
Permissions

Contents1

Terminology . 32

Scope of this document . 33

Flatpak . 44

Permissions model . 45

Portals . 46

Use cases . 57

Internet access . 58

Geolocation . 79

Initiating a phone call . 710

Shared file storage . 811

Launcher . 912

Settings . 1013

Restricted subsets of settings . 1014

Granting permission on first use 1115

Tightening control . 1216

Loosening control . 1317

Changing access . 1318

Continuing to run in the background 1419

Running on device startup . 1520

Potential future use-cases . 1521

Audio playback . 1622

Audio recording . 1623

Bluetooth configuration . 1724

Calendar . 1725

Contacts . 1926

Inter-app communication interfaces 1927

Non-use-cases . 2028

App’s own data . 2029

Platform services . 2030

Infotainment cameras . 2131

App-specific permissions . 2132

General notes on other systems . 2133

Android . 2134

iOS . 2435

This document extends the higher-level Applications1 and Security2 design doc-36

uments to go into more detail about the Flatpak-based permissions model.37

Applications can perform many functions on a variety of user data. They may38

access interfaces that read data (such as contacts, network state, or the users39

location), write data, or perform actions that can cost the user money (like send-40

ing SMS). As an example, the Android operating system has a comprehensive41

1https://www.apertis.org/concepts/archive/application/applications/
2https://www.apertis.org/concepts/archive/application_security/security/

2

https://www.apertis.org/concepts/archive/application/applications/
https://www.apertis.org/concepts/archive/application_security/security/
https://www.apertis.org/concepts/archive/application/applications/
https://www.apertis.org/concepts/archive/application_security/security/

manifest3 that govern access to a wide array of functionality.42

Some users may wish to have fine grained control over which applications have43

access to specific device capabilities, and even those that don’t should likely be44

informed when an application has access to their data and services.45

Terminology46

Integrity, confidentiality and availability4 are defined in the Security concept47

design.48

Discussions of the security implications of a use-case in this document often49

mention the possibility of a malicious or compromised app-bundle. For brevity,50

this should be understood to cover all situations where malicious code might51

run with the privileges of a particular app-bundle, including:52

• An app-bundle whose author or publisher deliberately included malicious53

code in the released version (a Trojan horse)54

• An app-bundle whose author or publisher accidentally included malicious55

code in the released version, for example by using a maliciously altered56

compiler like XcodeGhost557

• An app-bundle where there is no directly malicious code in the released58

version, but there is a security vulnerability that an attacker can exploit59

to run malicious code of their choice with the privileges of the app-bundle60

Scope of this document61

This document aims to discuss the permissions model currently defined by Flat-62

pak and thus in use in Apertis. This document aims to define a general approach63

to permissions, so that future work on a particular feature that requires permis-64

sions only requires the designer of that feature to define a permission or a series65

of permissions, and does not require the designer of the feature to design the66

entire permissions framework.67

This document also aims to define permissions for basic features that are already68

present in Apertis and already well-understood. For example, access to external69

and shared storage is in-scope.70

This document does not aim to define permissions for features that are not71

already present in Apertis or supported by Flatpak, or that are not already72

well-understood. For example, defining detailed permissions for egress filtering673

is out of scope.74

3http://developer.android.com/reference/android/Manifest.permission.html
4https://www.apertis.org/concepts/archive/application_security/security/#integrity-

confidentiality-and-availability
5https://en.wikipedia.org/wiki/XcodeGhost
6https://www.apertis.org/concepts/archive/application_framework/egress_filtering/

3

http://developer.android.com/reference/android/Manifest.permission.html
https://www.apertis.org/concepts/archive/application_security/security/#integrity-confidentiality-and-availability
https://en.wikipedia.org/wiki/XcodeGhost
https://www.apertis.org/concepts/archive/application_framework/egress_filtering/
http://developer.android.com/reference/android/Manifest.permission.html
https://www.apertis.org/concepts/archive/application_security/security/#integrity-confidentiality-and-availability
https://www.apertis.org/concepts/archive/application_security/security/#integrity-confidentiality-and-availability
https://en.wikipedia.org/wiki/XcodeGhost
https://www.apertis.org/concepts/archive/application_framework/egress_filtering/

Flatpak75

Apertis currently uses Flatpak7 for its application distribution, and thus Flatpak76

serves as the implementation of the permissions detailed in this document.77

Permissions model78

Flatpak permissions are categorized according to the resource being controlled.79

Available permissions include:80

• Hardware-accelerated graphics rendering via Direct Rendering Manager881

devices82

• Hardware-accelerated virtualization via Kernel-based Virtual Machine983

devices84

• Full access to the host’s device nodes85

• Sharing specific filesystem areas on a read-only or read/write basis86

• Sharing the host’s X11 socket (not used in production on Apertis)87

• Sharing the host’s Wayland socket (always available to graphical programs88

on Apertis)89

• Full access to the host’s D-Bus session bus90

• Full access to the host’s D-Bus system bus91

• Full access to the host’s PulseAudio socket92

• Sharing the host system’s network namespace (Internet and LAN access)93

• Sharing the host system’s IPC namespace (this does not control D-Bus or94

AF_UNIX sockets, but would allow the app-bundle to be treated as uncon-95

fined for the purposes of services that use Unix System V IPC10 or POSIX96

message queues1197

• Sending and receiving messages to communicate with a specific D-Bus98

well-known name (talk access)99

• Permission to own (provide) specific D-Bus well-known names (own access)100

Portals101

Flatpak’s XDG portals12 are similar to Android intents. These components102

expose a subset of desktop functionality as D-Bus services that can be used103

by contained applications: they are part of the security boundary between a104

contained app and the rest of the desktop session. The aim is for portals to105

get the user’s permission to carry out actions, while keeping it as implicit as106

possible, avoiding an “are you sure?”step where feasible. For example, if an107

application asks to open a file, the user’s permission is implicitly given by them108

selecting the file in the file-chooser dialog and pressing OK: if they do not want109

this application to open a file at all, they can deny permission by cancelling.110

7https://flatpak.org/
8https://en.wikipedia.org/wiki/Direct_Rendering_Manager
9https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

10https://manpages.debian.org/svipc(7)
11https://manpages.debian.org/mq_overview(7)
12https://flatpak.github.io/xdg-desktop-portal/portal-docs.html

4

https://flatpak.org/
https://en.wikipedia.org/wiki/Direct_Rendering_Manager
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://manpages.debian.org/svipc(7)
https://manpages.debian.org/mq_overview(7)
https://manpages.debian.org/mq_overview(7)
https://manpages.debian.org/mq_overview(7)
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://flatpak.org/
https://en.wikipedia.org/wiki/Direct_Rendering_Manager
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://manpages.debian.org/svipc(7)
https://manpages.debian.org/mq_overview(7)
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html

Similarly, if an application asks to stream webcam data, the expected UX is111

for GNOME’s Cheese app or a similar non-GNOME app to appear, open the112

webcam to provide a preview window so they can see what they are about to113

send, but not actually start sending the stream to the requesting app until114

the user has pressed a “Start”button. When defining the API “contracts”to115

be provided by applications in that situation, portal designers need to be clear116

about whether the provider is expected to obtain confirmation like this: in most117

cases we anticipate that it will be expected to do this.118

If this sort of implicit permission is not feasible for a particular portal, it is119

possible for the portal implementation to fall back to a model similar to iOS, by120

asking the user for explicit consent to access particular data. Flatpak provides a121

portal-facing API (the permissions store) with which a portal can check whether122

the user already gave permission for particular operations, or store the fact that123

the user has now given permission. Each portal can define its own permissions,124

but app-bundles cannot normally do so.125

Different Flatpak portals use different mechanisms to send the result of a request126

to the portal back to the requesting app-bundle. For example, many portals send127

and receive small requests and results over D-Bus, but the file chooser makes128

the selected file available in a FUSE filesystem that is visible inside the Flatpak129

sandbox. This avoids having to stream the whole file over D-Bus, which could130

be very slow and inefficient, particularly the file is very large and the app will131

carry out random access within it (such as seeking within a video).132

More information on Flatpak portals can be found in the article The flatpak133

security model, part 313.134

Use cases135

Internet access136

A general-purpose Internet application like a web browser might require full,137

unfiltered Internet access, including HTTP, HTTPS, DNS, WebSockets and138

other protocols.139

A podcast player might require the ability to download arbitrary files via HTTP140

using a service like the Apertis Newport download manager, but might not141

require any other Internet access.142

A simple game might not require any network access at all, or might only require143

the indirect network access (launching URIs) that can be obtained by sending144

messages to the XDG portals14.145

Many intermediate levels of Internet access are possible, but for the purposes of146

this document we do not consider them. See the Egress filtering design notes147

13https://blogs.gnome.org/alexl/2017/01/24/the-flatpak-security-model-part-3-the-long-
game/

14https://flatpak.github.io/xdg-desktop-portal/portal-docs.html

5

https://blogs.gnome.org/alexl/2017/01/24/the-flatpak-security-model-part-3-the-long-game/
https://blogs.gnome.org/alexl/2017/01/24/the-flatpak-security-model-part-3-the-long-game/
https://blogs.gnome.org/alexl/2017/01/24/the-flatpak-security-model-part-3-the-long-game/
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://www.apertis.org/concepts/archive/application_framework/egress_filtering/
https://www.apertis.org/concepts/archive/application_framework/egress_filtering/
https://www.apertis.org/concepts/archive/application_framework/egress_filtering/
https://www.apertis.org/concepts/archive/application_framework/egress_filtering/
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html

on the Apertis website15 for initial work on finer-grained control.148

Security implications An application with Internet access might be compro-149

mised by malicious inputs from the Internet (integrity failure). If an application150

cannot contact the Internet, we can be confident that it cannot be subject to this,151

although it could still be compromised by malicious content that is downloaded152

locally and passed to it by another entity via the XDG portals16.153

If an application with Internet access is compromised either remotely or by154

opening malicious local content, it could be induced to send private data to an155

attacker-controlled server (a confidentiality failure). This attack applies equally156

to applications with access to a download manager like Newport, because the157

private data could be encoded in the URI to be downloaded. If the download158

manager offers control over request headers such as cookies or the HTTP Referer,159

the private data could also be encoded in those. Applications that register their160

own mime type handlers service could also be susceptible to this attack, but161

only if the service that invokes the handler (such as the XDG portals17) will162

pass the files without user interaction, and the handler for those URIs will fetch163

them without user interaction.164

If an application with Internet access is compromised, but does not already165

contain malicious code to carry out actions of the attacker’s choice (the payload),166

a common technique is to download a payload from a server controlled by the167

attacker. In particular, this allows an attacker to alter the payload over time168

according to their current requirements, for example to form a botnet that169

can be used for multiple purposes. An application with access to a download170

manager like Newport is equally susceptible to this, even if it cannot access the171

Internet itself, because it can ask Newport to download the new payload from172

the attacker’s server. However, an application that can only request opening173

a URI, e.g. via XDG portals18, is not susceptible to this attack, because such174

applications are not allowed to see the result of the HTTP request.175

In Flatpak The web browser would have the shared=network permission and176

the game would not. The game could still send requests to the URI-opening177

portal: assuming that only one web browser is installed, the URI-opening portal178

would normally pass on HTTP and HTTPS URIs to a web browser without user179

consent (with the result that the browser makes GET requests to the appropriate180

web server), but prompt the user before passing other URIs to the URI handler.181

The podcast player could have talk access to a D-Bus service equivalent to182

Newport, but as noted above, that would be essentially equivalent to arbitrary183

HTTP access in any case.184

15https://www.apertis.org/concepts/archive/application_framework/egress_filtering/
16https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
17https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
18https://flatpak.github.io/xdg-desktop-portal/portal-docs.html

6

https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://www.apertis.org/concepts/archive/application_framework/egress_filtering/
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html

In other systems In Android, the web browser and podcast player described185

in the use-cases above would have the INTERNET permission, but the game would186

not. Using the Android DownloadManager service (equivalent to Newport) also187

requires INTERNET permission, because it enables most of the same attacks as188

direct Internet access.189

In iOS, all app-bundles have Internet access.190

Geolocation191

A navigation app-bundle needs to know the precise location of the vehicle, but an192

app-bundle to suggest nearby restaurants might only need to know the location193

within a few miles, and an e-book reader does not need to know the location at194

all.195

Security implications The user’s geographical location is sensitive informa-196

tion, especially if it is precise, and is valuable to criminals. In some cases197

disclosing it would be a threat to personal safety.198

In Flatpak The user is asked for permission to use geolocation the first time199

it is used, with the option to remember that permission for all future requests.200

The app-bundle is not required to declare in advance whether it might use201

geolocation.202

In other systems In Android the navigation app-bundle would have AC-203

CESS_FINE_LOCATION, the restaurant guide would have ACCESS_COARSE_LOCATION and204

the e-book reader would have neither.205

In iOS, two forms of geolocation can be requested, by using NSLocationAlway-206

sUsageDescription or NSLocationWhenInUseUsageDescription.207

Initiating a phone call208

A contact management application might wish to initiate a phone call without209

further user consent, for example when the user taps a phone icon next to a210

contact.211

An application that is only tangentially related to phone calls, such as an app-212

bundle to suggest nearby restaurants, might not wish to request permission to213

do that. Instead, it could initiate a phone call by launching an appropriate214

tel: URI, which would normally result in a built-in application or a platform215

service popping up a call dialog with buttons to initiate the call or cancel the216

transaction, the same as would happen on selecting a tel: link in a web browser.217

An e-book reader does not need to initiate phone calls at all.218

7

Security implications If an app-bundle can initiate calls without user con-219

sent, this will result in the user’s microphone being connected to the call recipi-220

ent, which is a confidentiality (privacy) failure. Making undesired calls can also221

cost the user money, and in particular a malicious app author might place calls222

to a premium rate number that pays them.223

In Flatpak The contact management app-bundle would have talk access to224

a D-Bus service offering immediate phone dialling, for example the Telepathy225

Account Manager, or to a group of services, for example Telepathy. The restau-226

rant guide and the e-book reader would not, but would be able to launch a tel:227

URI, resulting in the system’s phone dialer app being shown, giving the user228

the opportunity to confirm or cancel.229

In other systems In Android, the contact management app-bundle would230

have the CALL_PHONE permission. The restaurant guide and the e-book reader231

would not, but would still be able to launch an intent, which would be handled232

in much the same way as the tel: URI.233

In iOS, user-installable app bundles would presumably launch tel: URIs. There234

does not appear to be a way for a non-platform-level component to dial phone235

numbers directly.236

Shared file storage237

A media player with a gallery-style user experience might require the ability to238

read media files stored on external storage (a USB thumb drive or externally-239

accessible SD card), or in a designated shared area19.240

Similarly, a media player might require access to media indexing and browsing241

as described in the Media Management concept design20.242

A podcast player might wish to store downloaded podcasts on external storage243

devices or in the shared storage area so that media players can access them.244

Security implications App-bundles with write access to this shared storage245

can modify or delete media files; if this is done inappropriately, that would be246

an availability or integrity failure. App-bundles with read access can observe247

the media that the user consumes, which could be considered privacy-sensitive;248

uncontrolled access would be a confidentiality failure. Malicious app-bundles249

with write access could also write malformed media files that were crafted to250

exploit security flaws in other app-bundles, in the platform, or in other devices251

that will read the same external storage device, leading to an integrity failure.252

19https://www.apertis.org/concepts/archive/application_framework/application-layout
/#shared-data

20https://www.apertis.org/concepts/archive/application_media/media-management/

8

https://www.apertis.org/concepts/archive/application_framework/application-layout/#shared-data
https://www.apertis.org/concepts/archive/application_media/media-management/
https://www.apertis.org/concepts/archive/application_framework/application-layout/#shared-data
https://www.apertis.org/concepts/archive/application_framework/application-layout/#shared-data
https://www.apertis.org/concepts/archive/application_media/media-management/

In Flatpak Any directory of interest can be mapped into the filesystem names-253

pace of sandboxed processes, either read-only or read/write, via the filesystems254

metadata field. Values like xdg-music and xdg-download/Podcasts make common255

use cases relatively straightforward, and provide considerably finer-grained con-256

trol than some other systems listed below (most particularly Android).257

In other systems In recent Android, the READ_EXTERNAL_STORAGE permission258

is required (the shared area on Android devices was traditionally a removable259

SD card, leading to the name of the relevant permission and APIs, even though260

in more recent devices it is typically on non-removable flash storage). In older261

Android, that permission did not exist or was not enforced.262

Similarly, the WRITE_EXTERNAL_STORAGE permission governs writing; that permis-263

sion was always enforced, but is very widely requested.264

In iOS, access to media libraries is mediated by the NSAppleMusicUsageDescription265

and NSPhotoLibraryUsageDescription metadata fields.266

Launcher267

This use-case is only applicable to built-in app-bundles.268

A vendor-specific application launcher, such as the [Maynard] in the Apertis269

reference user interface, needs to list all the application entry points on the270

system together with their metadata. It also needs to launch those entry points271

on-demand.272

Security implications Holding this permission negates the Apertis platform’273

s usual concept of application list privacy21: an app-bundle with this permission274

can enumerate the entry points, which is valuable if an attacker wishes to identify275

particular user (fingerprinting). If unintended app-bundles gain this access, it276

is a confidentiality failure.277

In Flatpak App-bundles can only observe the existence of other app-bundles278

if their D-Bus filtering is configured to be able to see their well-known names.279

In other systems Android does not appear to restrict the visibility of other280

app-bundles.281

iOS restricts the visibility of other app-bundles, although fingerprinting22 can282

be carried out by abusing inter-app communication. Because iOS is a single-283

vendor system, the security mechanisms used by platform components and by284

the equivalent of our built-in app bundles do not have public documentation.285

21https://www.apertis.org/concepts/archive/application_framework/application-entry-
points/#security-and-privacy-considerations

22https://arxiv.org/abs/1605.08664

9

https://www.apertis.org/concepts/archive/application_framework/application-entry-points/#security-and-privacy-considerations
https://arxiv.org/abs/1605.08664
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/#security-and-privacy-considerations
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/#security-and-privacy-considerations
https://arxiv.org/abs/1605.08664

Settings286

This use-case is probably only applicable to built-in app-bundles.287

Suppose a vendor has a system preferences application23 that provides an288

overview of all system settings24, user settings25 and app settings26. That289

application needs to list the app settings belonging to all store and built-in290

app-bundles, and needs the ability to change them, without prompting the291

user.292

Security implications Holding this permission negates the Apertis platform’293

s usual concept of application list privacy27, similar to the Launcher use case.294

Unconstrained settings changes are also very likely to allow arbitrary code exe-295

cution with the privileges of other components that trust those settings, which296

would be a serious integrity failure if carried out by an attacker.297

In Flatpak When used with any platform relying on dconf-backed GSettings298

(such as GNOME), granting write access to dconf (by making its files readable in299

the sandbox, and granting talk access to the dconf service) gives unconstrained300

access to all settings.301

In other systems In Android, the CHANGE_CONFIGURATION permission grants302

the ability to change system configuration in some limited ways, and the303

WRITE_SETTINGS permission grants the ability to carry out more settings changes.304

Because iOS is a single-vendor system, the security mechanisms used by platform305

components and by the equivalent of our built-in app bundles do not have public306

documentation.307

Restricted subsets of settings308

A photo viewer might have an option to set a particular photo as “wallpaper”309

. A travel-related app-bundle might have an option to set the time zone, and310

media player might have options to change audio parameters. An e-book reader311

does not require the ability to do any of those.312

23https://www.apertis.org/concepts/archive/application_customization/preferences-and-
persistence/#user-interface

24https://www.apertis.org/concepts/archive/application_customization/preferences-and-
persistence/#system-settings

25https://www.apertis.org/concepts/archive/application_customization/preferences-and-
persistence/#user-settings

26https://www.apertis.org/concepts/archive/application_customization/preferences-and-
persistence/#app-settings

27https://www.apertis.org/concepts/archive/application_framework/application-entry-
points/#security-and-privacy-considerations

10

https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#system-settings
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-settings
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#app-settings
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/#security-and-privacy-considerations
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#system-settings
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#system-settings
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-settings
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-settings
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#app-settings
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#app-settings
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/#security-and-privacy-considerations
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/#security-and-privacy-considerations

Security implications In general, these subsets of settings are chosen so313

that an attacker changing them would be an annoyance rather than a serious314

integrity failure, mitigating the attacks that are possible in the use-case above.315

However, the effect of changing a setting is not always immediately obvious: for316

example, setting untrusted images as wallpaper could lead to a more serious317

integrity failure if there is an exploitable flaw in an image decoder used by the318

platform component or built-in app-bundle that displays the wallpaper.319

In Flatpak Flatpak does not currently have portals for these, but a Flatpak320

app-bundle could be given talk access to a D-Bus service that would allow these321

actions.322

In other systems In Android, the photo viewer might have the SET_WALLPAPER323

and SET_WALLPAPER_HINTS permissions, the travel-related app-bundle might have324

SET_TIME_ZONE, and the media player might have MODIFY_AUDIO_SETTINGS.325

iOS does not appear to provide this functionality to third-party app-bundles.326

Granting permission on first use327

The author of a hotel booking app-bundle includes a feature to locate nearby328

hotels by using the Apertis geolocation API. Because users are more likely to329

grant permission to carry out privacy-sensitive actions if they can understand330

why it is needed28, the app author does not want the Apertis system to prompt331

for access to the geolocation feature until the user actively uses that particular332

feature.333

Not granting permission on first use Conversely, an automotive vendor334

wishes to minimize driver distraction in order to maximize safety. When the335

same hotel booking app-bundle attempts to use geolocation while the vehicle is336

in motion, the platform vendor might want the Apertis system to not prompt337

for access to the geolocation feature, contrary to the wishes of the app author.338

Instead, the user should be given the opportunity to enable geolocation at a339

time when it is safe to do so, either during app-bundle installation or as a340

configuration/maintenance operation while the vehicle is stationary at a later341

time.342

Note that those two use cases have contradictory expectations: this is a user343

experience trade-off for which there is no single correct answer.344

In Flatpak Flatpak prompts for permission to carry out each privileged op-345

eration at the time of first use, with some pragmatic exceptions: lower-level346

permissions, such as access to direct rendering devices for 3D games or direct347

access to the host filesystem, are implemented in a way that precludes that348

model. These are set up at installation time, and can be overridden by user349

28https://savvyapps.com/blog/how-to-create-better-user-permission-requests-in-ios-apps

11

https://savvyapps.com/blog/how-to-create-better-user-permission-requests-in-ios-apps
https://savvyapps.com/blog/how-to-create-better-user-permission-requests-in-ios-apps
https://savvyapps.com/blog/how-to-create-better-user-permission-requests-in-ios-apps
https://savvyapps.com/blog/how-to-create-better-user-permission-requests-in-ios-apps
https://savvyapps.com/blog/how-to-create-better-user-permission-requests-in-ios-apps
https://savvyapps.com/blog/how-to-create-better-user-permission-requests-in-ios-apps

configuration. When a Flatpak app is launched, it is given the level of access350

that was appropriate at launch time.351

In other systems iOS prompts at the time of first use, similarly to Flatpak,352

but the mentioned exceptions do not apply here.353

Android 6.0 and later has the same behaviour as iOS. Older Android versions354

configured all permissions at installation time, with a simple UX: the user must355

either accept all required permissions, or abort installation of the app. Some356

permissions, notably access to shared storage (the real or emulated SD card),357

were implemented in a way that precluded runtime changes: app processes358

with access to shared storage ran with one or more additional Unix group IDs,359

granting them DAC permission to the appropriate areas of the filesystem.360

Tightening control361

Suppose that Apertis version 1 allows all app-bundles to query the vehicle model,362

but the Apertis developers later decide this is a privacy risk, and so Apertis363

version 2 restricts it with a permission. The app framework should be able to364

detect that an app-bundle was compiled for version 1, and behave as though365

that app-bundle had requested the necessary permission to query the vehicle366

model. It should not do that for an app-bundle compiled for version 2.367

Security implications App-bundles that were compiled for version 1 would368

still be able to carry out any attacks that were applicable before version 2 was369

released. This use-case is only applicable if those attacks are considered to be370

less serious than breaking backwards compatibility with older app-bundles.371

In Flatpak App-bundles can specify a minimum Flatpak version. There is372

is currently no mechanism to specify a target API level, although one could be373

inferred from the runtime branch that the app-bundle has chosen to use, such374

as org.aperties.headless.Platform//v2022 or org.apertis.hmi.Sdk//v2023.375

In other systems In Android, a simple integer “API level”is used to indicate376

the version of the Android API. Each app-bundle has a minimum API level and377

a target API level. The app framework enables various compatibility behaviours378

to make APIs resemble those that were present at the target API level; one of379

these compatibility behaviours is to behave as though app-bundles whose target380

API level is below a threshold had requested extra permissions. For example,381

Android behaves as though app-bundles with a target API level below 4 had382

requested android.READ_PHONE_STATE.383

In iOS, keys like [NSAppleMusicUsageDescription] are documented as behaving384

like permissions, but only if the app was linked on or after iOS 10.0.385

12

Loosening control386

Suppose Apertis version 1 restricts querying the vehicle paint colour with a387

permission, but the Apertis developers later decide that this does not need to388

be restricted, and Apertis version 2 allows all app-bundles to do that. The app389

framework should never prompt the user for that permission. If an app-bundle390

designed for version 1 checks whether it has that permission, the app framework391

should tell it that it does.392

Security implications This use-case is only applicable if the Apertis devel-393

opers have decided that the security implications of the permission in question394

(in this example, querying the paint colour) are not significant.395

In Flatpak and other systems We are not aware of any permissions that396

have been relaxed like this in Flatpak, Android, or iOS, but it would be straight-397

forward for any of these frameworks to do so: they would merely have to stop398

presenting a user interface for that permission, and make requests for it always399

succeed.400

Changing access401

An Apertis user uses a Facebook app-bundle. The user wants their location at402

various times to appear on their Facebook feed, so they give the app-bundle403

permission to monitor his location, as in geolocation above.404

Later, that user becomes more concerned about their privacy. They want to405

continue to use the Facebook app-bundle, but prevent it from accessing their406

new locations. They use a user interface provided by the system vendor, perhaps407

a system preferences application29, to reconfigure the permissions granted to the408

Facebook app-bundle so that it cannot access their location.409

Later still, that user wants to publish their location to their Facebook feed410

while on a road trip. They reconfigure the permissions granted to the Facebook411

app-bundle again, so that it can access their location again.412

Security implications This use-case is applicable if the user’s perception of413

the most appropriate trade-off between privacy and functionality changes over414

time.415

In Flatpak Flatpak provides access to its permission store30 via D-Bus APIs,416

which would allow e.g. a settings application to modify the runtime granted417

permissions of other applications.418

29https://www.apertis.org/concepts/archive/application_customization/preferences-and-
persistence/#user-interface

30https://docs.flatpak.org/en/latest/libflatpak-api-reference.html#gdbus-org.freedesktop.
impl.portal.PermissionStore

13

https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://docs.flatpak.org/en/latest/libflatpak-api-reference.html#gdbus-org.freedesktop.impl.portal.PermissionStore
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://docs.flatpak.org/en/latest/libflatpak-api-reference.html#gdbus-org.freedesktop.impl.portal.PermissionStore
https://docs.flatpak.org/en/latest/libflatpak-api-reference.html#gdbus-org.freedesktop.impl.portal.PermissionStore

In other systems Android 6.0 and later versions have a user interface31 to419

revoke and reinstate broad categories of permissions. Older Android versions420

had a hidden control panel named App ops32 controlling the same things at a421

finer-grained level (individual permissions), but it was not officially supported.422

iOS allows permissions to be revoked or reinstated at any time via the Pri-423

vacy page in its Settings app33, which is the equivalent of the Apertis system424

preferences application34.425

Continuing to run in the background426

Background services do not show any graphical windows, so to be useful they427

must always run in the background.428

Security implications Background programs consume resources, impacting429

availability (denial of service). A background program that has other permis-430

sions might make use of them without the user’s knowledge: for example, if a431

restaurant guide can track the user’s location, this can be mitigated by only432

allowing it to run, or only allowing it to make use of its permissions, while it433

is (or was recently) visible, so that the user can only be tracked by the guide’s434

author at times when they are aware that this is a possibility.435

Users might wish to be aware of which graphical programs have this property,436

and user interfaces for managing permissions might display it in the same context437

as other permissions, but it is not a permission in the sense that it is used to438

generate security policies. Accordingly, it should potentially be handled outside439

the scope of this document.440

In Flatpak XDG portals35 provide an API to allow an applciation to dy-441

namically request permission to run in the background. There is currently no442

support for foreground-only permissions.443

In other systems Android does not have permissions that influence its be-444

haviour for background programs.445

iOS manages background programs via the [UIBackgroundModes] and UIAppli-446

cationExitsOnSuspend36 metadata fields. NSSupportsAutomaticTermination37447

31https://www.howtogeek.com/230683/how-to-manage-app-permissions-on-android-6.0/
32https://www.theguardian.com/technology/2015/jun/09/google-privacy-apple-android-

lockheimer-security-app-ops
33https://www.howtogeek.com/177711/ios-has-app-permissions-too-and-theyre-arguably-

better-than-androids/
34https://www.apertis.org/concepts/archive/application_customization/preferences-and-

persistence/#user-interface
35https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
36https://developer.apple.com/library/content/documentation/General/Reference/InfoPl

istKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW23
37https://developer.apple.com/library/content/documentation/General/Reference/InfoPl

istKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW13

14

https://www.howtogeek.com/230683/how-to-manage-app-permissions-on-android-6.0/
https://www.theguardian.com/technology/2015/jun/09/google-privacy-apple-android-lockheimer-security-app-ops
https://www.howtogeek.com/177711/ios-has-app-permissions-too-and-theyre-arguably-better-than-androids/
https://www.howtogeek.com/177711/ios-has-app-permissions-too-and-theyre-arguably-better-than-androids/
https://www.howtogeek.com/177711/ios-has-app-permissions-too-and-theyre-arguably-better-than-androids/
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW23
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW23
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW23
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW13
https://www.howtogeek.com/230683/how-to-manage-app-permissions-on-android-6.0/
https://www.theguardian.com/technology/2015/jun/09/google-privacy-apple-android-lockheimer-security-app-ops
https://www.theguardian.com/technology/2015/jun/09/google-privacy-apple-android-lockheimer-security-app-ops
https://www.howtogeek.com/177711/ios-has-app-permissions-too-and-theyre-arguably-better-than-androids/
https://www.howtogeek.com/177711/ios-has-app-permissions-too-and-theyre-arguably-better-than-androids/
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW23
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW23
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW13
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW13

is analogous, but is for desktop macOS.448

Running on device startup449

A background service might be run on device startup.450

A typical graphical program has no need to start running on device startup.451

A graphical program that is expected to be frequently but intermittently used452

might be pre-loaded (but left hidden) on device startup.453

The security implications are essentially the same as continuing to run in the454

background.455

Users might wish to be aware of which graphical programs have this property,456

and user interfaces for managing permissions might display it in the same context457

as other permissions, but it is not a permission in the sense that it is used to458

generate security policies. Accordingly, it is treated as outside the scope of this459

document.460

In Flatpak The exact same API in the XDG portals38 that manages back-461

ground services can also be used to request permission to run at startup.462

In other systems In Android, a graphical program or service that runs in the463

background would have the RECEIVE_BOOT_COMPLETED permission, which is specifi-464

cally described as covering performance and not security.465

iOS manages autostarted background programs via certain values of the466

[UIBackgroundModes] metadata field.467

Potential future use-cases468

Use cases described in this section are not intended to generate requirements in469

the near future, and are not described in detail here. We recommend that these470

use cases are expanded into something more detailed as part of design work on471

the relevant feature: for example, Bluetooth permissions should be considered472

as part of a more general Bluetooth feature design task.473

However, as input to the design of the general feature of permissions, it might474

be instructive to consider whether a proposed implementation could satisfy the475

requirements that these use-cases are conjectured to have.476

Because these use-cases have not been examined in detail, it is possible that477

future work on them will result in the conclusion that they should be outside478

the scope of the permissions framework described in this document.479

38https://flatpak.github.io/xdg-desktop-portal/portal-docs.html

15

https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html

Audio playback480

A music player requires the ability to play back audio while in the background.481

A video player might require the ability to play ongoing audio, but only while its482

window is in the foreground. An e-book reader might only require the ability to483

play short notification sounds while in the foreground, or might not require any484

ability to play sounds at all. A voice-over-IP calling client requires the ability485

to play audio with an elevated priority while a call is in progress, pre-empting486

other audio players.487

We recommend that these and related use cases are captured in detail as part488

of the design of the Apertis audio manager.489

Security implications Uncontrolled audio playback seems likely to cause490

driver distraction. Additionally, if all applications can play back audio with a491

priority of their choice, a malicious app-bundle could output silence at a high492

priority as a denial of service attack (a failure of availability).493

In Flatpak In Flatpak, audio playback currently requires making the494

PulseAudio socket available to the sandboxed app, which also enables audio495

recording and control. Finer-grained control over audio is planned for the496

future.497

In other systems In Android and iOS, audio playback does not require spe-498

cial permissions.499

Audio recording500

A memo recorder requires the ability to record audio. A voice-over-IP calling501

client also requires the ability to record audio. Most applications, including502

most of those that play back audio, do not.503

We recommend that these and related use cases are captured in detail as part504

of the design of the Apertis audio manager.505

Security implications An app-bundle that can record audio could record506

private conversations in the vehicle (a failure of confidentiality).507

In Flatpak Audio recording currently requires making the PulseAudio socket508

available to the sandboxed app, which also enables audio playback and control.509

In other systems In Android, audio recording requires the RECORD_AUDIO per-510

mission.511

In iOS, audio recording is mediated by NSMicrophoneUsageDescription.512

16

Bluetooth configuration513

A system preferences application39, or a separate Bluetooth control panel built-514

in app-bundle, might require the ability to reconfigure Bluetooth in detail and515

communicate with arbitrary devices.516

A less privileged app-bundle, for example one provided by the manufacturer of517

peripheral devices like FitBit, might require the ability to pair and communicate518

with those specific Bluetooth devices.519

A podcast player has no need to communicate with Bluetooth devices at all.520

Security implications For the control panel use-case, communicating with521

arbitrary devices might be an integrity failure if the app-bundle can reconfigure522

the device or edit data stored on it, or a confidentiality failure if the app-bundle523

can read sensitive data such as a phone’s address book. The ability for untrusted524

app-bundles to view MAC addresses and other unique identifiers would also be525

a privacy problem.526

The device-specific use case is a weaker form of the above, mitigating the confi-527

dentiality and integrity impact.528

Flatpak Full access could be achieved by configuring Flatpak’s D-Bus filter529

to allow talk access to BlueZ. There is currently no implementation of partial530

access; this would likely require a Bluetooth portal service.531

In other systems In Android, the BLUETOOTH permission allows an app-bundle532

to communicate with any Bluetooth device that is already paired. This is533

stronger than is needed for a device-specific app-bundle. The BLUETOOTH_ADMIN534

permission additionally allows the app-bundle to pair new Bluetooth devices.535

In iOS, the NSBluetoothPeripheralUsageDescription40 metadata field controls536

access to Bluetooth, which appears to be all-or-nothing. User consent is re-537

quested the first time this permission is used, with the metadata field’s content538

included in the prompt.539

Calendar540

A general-purpose calendar/agenda user interface similar to GNOME Calen-541

dar41 or the AOSP Calendar42 requires full read/write access to the user’s cal-542

endar.543

39https://www.apertis.org/concepts/archive/application_customization/preferences-and-
persistence/#user-interface

40https://developer.apple.com/library/content/documentation/General/Reference/InfoPl
istKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW20

41https://wiki.gnome.org/Apps/Calendar
42https://fossdroid.com/a/standalone-calendar.html

17

https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW20
https://wiki.gnome.org/Apps/Calendar
https://wiki.gnome.org/Apps/Calendar
https://wiki.gnome.org/Apps/Calendar
https://fossdroid.com/a/standalone-calendar.html
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#user-interface
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW20
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW20
https://wiki.gnome.org/Apps/Calendar
https://fossdroid.com/a/standalone-calendar.html

A calendar synchronization implementation, for example to synchronize with544

calendar events stored in Google Calendar, Windows Live or OwnCloud, re-545

quires full read/write access to its subset of the user’s calendar. For example,546

a Google Calendar synchronization app-bundle should have access to Google547

calendars, but not to Windows Live calendars.548

A non-calendaring application like an airline booking app-bundle might wish to549

insert events into the calendar without further user interaction, or it might wish550

to insert events into the calendar in a way that presents them for user approval,551

for example by submitting a vCalendar file to the XDG portals43.552

A podcast player has no need to interact with the calendar at all.553

Security implications The general-purpose user interface described above554

would have the ability to send calendar events to a third party (a confidentiality555

failure) or to edit or delete them (an integrity failure).556

The calendar synchronization example is a weaker form of the user interface use-557

case: if malicious, it could cause the same confidentiality or integrity failures,558

but only for a subset of the user’s data.559

If the airline booking app-bundle described above has the ability to insert cal-560

endar events without user interaction, a malicious app-bundle could insert mis-561

leading events, an integrity failure; however, it would not necessarily be able to562

break confidentiality.563

If the airline booking app-bundle operates via intents, portals or a similar mech-564

anism that will result in user interaction, a malicious app-bundle cannot insert565

misleading events without user action, avoiding that integrity failure (at the566

cost of a more prescriptive UX).567

In Flatpak A general-purpose calendar might be given talk access to the568

evolution-data-server service. There is currently no calendar portal, but when569

one is added it will presumably be analogous to Android intents.570

In other systems In Android, the READ_CALENDAR and WRITE_CALENDAR permis-571

sions44 are suitable for the general-purpose calendar use case. Sync adapters45572

receive different access; it is not clear from the Android documentation whether573

their restriction to a specific subset of the calendar is enforced, or whether sync574

adapters are trusted and assumed to not attack one another. Applications that575

do not have these permissions, such as the hotel booking use-case above, can576

use calendar intents46 to send or receive calendar events, with access mediated577

43https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
44https://developer.android.com/guide/topics/providers/calendar-provider.html#manifest
45https://developer.android.com/guide/topics/providers/calendar-provider.html#sync-

adapter
46https://developer.android.com/guide/topics/providers/calendar-provider.html#intents

18

https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://developer.android.com/guide/topics/providers/calendar-provider.html#manifest
https://developer.android.com/guide/topics/providers/calendar-provider.html#manifest
https://developer.android.com/guide/topics/providers/calendar-provider.html#manifest
https://developer.android.com/guide/topics/providers/calendar-provider.html#sync-adapter
https://developer.android.com/guide/topics/providers/calendar-provider.html#intents
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://developer.android.com/guide/topics/providers/calendar-provider.html#manifest
https://developer.android.com/guide/topics/providers/calendar-provider.html#sync-adapter
https://developer.android.com/guide/topics/providers/calendar-provider.html#sync-adapter
https://developer.android.com/guide/topics/providers/calendar-provider.html#intents

through a general-purpose calendar user interface that is trusted to behave ac-578

cording to the user’s intention. There is no way to prevent an app-bundle from579

using those intents at all.580

In iOS, the [NSCalendarsUsageDescription] metadata field controls access to581

calendars. User consent is requested the first time this permission is used, with582

the metadata field’s content included in the prompt.583

Contacts584

The use cases and security implications for contacts are analogous to those for585

the calendar and are not discussed in detail here.586

In Flatpak As with calendar access, a general-purpose contacts app-bundle587

might be given talk access to the evolution-data-server service. There is cur-588

rently no contacts portal, but when one is added it will presumably be analogous589

to Android intents.590

In other systems Android contact management47 is analogous to calendar-591

ing, using the READ_CONTACTS and WRITE_CONTACTS permissions or contact-specific592

intents.593

[iOS contact management][NSContactsUsageDescription] is analogous to iOS594

calendaring.595

Inter-app communication interfaces596

Inter-app communication has not been designed in detail, but the draft design597

on the Apertis website suggests that it might be modelled in terms of inter-598

face discovery48, with app-bundles able to implement “public interfaces”that599

are made visible to other app-bundles. The draft design has some discussion of600

how restricting interface providers49 might be carried out by app-store curators.601

Additionally, if app-bundles export public interfaces, this might influence602

whether other applications are allowed to communicate with them: if a603

particular public interface implies that other app-bundles will communicate604

directly with the implementor, then the implementor’s AppArmor profile and605

other security policies must allow that. A sharing50 feature similar to the one606

in Android is one possible use-case for this.607

We recommend that this topic is considered as one or more separate concept608

designs, with its security implications considered at the same time. This is609

47https://developer.android.com/guide/topics/providers/contacts-provider.html
48https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
49https://www.apertis.org/concepts/archive/application_framework/interface_discovery

/#Restricting_who_can_advertise_a_given_interface_2
50https://www.apertis.org/concepts/archive/application_security/sharing/

19

https://developer.android.com/guide/topics/providers/contacts-provider.html
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/#Restricting_who_can_advertise_a_given_interface_2
https://www.apertis.org/concepts/archive/application_security/sharing/
https://developer.android.com/guide/topics/providers/contacts-provider.html
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/#Restricting_who_can_advertise_a_given_interface_2
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/#Restricting_who_can_advertise_a_given_interface_2
https://www.apertis.org/concepts/archive/application_security/sharing/

likely to be more successful if a small number of specific use-cases are considered,610

rather than attempting to define a completely abstract and general framework.611

In Flatpak App-bundles that will communicate via D-Bus can be given talk612

access to each other. If this is done, it is up to the app-bundles to ensure that613

they do not carry out unintended actions in response to D-Bus method calls.614

In other systems In Android, any app-bundle can define its own intents.615

If it does, those intents can be invoked by any other app-bundle that holds616

appropriate permissions, and it is up to the implementor to ensure that that is617

a safe thing to do.618

In iOS, any app-bundle can define non-standard URI schemes that it will handle,619

and these non-standard URI schemes are the basis for inter-app communication.620

There is no particular correlation between the URI scheme and the app’s identity621

(the iOS equivalent of our bundle IDs), and there have been successful attacks622

against this, including the URL masque attack51 identified by FireEye.623

Non-use-cases624

The following use cases are specifically excluded from the scope of this document.625

App’s own data626

Each app-bundle should be allowed to read and write its own data, including627

its own app settings52. However, this should not need any special permissions,628

because it should be granted to every app-bundle automatically: accordingly, it629

is outside the scope of this document. App settings are part of the scope of the630

Preferences and Persistence53 concept design, and other per-app private data631

are in the scope of the Applications54 concept design.632

Similarly, programs from each app-bundle should be allowed to communicate633

with other programs from the same app-bundle (using any suitable mechanism,634

including D-Bus) without any special permissions, with the typical use-case635

being a user interface communicating with an associated background service.636

Because it does not require special permissions, that is outside the scope of this637

document.638

Platform services639

This permissions framework is not intended for use by platform services, re-640

gardless of whether they are upstream projects (such as systemd, dbus-daemon641

51https://www.fireeye.com/blog/threat-research/2015/04/url_masques_on_apps.html
52https://www.apertis.org/concepts/archive/application_customization/preferences-and-

persistence/#app-settings
53https://www.apertis.org/concepts/archive/application_customization/preferences-and-

persistence/
54https://www.apertis.org/concepts/archive/application/applications/

20

https://www.fireeye.com/blog/threat-research/2015/04/url_masques_on_apps.html
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#app-settings
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/
https://www.apertis.org/concepts/archive/application/applications/
https://www.fireeye.com/blog/threat-research/2015/04/url_masques_on_apps.html
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#app-settings
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/#app-settings
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/
https://www.apertis.org/concepts/archive/application/applications/

and Tracker), developed specifically for Apertis (such as the Newport download642

manager), or developed for a particular vendor. Platform services should con-643

tinue to contain their own AppArmor profiles, polkit rules and other security644

metadata.645

Infotainment cameras646

Android and iOS mobile phones and tablets typically have one or more cameras647

directed at the user or their surroundings, intended for photography, videocon-648

ferencing, augmented reality and entertainment. The use cases and security649

implications are very similar to audio recording, so we believe there is no need650

to describe them in detail in this document.651

App-specific permissions652

In Android, any app-bundle can declare its own unique permissions namespaced653

by its author’s reversed domain name, and any other app-bundle can request654

those permissions. It is not clear how an app-store vendor can be expected to655

make an informed decision about whether those requests are legitimate.656

If an app-bundle signed by the same author requests one of these permissions,657

it is automatically granted; Android documentation recommends this route.658

If an app-bundle by a different author that requests one of these app-specific659

permissions is installed, a description provided by the app-bundle that declared660

the permission is shown to the user when they are choosing whether to allow661

the requesting app-bundle to be installed. If the requesting app-bundle is in-662

stalled before the declaring app-bundle, then its request to use that permission663

is silently denied.664

Flatpak does not directly have this functionality, although cooperating app-665

bundles can be given talk access to each other’s D-Bus well-known names.666

iOS does not appear to have this functionality.667

We recommend that this feature is not considered in the short term.668

General notes on other systems669

Specific permissions corresponding to those for which we see a need in Apertis670

are covered in the individual use cases above. This section describes other671

operating systems and app frameworks in more general terms.672

Android673

Android includes permissions in its XML manifest file.674

• Introduction55675

55https://developer.android.com/guide/topics/manifest/manifest-intro.html

21

https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html

• Permission API reference56676

• Permission group API reference57677

• Declaring that a permission is needed58678

Android apps can declare new permissions in the XML manifest.679

• Permission element59680

• Permission group element60681

• Permission tree element61682

Since Android 6.0, it is possible to request additional permissions (not declared683

in the manifest) at runtime.684

Permissions not described in this document The following access per-685

missions, available as of API level 25, do not match any use-case described in686

this document. Deprecated and unsupported permissions have been ignored687

when compiling this document.688

Normal permissions:689

• ACCESS_LOCATION_EXTRA_COMMANDS690

• ACCESS_NETWORK_STATE691

• ACCESS_NOTIFICATION_POLICY692

• ACCESS_WIFI_STATE693

• ADD_VOICEMAIL694

• BATTERY_STATS695

• BODY_SENSORS696

• BROADCAST_STICKY697

• CAMERA698

• CHANGE_NETWORK_STATE699

• CHANGE_WIFI_MULTICAST_STATE700

• CHANGE_WIFI_STATE701

• DISABLE_KEYGUARD702

• EXPAND_STATUS_BAR703

• GET_ACCOUNTS704

• GET_ACCOUNTS_PRIVILEGED705

• GET_PACKAGE_SIZE706

• INSTALL_SHORTCUT707

• KILL_BACKGROUND_PROCESSES708

• NFC709

• PROCESS_OUTGOING_CALLS710

• READ_CALL_LOG711

56https://developer.android.com/reference/android/Manifest.permission.html
57https://developer.android.com/reference/android/Manifest.permission.html
58https://developer.android.com/guide/topics/manifest/uses-permission-element.html
59https://developer.android.com/guide/topics/manifest/permission-element.html
60https://developer.android.com/guide/topics/manifest/permission-group-element.html
61https://developer.android.com/guide/topics/manifest/permission-tree-element.html

22

https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/guide/topics/manifest/uses-permission-element.html
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/manifest/permission-group-element.html
https://developer.android.com/guide/topics/manifest/permission-tree-element.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/guide/topics/manifest/uses-permission-element.html
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/manifest/permission-group-element.html
https://developer.android.com/guide/topics/manifest/permission-tree-element.html

• READ_EXTERNAL_STORAGE712

• READ_PHONE_STATE713

• READ_SMS714

• READ_SYNC_SETTINGS715

• READ_SYNC_STATS716

• RECEIVE_MMS717

• RECEIVE_SMS718

• RECEIVE_WAP_PUSH719

• REORDER_TASKS720

• REQUEST_IGNORE_BATTERY_OPTIMIZATIONS721

• REQUEST_INSTALL_PACKAGES722

• SEND_SMS723

• SET_ALARM724

• SET_TIME_ZONE725

• SET_WALLPAPER726

• SET_WALLPAPER_HINTS727

• TRANSMIT_IR728

• USE_FINGERPRINT729

• USE_SIP730

• VIBRATE731

• WAKE_LOCK732

• WRITE_CALL_LOG733

• WRITE_EXTERNAL_STORAGE734

• WRITE_SETTINGS735

• WRITE_SYNC_SETTINGS736

Permissions described as not for use by third-party applications:737

• ACCOUNT_MANAGER738

• Several permissions starting with BIND_ that represent the ability to bind to739

the identity of a platform service, analogous to the ability to own platform740

services’D-Bus names in Apertis741

• BLUETOOTH_PRIVILEGED742

• Several permissions starting with BROADCAST_ that represent the ability to743

broadcast messages, analogous to the ability to own a platform service’s744

D-Bus name and send signals in Apertis745

• CALL_PRIVILEGED746

• CAPTURE_AUDIO_OUTPUT747

• CAPTURE_SECURE_VIDEO_OUTPUT748

• CAPTURE_VIDEO_OUTPUT749

• CHANGE_COMPONENT_ENABLED_STATE750

• CLEAR_APP_CACHE751

• CONTROL_LOCATION_UPDATES752

• DELETE_CACHE_FILES753

• DELETE_PACKAGES754

• DIAGNOSTIC755

• DUMP756

23

• FACTORY_TEST757

• GLOBAL_SEARCH, held by the global search framework to give it permission758

to contact every global search provider759

• INSTALL_LOCATION_PROVIDER760

• INSTALL_PACKAGES761

• LOCATION_HARDWARE762

• MANAGE_DOCUMENTS763

• MASTER_CLEAR764

• MEDIA_CONTENT_CONTROL765

• MODIFY_PHONE_STATE766

• MOUNT_FORMAT_FILESYSTEMS767

• MOUNT_UNMOUNT_FILESYSTEMS768

• PACKAGE_USAGE_STATS769

• READ_FRAME_BUFFER770

• READ_LOGS771

• READ_VOICEMAIL772

• REBOOT773

• SEND_RESPOND_VIA_MESSAGE774

• SET_ALWAYS_FINISH775

• SET_ANIMATION_SCALE776

• SET_DEBUG_APP777

• SET_PROCESS_LIMIT778

• SET_TIME779

• SIGNAL_PERSISTENT_PROCESSES780

• STATUS_BAR781

• SYSTEM_ALERT_WINDOW782

• UPDATE_DEVICE_STATS783

• WRITE_APN_SETTINGS784

• WRITE_GSERVICES785

• WRITE_SECURE_SETTINGS786

• WRITE_VOICEMAIL787

Intents Holding a permission is not required to use an intent that implicitly788

asks the user for permission, such as taking a photo by sending a request to789

the system camera application, which will pop up a viewfinder provided by the790

system camera application, allowing the user to either take a photo when they791

are ready, or cancel by pressing the Back button; if the user takes a photo, it792

is sent back to the requesting application as the result of the intent. This is793

conceptually similar to Flatpak portals.794

iOS795

The iOS 10 model for permissions is a hybrid of the intents/portals approaches,796

and the approach of pre-declaring Android permissions. Apps that need access797

to sensitive APIs (analogous to portals) must provide a description of why that798

access is required. This gives the app-store curator an opportunity to check that799

24

these permissions make sense, as with Android permissions. However, unlike800

Android, user consent is requested at the time the app tries to exercise that801

access, not during installation. The given description is included in the prompt,802

and can be used to justify why access is needed.803

There is also a user interface for the user to review previously-granted permis-804

sions, and revoke them if desired.805

Permissions not described in this document The usage descriptions that806

are the closest equivalent of permissions in iOS appear to be a subset of the807

Cocoa Info.plist keys62, where Info.plist is the iOS equivalent of our applica-808

tion bundle metadata63. They exist in the same namespace as non-permission-809

related keys such as human-readable copyright notices.810

Usage descriptions not corresponding to a use-case in this document include:811

• NSCameraUsageDescription812

• NSHealthShareUsageDescription813

• NSHealthUpdateUsageDescription814

• NSHomeKitUsageDescription815

• NSMotionUsageDescription (accelerometer)816

• NSRemindersUsageDescription817

• NSSiriUsageDescription818

• NSSpeechRecognitionUsageDescription819

• NSVideoSubscriberAccountUsageDescription820

62https://developer.apple.com/library/content/documentation/General/Reference/InfoPl
istKeyReference/Articles/CocoaKeys.html

63https://www.apertis.org/concepts/archive/application_framework/application-bundle-
metadata/

25

https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html
https://www.apertis.org/concepts/archive/application_framework/application-bundle-metadata/
https://www.apertis.org/concepts/archive/application_framework/application-bundle-metadata/
https://www.apertis.org/concepts/archive/application_framework/application-bundle-metadata/
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html
https://www.apertis.org/concepts/archive/application_framework/application-bundle-metadata/
https://www.apertis.org/concepts/archive/application_framework/application-bundle-metadata/

	Terminology
	Scope of this document
	Flatpak
	Permissions model
	Portals

	Use cases
	Internet access
	Geolocation
	Initiating a phone call
	Shared file storage
	Launcher
	Settings
	Restricted subsets of settings
	Granting permission on first use
	Tightening control
	Loosening control
	Changing access
	Continuing to run in the background
	Running on device startup

	Potential future use-cases
	Audio playback
	Audio recording
	Bluetooth configuration
	Calendar
	Contacts
	Inter-app communication interfaces

	Non-use-cases
	App’s own data
	Platform services
	Infotainment cameras
	App-specific permissions

	General notes on other systems
	Android
	iOS

