
Compositor security

Contents1

Use-cases 32

Home screen . 33

Platform UI elements . 34

Trusted output . 45

Launching a program . 46

Last-used mode . 67

Main window selection . 78

Child windows . 89

Notifications . 910

Focus-stealing . 1011

Non-graphical programs . 1112

Screenshots . 1113

Synthesized input . 1214

Trusted input paths . 1215

Further reading 1316

The compositor is the component of Apertis that is responsible for drawing17

application windows and other graphical elements on the screen.18

In Apertis the compositor runs as the agl-compositor1 executable from a sys-19

temd user unit and launches maynard as desktop manager. This is a thin20

executable wrapper around the library libweston, which provides the majority21

of its functionality.22

In Wayland, the compositor is the display server. Graphical programs arrange23

for their graphics to be displayed by creating a buffer (a surface) in GPU mem-24

ory, drawing their text, images etc. into that buffer, then sending requests to25

the Wayland compositor which ask the compositor to include that surface in26

the final 2D scene. Unprivileged programs cannot display graphics until the27

compositor is ready, so we can be sure that the compositor’s policies are applied28

to every surface.29

We aim to provide the usual security properties described in the Security design30

document2:31

• confidentiality32

• integrity33

• availability34

for the two mechanisms provided by the compositor:35

• output (placing application windows on the screen)36

1https://docs.automotivelinux.org/en/master/#5_Component_Documentation/1_agl-
compositor/

2https://www.apertis.org/concepts/archive/application_security/security/

2

https://docs.automotivelinux.org/en/master/#5_Component_Documentation/1_agl-compositor/
https://www.apertis.org/concepts/archive/application_security/security/
https://www.apertis.org/concepts/archive/application_security/security/
https://www.apertis.org/concepts/archive/application_security/security/
https://docs.automotivelinux.org/en/master/#5_Component_Documentation/1_agl-compositor/
https://docs.automotivelinux.org/en/master/#5_Component_Documentation/1_agl-compositor/
https://www.apertis.org/concepts/archive/application_security/security/

• input (dispatching input events such as touchscreen touches and gestures37

to applications)38

[Wayland Compositors - Why and How to Handle Privileged Clients] provides39

a good overview of how those security properties apply to compositors.40

Use-cases41

“The platform”refers to the overall Apertis platform, including the compositor,42

application manager and so on.43

Because we anticipate that the desired graphical presentation and user experi-44

ence (UX) will be a point of differentiation for OEMs, each of these requirements45

should be interpreted as a requirement that it is possible for the platform to be-46

have as specified, and a recommendation that OEMs’platform variants should47

do so unless it conflicts with their desired UX. For example, for brevity, we48

will use “the compositor must ⋯”as shorthand for “it must be possible for the49

compositor to ⋯, and we recommend that OEMs’compositors should have that50

behaviour unless it conflicts with their desired UX”.51

Home screen52

In some circumstances, such as when the Apertis device is switched on for the53

first time, it must go into a default state.54

• The platform must draw a “home screen”or launcher from which further55

programs can be launched.56

• The home screen may either be part of the compositor, or a separate57

graphical program.58

• Pressing a button or menu entry representing an application entry point359

results in the relevant graphical program being started.60

(These are aspects of input and output availability).61

On Apertis, this job is accomplish by maynard which is the default desktop62

manager.63

Platform UI elements64

In addition to the home screen, there might be UI elements which are outside the65

scope of any particular application window, such as a status bar, notifications,66

system-modal dialogs, or the UI controls used for application-switching.67

• The OEM-specific visual design might reserve regions of the screen for68

these visual elements. We recommend that this is done.69

3https://www.apertis.org/concepts/archive/application_framework/application-entry-
points/

3

https://www.apertis.org/concepts/archive/application_framework/application-entry-points/
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/

– For example, the equivalent features in Android are the small re-70

gion at the top of the screen that is normally reserved for the status71

bar, and the larger region at the bottom or side of the screen that72

is normally reserved for the navigation bar (Back, Home and Apps73

buttons).74

• The compositor may either draw each of those UI elements itself, or ar-75

range for separate programs to provide them.76

• Some of these UI elements must remain visible at all times (they must be77

displayed on top of ordinary program windows), unless the compositor’s78

UX calls for them to be hidden under certain specific circumstances.79

– For example, Android allows applications to request that the status80

bar and navigation bar are hidden, but the gestures to reinstate them81

are always available, and the operating system displays a reminder82

of those gestures when they become hidden.83

• If separate programs provide some or all of these UI elements, then normal84

platform startup must arrange for them to be launched.85

(These are aspects of input and output availability).86

The approach used in agl-compositor is to support this by providing protocol87

extensions. Thanks to them, surfaces can have roles, such as popup, fullscreen,88

split_vertical or split_horizontal and it is also possible to configure them as89

panels to be always visible and anchored to one of the edges. On Apertis,90

maynard implements these protocol extensions to display the UI elements.91

Trusted output92

• The compositor must not allow unprivileged programs to display their93

content in the regions of the screen that are reserved for these UI elements,94

unless the compositor’s UX design specifically allows it. This is a trusted95

path with which the platform can display information to the user. (Output96

integrity)97

– Ideally, the APIs provided to programs should be designed so that it98

is impossible to request display in a forbidden area.99

– If the APIs provided to programs are such that the program can100

attempt to display in these regions, and an unprivileged program101

attempts to do so, this must be detected and prevented.102

Since agl-compositor is a Wayland compositor, applications cannot request a103

specific region to display their content. It is the responsibility of the compositor104

to choose the appropriate place while enforcing its policies.105

Launching a program106

When a graphical program is launched, after carrying some non-graphical ini-107

tialization, it will create a surface, fill it with the first frame that it wants to be108

displayed, and submit that surface to the compositor for display.109

4

• The compositor must be able to identify that surface as having come from110

that graphical program. In particular, it must be able to determine the111

app-bundle4 and user account5 that originated the surface. (Input and112

output integrity)113

– Non-requirement: If an app-bundle is allowed to contain multiple114

graphical programs, the ability to distinguish between those graphical115

programs is optional. We treat the app-bundle as a security boundary,116

but we do not place a security boundary between individual graphical117

programs within an app-bundle.118

• This identification must be securely authenticated. If a different user119

account or app-bundle asks to display a surface, one of these options must120

be true:121

1. (Preferred) The compositor obtains the originating program’s user122

account and app-bundle directly from the Linux kernel or some other123

trusted platform component, and there is no opportunity for the124

originating program to give false information.125

2. The originating program tells the compositor which user account and126

app-bundle it claims to be, and the compositor verifies in a secure127

way that this claim is true.128

– Non-requirement: If an app-bundle is allowed to contain multiple129

graphical programs and the compositor distinguishes between them,130

it is acceptable for it to be possible for a graphical program to be able131

to impersonate a different graphical program in the same bundle.132

• The compositor must perform whatever appropriate smooth graphical133

transition is desired (for example a cross-fade, animated movement, or134

a simple atomic change between one frame and the next) between the135

home screen and the graphical program’s surface as the main contents of136

the screen.137

• If the compositor’s UX involves multiple tiled content areas, the graphical138

program must be displayed in the desired content area.139

• If the compositor’s UX involves floating or cascading windows (as seen140

in GNOME, Windows, etc.), the graphical program must be displayed in141

the location chosen by the compositor. It may influence that location by142

setting “hints”in its requests, but the compositor must be free to ignore143

those hints.144

• The compositor must arrange for any platform UI elements that should145

remain visible at all times to remain visible and interactive during this146

process (input and output availability):147

– if they are provided by the compositor itself, they must be layered148

above the graphical program’s surfaces in the compositor’s scene-149

graph;150

– if they are provided by a separate “shell”program, the surfaces repre-151

senting them must be layered above the surfaces from the graphical152

4https://www.apertis.org/glossary/#app-bundle
5https://www.apertis.org/glossary/#user-account

5

https://www.apertis.org/glossary/#app-bundle
https://www.apertis.org/glossary/#user-account
https://www.apertis.org/glossary/#app-bundle
https://www.apertis.org/glossary/#user-account

program.153

• The compositor must deliver location-specific input events such as touch-154

screen touches to the application at the relevant location, and to no other155

application. (Input availability, input confidentiality)156

• In particular, if application windows can overlap (for example stacking or157

cascading), and application A is in front of application B, then application158

A must not be able to trick the user into entering confidential input that159

was intended for application B by making itself transparent or almost-160

transparent, so that the user interface of application B shows through161

(clickjacking6). (Input confidentiality)162

• The compositor must deliver non-location-specific input events such as163

touchscreen edge-swipe gestures to the current application, using a defini-164

tion of “current”that is part of its UX, and to no other application. (Input165

availability, input confidentiality)166

Thanks to the fact that agl-compositor is based on Wayland, an application167

only controls the contents of its surfaces and the compositor chooses where168

applications are displayed. That makes input and output availability, as well as169

input confidentiality easy to ensure.170

The Wayland protocol operates via an AF_UNIX socket7, just like D-Bus, so171

applications can be identified by their AppArmor profile and uid using the same172

credentials-passing mechanisms that are already available in D-Bus.173

Also, since user applications are meant to be deployed and launched using the174

Apertis application framework8, applying the principles described in security175

boundaries and thread model9 minimises the risks.176

Last-used mode177

In some circumstances, such as when the Apertis device is switched off with178

a particular app active, UX designers may wish to return to a previous saved179

state, for example one that was saved during device shutdown (“last-used mode”180

).181

• The platform must arrange for each of the graphical programs that was182

previously active and visible (in the foreground) to be restarted.183

• When one of those graphical programs asks the compositor to display a184

surface, the compositor must place it in the same location where it was185

previously visible.186

• The platform may launch other graphical programs that were running but187

not visible when the state was saved. They must not become visible until188

6https://en.wikipedia.org/wiki/Clickjacking
7http://wayland.freedesktop.org/docs/html/ch04.html
8https://www.apertis.org/concepts/archive/application_framework/application-framew

ork/#the-next-generation-apertis-application-framework
9https://www.apertis.org/concepts/archive/application_security/security/#security-

boundaries-and-threat-model

6

https://en.wikipedia.org/wiki/Clickjacking
http://wayland.freedesktop.org/docs/html/ch04.html
https://www.apertis.org/concepts/archive/application_framework/application-framework/#the-next-generation-apertis-application-framework
https://www.apertis.org/concepts/archive/application_security/security/
https://www.apertis.org/concepts/archive/application_security/security/
https://www.apertis.org/concepts/archive/application_security/security/
https://en.wikipedia.org/wiki/Clickjacking
http://wayland.freedesktop.org/docs/html/ch04.html
https://www.apertis.org/concepts/archive/application_framework/application-framework/#the-next-generation-apertis-application-framework
https://www.apertis.org/concepts/archive/application_framework/application-framework/#the-next-generation-apertis-application-framework
https://www.apertis.org/concepts/archive/application_security/security/##security-boundaries-and-threat-model
https://www.apertis.org/concepts/archive/application_security/security/##security-boundaries-and-threat-model

the user makes a request to switch to them. Alternatively, the platform189

may delay starting those graphical programs until the user makes a request190

to switch to them.191

(Input and output availability)192

Main window selection193

The user should have the opportunity to switch between the main (top-level)194

windows presented by various programs.195

A graphical program might make it difficult for the user to leave, either acciden-196

tally (because the program has become unresponsive) or deliberately as a denial197

of service (because the program is maliciously written or has been compromised198

by an attacker).199

• The compositor must have the opportunity to intercept input events200

(touchscreen touches, touchscreen gestures, hardware button presses)201

regardless of the actions of the program. (Input availability)202

• The compositor should always provide a way to return to a home screen203

or application switcher, from which an unresponsive program can be ter-204

minated. (Input and output availability)205

• The way to return to a home screen or application switcher should be206

consistent and predictable. For example, Android reserves a small area of207

the screen for Back, Home and Applications buttons. In older Android208

versions, applications such as the camera may request that these buttons209

are displayed unobtrusively, but are not able to hide them altogether; in210

newer versions, these buttons can be hidden, but the swipe gesture to make211

them available cannot be disabled, and the user is given a reminder of that212

gesture which cannot be hidden by the application. (Input availability,213

output integrity)214

– Optionally, specially privileged app-bundles might be given the op-215

portunity to hide these UI elements, or arrange for one of the app-216

bundle’s surfaces to be displayed as an overlay “above”them. However,217

this should be a “red flag”in app-store review, to be granted only to218

trusted applications.219

∗ For example, Android requires the SYSTEM_ALERT_WINDOW220

permission10 for applications that use overlays, and additionally221

requires that the user has been specifically prompted by the222

platform to grant this permission to this app.223

• If the compositor receives an input event that it interprets as a request to224

switch away from the graphical program, for example pressing a “home”or225

“application switcher”button, then this switch must occur within a reason-226

able time, even if the current graphical program does not cooperate with227

10https://developer.android.com/reference/android/provider/Settings.html#canDrawOver
lays%28android.content.Context%29

7

https://developer.android.com/reference/android/provider/Settings.html#canDrawOverlays%28android.content.Context%29
https://developer.android.com/reference/android/provider/Settings.html#canDrawOverlays%28android.content.Context%29
https://developer.android.com/reference/android/provider/Settings.html#canDrawOverlays%28android.content.Context%29
https://developer.android.com/reference/android/provider/Settings.html#canDrawOverlays%28android.content.Context%29
https://developer.android.com/reference/android/provider/Settings.html#canDrawOverlays%28android.content.Context%29

that operation. This must have a smooth graphical transition (cross-fade228

or animation) if that is the desired UX. (Input and output availability)229

– For example, if a bug in the current graphical program results in230

it ceasing to respond to messages from the compositor (for example231

a deadlock or live-lock situation) and the window switching opera-232

tion involves communicating with it, the compositor must not wait233

indefinitely for a response. If it gets a response, it may switch imme-234

diately; if it does not, it may wait a short time, but after that time235

it must continue switching anyway. The maximum wait time should236

be chosen so that switching still appears responsive.237

– Similarly, if the current graphical program is deliberately/maliciously238

written with the intention of delaying task-switching as much as pos-239

sible, the compositor must still switch within a reasonable time.240

• Each window offered for switching must be associated with the relevant241

app-bundle, for example with a title and/or icon, so that when the user242

believes they are switching to a particular window, they can know that243

they are in fact switching to a window from the correct trust domain.244

(Input and output integrity)245

– The ability to distinguish between windows from different graphical246

programs in the same app-bundle is optional, because graphical pro-247

grams in an app-bundle share a trust domain.248

• A UX designer might require a limit on the number of simultaneous win-249

dows per app-bundle. For example, an app-bundle might be limited to250

having up to 5 entry points in the same or different processes, each with251

up to 2 main windows open at any given time.252

On Apertis maynard displays a panel that cannot be hidden which allows to253

show the list of available applications and to switch to any of them. It supports254

.desktop files as source for applications metadata.255

The compositor enforce timeouts when interacting with surfaces in order to256

prevent not responding application to compromise user experience.257

Child windows258

A graphical program might include dialogs11 in its UX.259

• We recommend that dialogs should normally appear as a direct result of260

user activity, but they may also appear as a result of an external event.261

• If the graphical program’s corresponding main window is currently dis-262

played in a particular location, the dialog should overlay that location.263

If the API to open dialogs makes it possible to attempt to place dialogs264

elsewhere, and the program does so, the compositor must prevent this.265

(Output integrity)266

• If surfaces (windows) are tiled, stacked or floating, the dialog may extend267

outside the boundaries of the graphical program’s main window if desired,268

11https://en.wikipedia.org/wiki/Dialog_box

8

https://en.wikipedia.org/wiki/Dialog_box
https://en.wikipedia.org/wiki/Dialog_box

but we recommend that this pattern is discouraged. If this is done, it269

should always be made obvious which surface the dialog belongs to. (Out-270

put integrity)271

• The dialog must not prevent the user from [leaving the program], even if272

it extends outside the main window; in other words, it may be app-modal273

or document-modal, but must not be system-modal. (Input and output274

availability)275

• We suggest encouraging the use of document-modal dialogs12 similar to276

those in OS X13 and GNOME14277

A graphical program might include pop-up or drop-down menus in its UX.278

• Menus typically behave like a document-modal window immediately above279

their “parent”window.280

• The requirements are essentially the same as for dialogs, although the281

visual presentation is likely to be different.282

To enforce these rules, agl-compositor only supports top-level surfaces and283

only allows one main surface per application. Under these restrictions, applica-284

tions requiring additional surfaces need to create them as child objects of the285

main one.286

The support of system popups is implemented through custom protocol exten-287

sions which can be only used by privileged applications which implement them,288

like maynard does.289

Notifications290

External events might result in a notification, typically implemented as a “pop-291

up”window.292

• A calendar might trigger notifications as time passes, for example when293

an appointment will occur soon.294

• A messaging application (for example email or Twitter) might trigger a295

notification when new messages are available.296

These notifications should be displayed by the platform user interface (HMI),297

either as part of the compositor (like in GNOME Shell) or a separate process.298

• If there is a current notification, the platform should draw a visual rep-299

resentation of it, displaying it “above”any current window. (Output avail-300

ability for the notification)301

• If there is no current notification, any program (including non-graphical302

programs) may trigger a new notification. (Output availability for the303

notification)304

12https://en.wikipedia.org/wiki/Dialog_box#Document%20modal
13https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/

OSXHIGuidelines/WindowDialogs.html#//apple_ref/doc/uid/20000957-CH43-SW2
14https://wiki.gnome.org/Design/OS/ModalDialogs

9

https://en.wikipedia.org/wiki/Dialog_box#Document%20modal
https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/OSXHIGuidelines/WindowDialogs.html#//apple_ref/doc/uid/20000957-CH43-SW2
https://wiki.gnome.org/Design/OS/ModalDialogs
https://en.wikipedia.org/wiki/Dialog_box#Document%20modal
https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/OSXHIGuidelines/WindowDialogs.html#//apple_ref/doc/uid/20000957-CH43-SW2
https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/OSXHIGuidelines/WindowDialogs.html#//apple_ref/doc/uid/20000957-CH43-SW2
https://wiki.gnome.org/Design/OS/ModalDialogs

• Each notification should be visually associated with the appropriate app-305

bundle, perhaps via an icon and title. (Output integrity)306

• Notifications should be drawn in such a way that only the compositor (or307

the trusted notification service, if separate) can produce the same visual308

result, for example by displaying it over the top of platform UI elements in309

a way that would not be possible or would not be allowed for an ordinary310

application window. (Output integrity)311

• There should be a straightforward mechanism by which the driver can close312

any notification, minimizing distraction. (Input and output availability for313

other UI components)314

• High-priority platform components such as navigation must be able to315

force their notifications to be displayed instead of, or “above”, other com-316

ponents’notifications. (Output availability for the higher-priority notifica-317

tion)318

• Excessive notifications by an application might be distracting. The com-319

positor must have the opportunity to limit the number of notifications320

per app-bundle or deny notification display altogether, with an optional321

user-configurable limit per application so that the user could selectively322

silence an app-bundle that they found distracting.323

• The precise handling of notifications (for example topics such as how mul-324

tiple simultaneous notifications are handled) is outside the scope of this325

document.326

• If the notification has “actions”, for example a button to go to the relevant327

app-bundle, these actions must be able to bring that app-bundle to the328

foreground.329

In Apertis, the custom agl-protocol protocol extensions are supported, provid-330

ing the basis to implement notifications and display them as part of the system331

panel. Currently this feature is not implemented.332

Focus-stealing333

A graphical program might attempt to get the user’s attention by creating new334

main windows while it is in the background.335

• These windows must not be displayed or given input focus, to avoid user336

distraction and focus-stealing15.337

• We recommend encouraging application developers to use notifications338

instead.339

• Some programs ported from non-Apertis environments might rely on the340

ability to create a window at any time as a way to get the user’s attention.341

If a program does this, the compositor must not display it or give it input342

focus until the user requests main window switching.343

– The compositor could handle this with no user distraction at all, by344

making the window available in the main window selection list, but345

15https://en.wikipedia.org/wiki/Focus_stealing

10

https://en.wikipedia.org/wiki/Focus_stealing
https://en.wikipedia.org/wiki/Focus_stealing

not showing it. However, this would not have the desired effect of346

informing the user that something has happened.347

– Additionally, the compositor could optionally provide a visual cue to348

the user while minimizing distraction, by behaving as though that349

program had requested a notification, with content based on the pro-350

gram and/or window title, and one action button which would bring351

the new window to the foreground.352

• If the window would exceed a limit on the number of simultaneous windows353

or graphical programs in an app-bundle, as described in main window354

selection, the compositor must not display those excessive windows, and355

may terminate the graphical program.356

As part of the restrictions imposed by agl-compositor, only one main window357

is allowed per application, so the focus-stealing is not impossible. In order to358

request user attention, applications should use notifications.359

Non-graphical programs360

A previously non-graphical program could connect to the display server and361

create a new main window, becoming a graphical program. This situation leads362

to similar issues as described in focus-stealing16.363

In order to simplify the design and make it more coherent, applications should be364

either non-graphical or graphical across all their lifetime. Applications requiring365

special behaviour should solve this by decoupling their graphical part from the366

non-graphical by creating a graphical application and a service. In order to use367

the graphical interface a service can request user attention by using notifications368

Screenshots369

Screenshots impose a security risk that should be considered.370

• A program from one app-bundle must not be able to copy the texture data371

of a window from a different app-bundle, which might contain confidential372

information. (Output confidentiality)373

– In particular, this forbids taking screenshots of a program from a374

different app-bundle.375

– The ability for programs in the same app-bundle to take screenshots376

of each other is optional. For “least-privilege”, we suggest that the377

platform should not allow app-bundles to request that the platform378

takes a screenshot of that app-bundle. The programs can communi-379

cate directly with each other to share their texture data, if desired,380

so the platform’s involvement is not needed.381

• A program from an app-bundle must not be able to copy the texture data382

of platform UI elements, which might contain confidential information.383

(Output confidentiality)384

16https://en.wikipedia.org/wiki/Focus_stealing

11

https://en.wikipedia.org/wiki/Focus_stealing
https://en.wikipedia.org/wiki/Focus_stealing

– In particular, this forbids screenshots again.385

• In some scenarios specially privileged app-bundles must be able to take386

screenshots, bypassing the restrictions mentioned.387

• Screencasting or video recording is essentially equivalent to an ongoing388

stream of screenshots, and has equivalent requirements.389

On agl-compositor this functionality is provided through protocol extensions390

that can be implemented by a privileged application.391

Synthesized input392

• A program from one app-bundle must not be able to synthesize input393

events for delivery to a window in a different app-bundle, which could be394

used to force the target program to carry out undesired actions. (Input395

integrity)396

• A program from one app-bundle must not be able to synthesize input397

events for delivery to the compositor, which could be used to force the398

compositor or other programs to carry out undesired actions. (Input in-399

tegrity)400

Trusted input paths401

In some situations the platform may need to ask the user for input, in such a way402

that the user can be confident that their input will in fact go to the platform and403

not to a potentially malicious app-bundle. One prominent example of a trusted404

input path is the “Ctrl+Alt+Del to log in”mechanism in Windows operating405

systems: Windows does not allow ordinary applications to intercept this key406

sequence, which means that the user can be confident that the resulting login407

dialog actually belong to Windows, and not an ordinary application that is408

mimicking it.409

GNOME uses system-modal dialogs for a similar purpose when carrying out410

platform-related actions like asking for confirmation17 of a potentially dangerous411

system-wide action or when unlocking access to stored passwords18.412

• The compositor must be able to request input from the user regardless413

of any other factors, for example application windows or notifications.414

(Availability, integrity)415

• Other platform components might need to request input from the user in416

a similar way.417

• Unprivileged app-bundles must not be able to make equivalent requests.418

(Output integrity; output availability for everything else)419

• The trusted input path must be displayed in such a way that only the420

compositor or another trusted service can produce the same visual result,421

for example by displaying it over the top of Platform UI elements in a422

17https://wiki.gnome.org/Design/OS/AuthorizationDialog
18https://wiki.gnome.org/Design/OS/KeyringDialog

12

https://wiki.gnome.org/Design/OS/AuthorizationDialog
https://wiki.gnome.org/Design/OS/KeyringDialog
https://wiki.gnome.org/Design/OS/AuthorizationDialog
https://wiki.gnome.org/Design/OS/KeyringDialog

way that would not be possible or would not be allowed for an ordinary423

application window. (Output integrity, input integrity)424

As previously commented, agl-compositor enforces that applications only cre-425

ate one main window and standard popup surfaces are not supported. However,426

using its protocol extensions, a privileged application can display a popup sur-427

face to provide a trusted input path.428

Further reading429

• Wayland Protocol security and authentication19430

• Security in Wayland-Based DEs20431

• Wayland Compositors - Why and How to Handle Privileged Clients21432

• User Interaction Design for Secure Systems (Ka-ping Yee, 2002)22433

• The status of Wayland security23434

19https://wayland.freedesktop.org/docs/html/ch04.html#sect-Protocol-Security-and-
Authentication

20https://www.x.org/wiki/Events/XDC2014/XDC2014DodierPeresSecurity/xorg-talk.pdf
21http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-

handle/
22http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.5837
23https://lwn.net/Articles/589147/

13

https://wayland.freedesktop.org/docs/html/ch04.html#sect-Protocol-Security-and-Authentication
https://www.x.org/wiki/Events/XDC2014/XDC2014DodierPeresSecurity/xorg-talk.pdf
http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-handle/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.5837
https://lwn.net/Articles/589147/
https://wayland.freedesktop.org/docs/html/ch04.html#sect-Protocol-Security-and-Authentication
https://wayland.freedesktop.org/docs/html/ch04.html#sect-Protocol-Security-and-Authentication
https://www.x.org/wiki/Events/XDC2014/XDC2014DodierPeresSecurity/xorg-talk.pdf
http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-handle/
http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-handle/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.5837
https://lwn.net/Articles/589147/

	Use-cases
	Home screen
	Platform UI elements
	Trusted output
	Launching a program
	Last-used mode
	Main window selection
	Child windows
	Notifications
	Focus-stealing
	Non-graphical programs
	Screenshots
	Synthesized input
	Trusted input paths

	Further reading

