cases. Limiting resources can also be easily done through cgroups,1259

which will not be limited to system services, too. For these reasons Collabora1260

recommends against using LXC.1261

Making X11, D-Bus and 3D work with LXC For the sake of complete-1262

ness, this section provides a description of possible solutions for LXC shortcom-1263

ings.1264

LXC creates what, for all practical purposes, is a separate system. X supports1265

TCP socket connections, so it could be made to work, but that would require1266

opening the TCP port and that would be another interface that needs protec-1267

tion.1268

D-Bus has the same pros and cons of X11 –it can be connected to over a TCP1269

port42, but that again increases the surface area that needs to be protected, and1270

adds complexity for managing the connection. It is also not a popular use case1271

so it does not get a lot of testing.1272

3D over network has not yet been made to work on networked X. All solutions1273

available, such as Virtual GL43 involve a lot of copying back and forth, which1274

would make performance suffer substantially, which is something that needs to1275

be avoided given the high importance of performance on Apertis requirements.1276

Collabora’s perspective is that using LXC for applications running on the user1277

session adds nothing that cannot be achieved with the means described in this1278

document, while at the same time adding complexity and indirection.1279

The Flatpak framework1280

Flatpak44 is a framework for “sandboxed”desktop applications, under develop-1281

ment by several GNOME developers. Like LXC, it makes use of existing Linux1282

infrastructure such as cgroups (see Resource usage control) and namespaces.1283

Unlike LXC, Flatpak’s design goals are focused on confining individual applica-1284

tions within a system, which makes it an interesting technology for Apertis. We1285

recommend researching Flatpak further, and evaluating its adoption as a way1286

to reduce the development effort for our sandboxed applications.1287

42https://www.freedesktop.org/wiki/Software/DBusRemote/
43https://virtualgl.org/
44https://flatpak.org/

37

https://www.freedesktop.org/wiki/Software/DBusRemote/
https://www.freedesktop.org/wiki/Software/DBusRemote/
https://www.freedesktop.org/wiki/Software/DBusRemote/
https://virtualgl.org/
https://flatpak.org/
https://www.freedesktop.org/wiki/Software/DBusRemote/
https://virtualgl.org/
https://flatpak.org/

One secondary benefit of Flatpak is that by altering the application bundle’s1288

view of the filesystem, it can provide a way to manage major-version upgrades1289

without app-visible compatibility breaks, by continuing to run app bundles that1290

were designed for the old “runtime”in an environment more closely resembling1291

that old version, while using the new “runtime”for app bundles that have been1292

tested in that environment.1293

The IMA Linux Integrity Subsystem1294

The goal of the Integrity Measurement Architecture (IMA45) subsystem is to1295

make sure that a given set of files have not been altered and are authentic –1296

in other words, provided by a trusted source. The mechanism used to provide1297

these two features are essentially keeping a database of file hashes and RSA1298

signatures. IMA does not protect the system from changes, it is simply a way1299

of knowing that changes have been made so that measures to fix the problem1300

can be taken as quickly as possible. The authenticity module of IMA is still not1301

available, so we won’t be discussing it.1302

In its simpler mode of operation, with the default policy IMA will intercept1303

calls that cause memory mapping and execution of a file or any access done by1304

root and perform a hash of the file before the access goes through. This means1305

execution of all binaries and loading of all libraries are intercepted. To hash a1306

file, IMA needs to read the whole file and calculate a cryptographic sum of its1307

contents. That hash is then kept in kernel memory and extended attributes of1308

the file system, for further verification after system reboots.1309

This means that running any program will cause its file and any libraries it uses1310

to be fully read and cryptographically processed before anything can be done1311

with it, which causes a significant impact in the performance of the system. A1312

10% impact has been reported46 by the IMA authors in boot time on a default1313

Fedora. There are no detailed information on how the test was performed, but1314

the performance impact of IMA is mainly caused by increased I/O required to1315

read the whole of all executable and library files used during the boot for hash1316

verification. All executables will take longer to start up after a system boot1317

up because they need to be fully read and hashed to verify they match what’s1318

recorded (if any recording exists).1319

The fact that the hashes are maintained in the file system extended attributes,1320

and are otherwise created from scratch when the file is first mapped or executed1321

means that in this mode IMA does not protect the system from modification1322

while offline: an attacker with physical access to the device can boot using a1323

different operating system modify files and reset the extended attributes. Those1324

changes will not be seen by IMA.1325

To overcome this problem IMA is able to work with the hardware’s trusted1326

45https://sourceforge.net/p/linux-ima/wiki/Home/
46https://blog.linuxplumbersconf.org/2009/slides/David-Stafford-IMA_LPC.pdf

38

https://sourceforge.net/p/linux-ima/wiki/Home/
https://blog.linuxplumbersconf.org/2009/slides/David-Stafford-IMA_LPC.pdf
https://sourceforge.net/p/linux-ima/wiki/Home/
https://blog.linuxplumbersconf.org/2009/slides/David-Stafford-IMA_LPC.pdf

platform module through the extended verification module (EVM47), added481327

to Linux in version 3.2: hashes of the extended attributes are signed by the1328

trusted platform module (TPM) hardware, and written to the file system as1329

another extended attribute. For this to work, though, TPM hardware is required.1330

The fact that TPM modules are currently only widely available and supported1331

for Intel-based platforms is also a problem.1332

Conclusion regarding IMA and EVM1333

IMA and EVM both are only useful for detecting that the system has been1334

modified. They do so using a method that incurs significant impact on the per-1335

formance, particularly application startup and system boot up. Considering the1336

strict boot up requirements for the Apertis system, this fact alone indicates that1337

IMA and EVM are suboptimal solutions. However, EVM and IMA also suffer1338

from being very new technologies as far as Linux mainline is concerned, and1339

have not been integrated and used by any major distributions. This means im-1340

plementing them in Apertis means incurring into significant development costs.1341

In addition to that, Collabora believes that the goals of detecting breaches,1342

protecting the base system and validating the authenticity of system files are1343

attained in much better ways through other means, such as keeping the system1344

files separate and read-only during normal operation, and using secure methods1345

for installing and updating software, such as those described in Protecting the1346

driver assistance system from attacks.1347

For these reasons Collabora advises against the usage of IMA and EVM for this1348

project. An option to provide some security for the system in this case is making1349

it hard to disconnect and remove the actual storage device from the system, to1350

minimize the risk of tampering.1351

Seccomp1352

Seccomp49 is a sandboxing mechanism in the Linux kernel. In essence, it is a1353

way of specifying which system calls a process or thread should be able to make.1354

As such, it is very useful to isolate processes that have strict responsibilities.1355

For instance, a process that should not be able to write or read from the disk1356

should not be able to make an open system call.1357

Most security tools that were discussed in this document provide a system-1358

wide infrastructure and protect the system in a general way from outside the1359

application’s process. As opposed to those, seccomp is something that is very1360

granular and very application-specific: it needs to be built into the application1361

source code.1362

47https://sourceforge.net/p/linux-ima/wiki/Home/#linux-extended-verification-module-
evm

48https://kernelnewbies.org/Linux_3.2#head-03576b924303bb0fad19cabb35efcbd33eeed0
84

49https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

39

https://sourceforge.net/p/linux-ima/wiki/Home/#linux-extended-verification-module-evm
https://kernelnewbies.org/Linux_3.2#head-03576b924303bb0fad19cabb35efcbd33eeed084
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://sourceforge.net/p/linux-ima/wiki/Home/#linux-extended-verification-module-evm
https://sourceforge.net/p/linux-ima/wiki/Home/#linux-extended-verification-module-evm
https://kernelnewbies.org/Linux_3.2#head-03576b924303bb0fad19cabb35efcbd33eeed084
https://kernelnewbies.org/Linux_3.2#head-03576b924303bb0fad19cabb35efcbd33eeed084
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

In other words, applications need to be written with an architecture which allows1363

a separation of concerns, isolating the work that deals with untrusted processes1364

or data to a separate process or thread that will then use seccomp filters to limit1365

the amount of damage it is able to do through system calls.1366

For use by applications, seccomp needs to be enabled in the kernel that is1367

shipped with the middleware. There is a library called libseccomp50, which1368

provides a more convenient way of specifying filters. Should feature be used1369

and made it available through the SDK, the seccomp support can be enabled1370

in the kernel and libseccomp can be shipped in the middleware image provided1371

by Collabora.1372

The seccomp filter should be used on system services designed for Apertis whose1373

architecture and intended functionality allow dropping privileges. Suppose, for1374

instance, that Apertis has a health management daemon which needs to be able1375

to kill applications that misbehave but has no need whatsoever of writing data1376

to a file descriptor. It might be possible to design that daemon to use seccomp1377

to filter out system calls such as open and write. The open system call might1378

need to be allowed to go through for opening files for reading, depending on how1379

the health daemon monitors processes –it might need to read information from1380

files in the /proc file system, for instance. For that reason, filtering for open1381

would need to be more granular, just disallowing it being called with certain1382

arguments.1383

Depending on how the health management daemon works it would also not1384

need to fork new processes itself, so filtering out system calls such as fork,1385

and clone is a possibility. As explained before, to take advantage of these1386

opportunities, the architecture of such a daemon needs to be thought through1387

from the onset with these limitations in mind. Opportunities, such as the ones1388

discussed here, should be evaluated on a case-by-case basis, for each service1389

intended for deployment on Apertis.1390

AppArmor and seccomp are complementary technologies, and can be used to-1391

gether. Some of their purposes overlap (for example, denying filesystem write1392

access altogether could be achieved equally well with either technology), and1393

they are both part of the kernel and hence in the TCB.1394

The main advantage of seccomp over AppArmor is that it inhibits all system1395

calls, however obscure: all system calls that were not considered when writ-1396

ing a policy are normally denied. Its in-kernel implementation is also simpler,1397

and hence potentially more robust, than AppArmor. This makes it suitable1398

for containing a module whose functionality has been designed to be strongly1399

focused on computation with minimal I/O requirements, for example the render-1400

ing modules of browser engines such as WebKit2. However, its applicability to1401

code that was not designed to be suitable for seccomp is limited. For example,1402

if the confined module has a legitimate need to open files, then its seccomp filter1403

will need to allow broad categories of file to be opened.1404

50https://lwn.net/Articles/494252/

40

https://lwn.net/Articles/494252/
https://lwn.net/Articles/494252/

The main advantage of AppArmor over seccomp is that it can perform finer-1405

grained checking on the arguments and context of a system call, for example1406

allowing filesystem reads from files owned by the process’s uid, but denying1407

reads from other uids’files. This makes it possible to confine existing general-1408

purpose components using AppArmor, with little or no change to the confined1409

component. Conversely, it groups together closely-related system calls with1410

similar security implications into an abstract operation such as “read”or “write”1411

, making it considerably easier to write correct profiles.1412

The role of the app store process for security1413

The model which is used for the application stores should precludes automated1414

publishing of software to the store by developers. All software, including new1415

versions of existing applications will have to go through an audit before publish-1416

ing.1417

The app store vetting process will generate the final package that will reach1418

the store front. That means only signatures made by the app store curator’1419

s cryptographic keys will be valid, for instance. Another consequence of this1420

approach is that the curator will have not only the final say on what goes in,1421

but will also be able to change pieces of the package to, say, disallow a given1422

permission the application’s author specified in the application’s manifest.1423

This also presents a good opportunity to convert high level descriptions such1424

as the permissions in the manifest and an overall description of files used into1425

concrete configuration files such as AppArmor profiles in a centralized fashion,1426

and provides the curator with the ability to fine tune said configurations for1427

specific devices or even to rework how a given resource is protected itself, with1428

no need for intervention from third-parties.1429

Most importantly, from the perspective of this document, is the fact that the app1430

store vetting process provides an opportunity for final screening of submissions1431

for security issues or bad practices both in terms of code and user interface, so1432

that should be taken into consideration.1433

How does security affect developer usage of a device?1434

How security impacts a developer mode depends heavily on how that developer1435

mode of work is specified. This chapter considers that the two main use cases1436

for such a mode would be installing an application directly to the target through1437

the Eclipse install to target plugin and running a remote debugging session for1438

the application, both of which are topics discussed in the SDK design.1439

The install to target functionality that was made available through an Eclipse1440

plugin uses an sftp connection with an arbitrary user and password pair to1441

connect to the device. This means that putting the device in developer mode1442

should ensure the ssh server is running and add an exception to the firewall1443

rules discussed in Network filtering, to allow an inbound connection to port 22.1444

41

Upon login, the SSH server will start user sessions that are not constrained by1445

the AppArmor infrastructure. In particular the white-list policy discussed in1446

section Implementing a white list approach, will not apply to ssh user sessions.1447

This means the user the IDE will connect with needs file system access to the1448

directory where the application needs to be installed or be able to tell the1449

application installer to install it.1450

The procedure for installing an application using an sftp connection is not1451

too different from the install app from USB stick use case described in the1452

Applications document, that similarity could be exploited to share code for1453

these features.1454

The main difference is the developer mode would need to either ignore signature1455

checking or accept a special “developer”signature for the packages. Decision on1456

how to implement this piece of the feature needs a more complete assessment1457

of proposed solutions on how the app store and system DRM could work, and1458

how open (or openable) the end user devices will be.1459

Running the application for remote debugging also requires that the gdbserver’1460

s default port, 2345, be open. Other than that, the main security constraint that1461

will need to be tweaked when the system is put in developer mode is AppArmor.1462

While under developer mode AppArmor should probably be put in complain1463

mode, since the application’s own profile will not yet exist.1464

Further discussion1465

This chapter lists topics that require further thinking and/or discussion, or a1466

more detailed design. These may be better written as Wiki pages rather than1467

formal designs, given they require and benefit from iterating on an implementa-1468

tion.1469

• Define which cgroups (Resource usage control) to have, how they will be1470

created and managed1471

• Define exactly what Netfilter rules (Network filtering) should be installed1472

and how they will be made effective at boot time1473

• Evaluate Flatpak (The Flatpak framework)1474

42

	Terminology
	Privilege
	Trust
	Integrity, confidentiality and availability

	Security boundaries and threat model
	Security between applications
	Communication between applications
	Security between users
	Security between platform services
	Security between the device and the network
	Physical security

	Solutions adopted by popular platforms
	Android
	iOS

	Mandatory Access Control
	Linux Security Modules (LSM)
	Comparison
	Performance impact
	Conclusion

	polkit (PolicyKit)
	Motivation for polkit
	polkit’s solution
	Recommendation

	Resource Usage Control
	Imposing limits on I/O for block devices

	Network filtering
	Protecting the driver assistance system from attacks
	Protecting devices whose usage is restricted

	Protecting the system from Internet threats
	Other sources of potential exploitation

	Secure Software Distribution
	Secure Boot
	Data encryption and removal
	Data encryption
	Data removal

	Stack Protection
	Confining applications in containers
	LXC Containment
	The Flatpak framework

	The IMA Linux Integrity Subsystem
	Conclusion regarding IMA and EVM

	Seccomp
	The role of the app store process for security
	How does security affect developer usage of a device?
	Further discussion

