
Text To Speech

Contents1

Text To Speech 32

Introduction . 33

Terminology and concepts . 44

Text to speech (TTS) . 45

Voice . 46

Use cases . 47

News application . 48

Back in a news application . 49

New e-mail notification . 410

New e-mail notification then going back 511

New meeting notification then cancelled 512

Incoming phone call . 513

Voice installed with the SDK . 514

Installable voice bundle . 515

Voice backend in the automotive domain 616

Installable languages . 617

Voice configuration . 618

Per-request emphasis . 619

Non-phonetic place names . 620

Driving abroad . 621

Multiple concurrent TTS requests 622

Permissions to use TTS API . 723

Multiple output speakers . 724

Custom TTS implementation in an application 725

Non-use-cases . 726

Accessibility for users with reduced vision 727

Requirements . 728

Basic TTS API . 729

Progress signalling API . 830

Output policy decided by audio manager 831

Output streams are mixable . 832

Runtime-swappable voice backends 933

Installable voice backends . 934

Default SDK voice backend . 935

Voice backends are not latency sensitive 936

System-wide voice configuration 937

Pronunciation data for non-phonetic words 1038

Per-request language support . 1039

Support for concurrent requests 1040

Prioritisation for concurrent requests 1041

Output routing policy . 1142

Permission for using TTS system 1143

Existing text to speech systems . 1144

Android . 1145

2

iOS . 1246

Previous eCore TTS API . 1247

speech-dispatcher . 1248

TTS voices . 1349

Approach . 1450

Overall architecture . 1451

Alternative centralised design . 1552

Use of speech-dispatcher . 1553

TTS library . 1554

Installable and swappable backends 1655

SDK default backend . 1756

Global configuration . 1757

Per-request configuration . 1758

Sound icons . 1859

Request prioritisation . 1860

PulseAudio output . 1961

Testability . 2062

Security . 2063

Suggested roadmap . 2164

Requirements . 2165

Summary of recommendations . 2266

Appendix A: Suggested TTS API . 2367

Text To Speech68

Introduction69

This documents possible approaches to designing an API for text to speech70

(TTS) services for an Apertis system in a vehicle.71

This document proposes an API for the text to speech service in Appendix: A72

suggested TTS API. This API is not finalised, and is merely a suggestion. It73

may be refined in future versions of this document, or when implementation is74

started.75

The major considerations with a TTS API are:76

• Simple API for applications to use77

• Swappable voices through the application bundling system and application78

store79

• Output priorities controlled by the same set of audio manager policies80

which control other application audio output81

3

Terminology and concepts82

Text to speech (TTS)83

Text to speech (TTS) is the process of converting a string of text into spoken84

words in the user’s language, to be outputted as an audio stream.85

Voice86

In the context of TTS, a voice is an engine for producing spoken words. As with87

the conventional meaning of the word, the voice may have certain characteristics,88

such as gender, regionality or manners of speech. The most important quality89

of a voice is its understandability and correctness of pronunciation.90

Use cases91

A variety of use cases for application usage of TTS services are given below.92

Particularly important discussion points are highlighted at the bottom of each93

use case.94

News application95

The user has installed a news application, and wants it to read the headlines96

and articles aloud as they drive. If they are waiting in a traffic queue, they want97

to be able to quickly find the current paragraph in the article on-screen so they98

can read it themselves to speed things up.99

Back in a news application100

The user has a news reader application open on a specific article, which is being101

read aloud. The user presses the back button to close the article and return102

to the list of headlines. TTS output needs to stop for that article. If an audio103

source was playing before the user started reading the article (for example, some104

music), its playback may be resumed where it was paused.105

New e-mail notification106

The user’s e-mail client is reading an e-mail aloud to the user, scrolling the e-107

mail as reading progresses. A new e-mail arrives, which causes a ‘new e-mail’108

notification to be sent to the TTS system.109

The OEM wants control over the policy of how the two TTS requests are played:110

• The system could pause reading the original e-mail, read the notification,111

then resume reading the original e-mail; or112

• it could pause reading the original e-mail, read the notification, then not113

resume reading the original e-mail; or114

• it could continue reading the original e-mail at a lower volume, and read115

the notification louder mixed over the top.116

4

The OEM wants these policies to not be overridable by any application-specific117

policy such as the ones described in New e-mail notification then going back,118

New meeting notification then cancelled, Incoming phone call.119

New e-mail notification then going back120

The user’s e-mail client is reading an e-mail aloud to the user, scrolling the e-121

mail as reading progresses. A new e-mail arrives, which causes a ‘new e-mail’122

notification to be sent to the TTS system. This pauses reading the original123

e-mail and starts reading the notification, as notifications have a higher priority124

than reading e-mails.125

While the notification is being read, the user presses the ‘back’button to go back126

to their list of e-mails. This should cancel reading out the old e-mail (which is127

currently paused), but should not cancel the ‘new e-mail’notification, which is128

still being played.129

New meeting notification then cancelled130

The user’s e-mail client is reading them an invitation to a meeting. While reading131

the invitation, the meeting is cancelled by the organiser, and a notification is132

displayed informing the user of this. This notification is read by the TTS system,133

interrupting it reading the original meeting invitation. Once the notification134

has finished being read, the e-mail client should not resume reading the original135

invitation.136

Incoming phone call137

The user’s e-mail client is reading an e-mail aloud to the user. Part-way through138

reading, a phone call is received. TTS output for the e-mail needs to be auto-139

matically paused while the phone ringtone is played and the call takes place.140

Once the call has finished, the e-mail application may want to continue reading141

the user’s e-mail aloud, or may cancel its output.142

Voice installed with the SDK143

A developer wants to develop an application using the SDK with TTS function-144

ality, and needs to test it using a voice available in the SDK.145

Installable voice bundle146

A user does not like how the default TTS voice for their vehicle sounds, and147

wishes to change it to another voice which they can download from the Apertis148

application store. They wish this new voice to be used by default in future.149

5

Voice backend in the automotive domain150

An OEM may wish to provide a proprietary TTS voice as part of the software151

in their automotive domain. They want this voice to be used as the default for152

TTS requests from the CE domain as well.153

Installable languages154

A vehicle has already been released in various countries, but the OEM wishes to155

expand into other countries. They need to add support for additional languages156

to the TTS system.157

Voice configuration158

The user finds that the TTS system reads text too slowly for them, and they159

wish to speed it up. They edit their system preferences to increase the speed,160

and want this to take effect across all applications which use TTS.161

Per-request emphasis162

A news reader application needs to differentiate between TTS output for article163

headings and bodies. It wishes to read headings slightly louder and more slowly164

than it reads bodies. However, the application must not be allowed to make165

TTS requests so loud that they distract the driver.166

Non-phonetic place names167

The navigation application is reading turn-by-turn route guidance aloud, includ-168

ing place names. Various place names are not pronounced phonetically, and the169

navigation system needs to make sure the TTS system pronounces them cor-170

rectly.171

Driving abroad172

When driving abroad, the navigation application needs to read the instructions173

“Turn left at the next junction, signposted ‘Paris nord’.”, a sentence which con-174

tains both English and French. The speech in each language should be pro-175

nounced using the correct pronunciation rules for that language.176

Multiple concurrent TTS requests177

The user is listening to their e-reader read a book aloud using TTS, while they178

are driving and using the audio turn-by-turn instructions from the navigation179

application. Whenever the navigation application needs to read an instruction,180

the e-reader output should be temporarily paused or its volume reduced, and181

resumed after the navigation instruction has been read, so that the user doesn’182

t get confused.183

6

It is understood that the current quality of TTS implementations is not sufficient184

to read an e-book to the user without causing them significant discomfort. This185

use case is intended to demonstrate the need for the system to handle multiple186

pending TTS requests. E-reader output may become possible in the future.187

Permissions to use TTS API188

The user has installed a game application for their passenger to play, and wants189

to be sure that it will not start reading instructions aloud using the TTS service190

while they are driving. They want to disallow the application permission to use191

the TTS API —either entirely, or just while driving.192

Multiple output speakers193

A vehicle has a single main field speaker, plus two sets of headphones. Each194

set of headphones is associated with a different head unit. TTS audio which195

pertains to the entire system should be output through all three speakers; TTS196

audio which pertains to an application only on one of the head units should only197

be output through that head unit’s headphones.198

Custom TTS implementation in an application199

An application developer wants to port an existing application from another200

platform to Apertis. The application is a large one, and has its own tightly201

integrated TTS system which would output directly to the audio manager. This202

must be possible.203

Non-use-cases204

The following use cases are not in scope to be handled by this design —but they205

may be in scope to be handled by other components of Apertis. Further details206

are given in each subsection below.207

Accessibility for users with reduced vision208

While TTS is often used in software to provide accessibility for users with re-209

duced vision, who otherwise cannot see the graphical UI clearly, that is not a210

goal of the TTS system in Apertis. It is intended to reduce driver distraction by211

reducing the need for the driver to look at the graphical UI, rather than making212

the UI more accessible.213

Requirements214

Basic TTS API215

Implement a basic TTS API with support for speaking text; and pausing, re-216

suming and cancelling specific requests.217

7

See News application, Back in a news application, New e-mail notification then218

going back.219

Progress signalling API220

The TTS system must be able to signal an application as output progresses221

through the current request. Signals must be supported for output start and222

end, and may be supported for per-word progress through the text. Signals223

must also be supported for pausing and resuming output.224

These signals are intended to be used to update the client application’s UI to225

correspond to the output progress. For example, if a notification is being read226

aloud, the notification window should be hidden when, and only when, output227

is finished.228

See News application, New e-mail notification then going back229

Output policy decided by audio manager230

The policy deciding which TTS requests are played, which are paused, when231

they are resumed, and which are cancelled altogether, must be determined by232

the system’s audio manager.233

An application may be able to implement its own policy (for example, to always234

cancel a TTS request if it is paused), but it must not be able to override the235

audio manager’s policy, for example by preventing a request from being paused,236

or by increasing the priority of a request so it is played in preference to another.237

If the audio manager corks a TTS output stream (for example, if all audio output238

needs to be stopped in order to handle a phone call), the TTS daemon must239

pause the corresponding client application request, and notify the application.240

Once the output stream is uncorked, the client application request must be241

resumed, and the application notified, unless the application has cancelled that242

request in the meantime. By cancelling the request in the signal handler, a client243

application can ensure that TTS output is not resumed after the stream would244

have been uncorked, allowing for various resumption policies to be implemented.245

See New e-mail notification then going back, New meeting notification then246

cancelled, Incoming phone call.247

Output streams are mixable248

Multiple TTS audio streams from within a single application, and from multiple249

applications, must be mixable by the audio manager, to allow implementing the250

policy of lowering the volume of one stream while playing a more important251

stream over the top.252

See New e-mail notification.253

8

Runtime-swappable voice backends254

The TTS system must support different voice backends. Only one backend255

has to be active at once, but backends must be swappable at runtime if, for256

example, the user installs a new voice from the store, or if the OEM installs a257

voice backend supporting more languages (requirement 5.6).258

TTS requests queued or being output at the time a new voice backend is selected259

should continue using the old voice. New TTS requests should use the new voice.260

See Voice installed with the SDK, Voice configuration.261

Installable voice backends262

The user must be able to install additional voices from the Apertis application263

store; and an OEM must be able to install additional voices before sale of264

a vehicle to support additional languages. These voices must be available to265

choose as the default for all TTS output.266

See Installable voice bundle, Installable languages.267

Default SDK voice backend268

A voice backend must be shipped with the SDK by default, to allow application269

development against the TTS system.270

See Voice installed with the SDK.271

Voice backends are not latency sensitive272

Some vehicles may have a TTS voice backend implemented in the automotive273

domain, which means all TTS requests would be carried over the inter-domain274

communications link, incurring some latency. The TTS system must not be275

sensitive to this latency.276

See Voice backend in the automotive domain.277

System-wide voice configuration278

The system must have a single default voice, which is used for all TTS out-279

put. The configuration settings for this voice must be settable in the system280

preferences, but not settable by individual applications.281

Specific preferences, such as volume or speech rate, may be settable on a per-282

application basis to modify the system-wide defaults if needed. These mod-283

ifications must have limited ability to distract the driver. For example, an284

application may apply a modifier to the volume of between 0.8 and 1.2 times285

the current system-wide output volume.286

See Voice configuration.287

9

Pronunciation data for non-phonetic words288

There must be a way for applications to provide pronunciations for non-phonetic289

words. This may be implemented as a static list of overrides for certain words,290

or may be implemented as a runtime API. Pronunciations must be associated291

with a specific language, so that the correct pronunciation is used for the user’292

s current system language. If no more suitable pronunciation is available for a293

word, the system must use the current voice’s default pronunciation.294

See Non-phonetic place names, Driving abroad.295

Per-request language support296

The TTS system must support specifying the language of each request (or even297

parts of a request), so that requests which contain text in multiple languages298

(for example ‘Turn left onto Rue de Rivoli’) are pronounced correctly.299

The system language should be used by default if the application doesn’t specify300

a language, or if the specified language is not supported by the current voice.301

See Driving abroad.302

Support for concurrent requests303

The TTS system must support accepting TTS output requests from multiple304

applications concurrently, and queueing them for output sequentially.305

See Multiple concurrent TTS requests.306

Prioritisation for concurrent requests307

The TTS system must support prioritising TTS requests from certain appli-308

cations over requests from other applications, according to the urgency of the309

output (for example, turn-by-turn navigation instructions are more urgent than310

news reading). Similarly, it must support prioritising requests from within a311

single application.312

Prioritisation must be performed on a per-request basis, as one application313

may make requests which are high and low priority. Note that this does not314

necessarily mean that the priority policy is implemented in the TTS system; it315

may be implemented in the audio manager. This requirement simply means that316

the TTS API must expose support for prioritising requests, and must forward317

that prioritisation information as ‘hints’to whichever component implements the318

priority policy.319

See Multiple concurrent TTS requests.320

10

Output routing policy321

On high-end vehicles, there may be multiple output speakers, attached to differ-322

ent head units. The audio manager must be able to associate each TTS request323

with an application so that it can determine which speaker or speakers to play324

the audio on.325

See Multiple output speakers.326

Permission for using TTS system327

Applications must only be allowed to use the TTS system if they are allowed to328

output audio. This is subject to the application’s permissions from its manifest,329

and may additionally be subject to the user’s preferences for audio output. The330

user may be able to temporarily disable audio output for a specific application.331

If any TTS-specific permissions are implemented in the system, it must be332

understood that an application may circumvent them by embedding its own333

TTS system (or by playing pre-recorded audio files, for example).334

See Permissions to use TTS API, Custom TTS implementation in an applica-335

tion.336

Existing text to speech systems337

This chapter describes the approaches taken by various existing systems for338

allowing applications to use TTS services, because it might be useful input for339

Apertis’decision making. Where available, it also provides some details of the340

implementations of features that seem particularly interesting or relevant.341

Android342

Android provides a text to speech API1 for converting text to audio to output,343

or to audio in a file.344

It provides an API for matching pieces of text with custom pre-recorded sounds345

(which it calls ‘earcons’), for the purpose of embedding custom noises (such as346

ticking noises) into TTS output, or for providing custom pronunciations for the347

text.348

It supports voices which support different languages, and provides the union of349

those languages to the developer, who may specify which language the provided350

text is in.351

The user controls the preferences for the voice, apart from pitch and speech rate,352

which applications may set individually.353

For determining the progress of the TTS engine through an utterance, the API354

provides a callback function which is called on starting and ending audio output.355

1http://developer.android.com/reference/android/speech/tts/package-summary.html

11

http://developer.android.com/reference/android/speech/tts/package-summary.html
http://developer.android.com/reference/android/speech/tts/package-summary.html

iOS356

iOS provides TTS support through its speech synthesiser API2. In this API, text357

to be spoken is passed to a new utterance object, which allows its voice, volume,358

speech rate and pitch to be modified. The utterance is then passed to the service,359

which queues it up to be spoken, or starts speaking it if nothing else is queued.360

Methods on the service allow output to be paused, cancelled or resumed. When361

pausing speech, the API provides the option to pause immediately, or after362

finishing speaking the current word.363

Progress through speaking an utterance can be tracked using a delegate, which364

receives calls when speech starts, stops, is paused, resumes, and for each word365

in the text as it is spoken (intended for the purposes of highlighting words366

on-screen).367

It is worth noting that iOS is recognised as highly competent in the field of368

accessibility for the blind or partially sighted, partly due to its well designed369

TTS system.370

Previous eCore TTS API371

The TTS API previously exposed by eCore gave a method to speak a given372

string of text, a method to stop speaking, and one to check whether speech was373

currently being output. It gave the choice of two voices, but no other options for374

configuring them. It provided two signals for notifying of audio output starting375

and ending.376

speech-dispatcher377

speech-dispatcher3 is an abstraction layer over multiple TTS voices. It uses a378

client–server architecture, where multiple clients can connect and send text to379

the server to be outputted as audio. The protocol used between clients and the380

server is the Speech Synthesis Interface Protocol4, a custom text-based protocol381

operated over a Unix domain socket.382

Prioritisation between text from different clients is supported, but clients are383

not strictly separated by the server: one client can control the settings and384

output for another client.385

The client library has C and Python APIs. The C API is pure C, and is not GLib-386

based. The backend supports a few different voices (see TTS voices): Festival,387

espeak, pico, and a few proprietary systems. Writing a new voice backend, to388

connect an existing external voice engine to speech-dispatcher, is not a major389

task.390

2https://developer.apple.com/library/ios/documentation/AVFoundation/Reference/AVS
peechSynthesizer_Ref/index.html

3http://devel.freebsoft.org/speechd
4http://devel.freebsoft.org/doc/speechd/ssip.html

12

https://developer.apple.com/library/ios/documentation/AVFoundation/Reference/AVSpeechSynthesizer_Ref/index.html
http://devel.freebsoft.org/speechd
http://devel.freebsoft.org/doc/speechd/ssip.html
https://developer.apple.com/library/ios/documentation/AVFoundation/Reference/AVSpeechSynthesizer_Ref/index.html
https://developer.apple.com/library/ios/documentation/AVFoundation/Reference/AVSpeechSynthesizer_Ref/index.html
http://devel.freebsoft.org/speechd
http://devel.freebsoft.org/doc/speechd/ssip.html

The system supports ‘sound icons’which associate a sound file with a given text391

string, and allow that sound to be played when that string is found in input.392

The settings allow control over the output language, whether to speak punctu-393

ation characters, the speech rate, pitch, and volume.394

Speech output can be paused, resumed and cancelled once started. The API395

supports notifying when output is started, stopped, and when pre-defined ‘index396

marks’are reached in the input string.397

Backends for speech dispatcher are run as separate processes, communicating398

with the daemon via stdin and stdout. They have individual configuration files.399

TTS voices400

Here is a brief comparative evaluation of various TTS engines and voices which401

are available already.402

espeak403

• Supports many languages (importantly, non-Latin languages)404

• Sounds robotic405

• Can be used with mbrola voices to make it more natural; not supported406

very well by speech-dispatcher (http://espeak.sourceforge.net/mbrola.ht407

ml)408

• Already packaged for Ubuntu (as are mbrola voices)409

• http://espeak.sourceforge.net/410

Festival411

• Sounds less robotic than espeak, but still quite robotic (example here5)412

• A bit slower413

• Already packaged for Ubuntu414

• Supports 3 languages (English, Spanish and Welsh)415

• http://www.cstr.ed.ac.uk/projects/festival/416

pico417

• License: Apache License v2418

• By SVOX; used in Android419

• Written in Java; C API available in picoapi.h420

• Supports 37 languages (importantly, non-Latin languages)421

• Sounds very good (example here: https://svoxmobilevoices.wordpress.c422

om/demos/)423

• Not as well tested through speech-dispatcher424

• https://en.wikipedia.org/wiki/SVOX425

5https://www.cstr.ed.ac.uk/projects/festival/onlinedemo.html

13

http://espeak.sourceforge.net/mbrola.html
http://espeak.sourceforge.net/mbrola.html
http://espeak.sourceforge.net/mbrola.html
http://espeak.sourceforge.net/
https://www.cstr.ed.ac.uk/projects/festival/onlinedemo.html
http://www.cstr.ed.ac.uk/projects/festival/
https://svoxmobilevoices.wordpress.com/demos/
https://svoxmobilevoices.wordpress.com/demos/
https://svoxmobilevoices.wordpress.com/demos/
https://en.wikipedia.org/wiki/SVOX
https://www.cstr.ed.ac.uk/projects/festival/onlinedemo.html

• Publicly available source; https://android.googlesource.com/platform/ex426

ternal/svox/427

• Already packaged for Debian and Ubuntu428

• As this is a component of Android, we are not sure about the openness429

of the development practices, and whether it’s possible to get involved in430

them.431

• It’s certainly possible to file bugs about the packaging with the Debian432

bug tracker6, but that won’t necessarily help for bugs in the source itself.433

acapela434

• Non-FOSS435

• Best quality436

• http://www.acapela-group.com/437

Nuance438

• Non-FOSS439

• Has been used previously in eCore440

• Demo7441

Approach442

Based on the above research (Existing text-to-speech systems) and Require-443

ments, we recommend the following approach as an initial sketch of a text to444

speech system. A suggested API for the TTS service is given in Appendix: A445

suggested TTS API.446

Overall architecture447

As TTS output from an application is essentially another audio stream, and448

no privilege separation is required for turning a string of text into an audio449

stream, the design follows a ‘decentralised’pattern similar to how GStreamer is450

implemented.451

In order to produce TTS output, an application can link to a TTS library,452

which provides functionality for turning a text string into an audio stream. It453

then outputs this audio stream as it would any other, sending it to the audio454

manager, along with some metadata including an unforgeable identifier for the455

application, and potentially other metadata hints for debugging purposes. The456

audio manager applies the same priority policy which it applies to all audio457

streams, and determines whether to allow the stream to be played, pause it458

while another stream is played then resume it, or cancel it entirely. This is done459

using standard audio manager mechanisms using PulseAudio.460

6https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=libttspico0;dist=unstable
7https://www.nuance.com/omni-channel-customer-engagement/voice-and-ivr/text-to-

speech.html#!

14

https://android.googlesource.com/platform/external/svox/
https://android.googlesource.com/platform/external/svox/
https://android.googlesource.com/platform/external/svox/
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=libttspico0;dist=unstable
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=libttspico0;dist=unstable
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=libttspico0;dist=unstable
http://www.acapela-group.com/
https://www.nuance.com/omni-channel-customer-engagement/voice-and-ivr/text-to-speech.html#!
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=libttspico0;dist=unstable
https://www.nuance.com/omni-channel-customer-engagement/voice-and-ivr/text-to-speech.html#!
https://www.nuance.com/omni-channel-customer-engagement/voice-and-ivr/text-to-speech.html#!

The TTS library receives feedback about the state of the audio channel, and461

passes this back to the application in the form of signals, which the application462

may use to update its UI, or implement its own policy for enqueuing or cancelling463

requests (or it may ignore the signals).464

Alternative centralised design465

The other major option is for a centralised design, where all TTS requests are466

sent to a TTS service (running as a separate process), which decides on relative467

priorities for them, converts them from text to audio, and forwards them to the468

audio manager.469

There is no need for this design: there is no need for the additional privilege470

separation, and it complicates the application of audio policy, since it now has471

to be applied in the TTS service and the audio manager.472

Use of speech-dispatcher473

Speech dispatcher is an existing FOSS system which is the standard choice474

for systems like this. However, it is based around a centralised design which475

does not fit with our suggested architecture —a large part of speech-dispatcher476

is concerned with implementing a central daemon which handles connections477

and requests from multiple clients, prioritises them, then outputs them to the478

audio manager. As described in Overall architecture and Alternative centralised479

design, this is functionality which our recommended design does not need.480

Additionally, speech-dispatcher has the disadvantages that it:481

• does not enforce separation between clients, meaning they may control482

each others’output; and483

• provides a C API which is not GLib-based, so would be hard to introspect484

and expose in other languages (such as JavaScript).485

For these reasons, and due to its centralised architecture, we recommend not486

using speech-dispatcher. However, it may be possible and useful to extract487

relevant parts of its code and turn them into shared libraries to be used in the488

Apertis TTS library. The rest of this document will cover the design with no489

reference to speech-dispatcher, in the knowledge that it might substitute for490

some of the implementation work where possible.491

TTS library492

The TTS library would be a new shared library which can be linked into appli-493

cations to essentially provide the functionality of turning a text string into an494

audio stream. It would provide the following major APIs:495

• Say a text string.496

• Stop, pause and resume speech.497

15

• Signal on starting, pausing, resuming and ending audio output, plus on498

significant progress through output.499

• Set the language for a request.500

• ‘Sound icon’API for associating audio files with specific strings.501

The stop, pause and resume APIs would operate on specific requests, rather502

than all pending requests from the application. This allows for an application503

to cancel one TTS output while continuing to say another; or to cancel one504

output while another is paused. The API should be implemented as a queue-505

based one, where the application enqueues a string to be read, and receives506

a handle identifying it in the queue. The TTS library can prioritise requests507

within the queue, and hence requests may not be processed for some time after508

being enqueued. Signals convey this information to the application.509

The progress signal should be emitted at the discretion of the TTS library, to510

signal significant progress to the application in outputting the TTS request. For511

example, it could be emitted once per sentence, or once per word, or not at all.512

It returns an offset (in Unicode characters) from the start of the input text.513

The library’s audio output would provided in a format suitable for passing di-514

rectly to PulseAudio, or into GStreamer for further processing.515

The TTS library would implement loading of a TTS backend into the process,516

and would load and apply the system settings for TTS output.517

Installable and swappable backends518

The TTS library would implement voice backends as dynamically loaded shared519

libraries, all installed into a common directory. It must monitor this directory520

at runtime to detect newly installed voice backends; for an application bundle521

to install a new backend, it would have to install or symlink the library into this522

directory.523

The TTS library should not care how a voice backend is implemented internally,524

as long as it implements a standard backend interface. It may be possible, for525

example, to re-use a lot of the code from speech-dispatcher’s backend modules8.526

Each voice backend must provide an interface for converting text to audio, and527

returning that audio to the TTS library —it should not implement outputting528

the audio to the audio manager itself. Backends must provide a way of enumer-529

ating and configuring their voice options (such as volume, pitch, accent, etc.),530

including a way of specifying that an option is read-only or unsupported. It is531

not expected that all backends will support all functionality of the TTS library.532

The backend interface must be tolerant of latency in the backends, in order533

to support backends which are implemented in the automotive domain. This534

means that all functions must be asynchronous9.535

8http://git.freebsoft.org/?p=speechd.git;a=tree;f=src/modules;hb=HEAD
9https://developer.gnome.org/gio/stable/GAsyncResult.html

16

http://git.freebsoft.org/?p=speechd.git;a=tree;f=src/modules;hb=HEAD
https://developer.gnome.org/gio/stable/GAsyncResult.html
http://git.freebsoft.org/?p=speechd.git;a=tree;f=src/modules;hb=HEAD
https://developer.gnome.org/gio/stable/GAsyncResult.html

SDK default backend536

We recommend Pico10 as the default backend to ship with the SDK. It is freely537

licenced, and supports 37 languages including non-Latin languages. It is used538

on Android, so is relatively stable and mature.539

Global configuration540

Configuration options for the voice backends should be stored in GSettings (See541

Preferences and Persistence11), and should be stored once (not per-backend).542

The semantics of each configuration option must be rigorously defined, as each543

backend must convert those options to fit its own configuration interface. If a544

backend has more options in its configuration interface than are provided by the545

global TTS library configuration, it must use sensible, unconfigurable, defaults546

for the other options.547

Configuration options may include:548

• Voice to use549

• Whether to vocalise punctuation550

• Voice type (male or female)551

• Speech rate552

• Pitch553

• Volume554

By storing the options in GSettings, it becomes possible to apply AppArmor555

policy to control access to them so that, for example, applications which use556

the TTS library are only allowed to read the settings, and only the system557

preferences application is allowed to modify them.558

Per-request configuration559

Configuration which is exposed to applications via the TTS API could be:560

• Pitch561

• Speech rate562

• Volume563

These options must be exposed purely as modifiers on the system-wide values.564

These modifiers could be defined symbolically, for example as a set of three565

volume modifiers:566

• Emphasised (120% of system-wide volume)567

• Normal (100% of system-wide volume)568

• De-emphasised (80% of system-wide volume)569

A non-symbolic numerical modifier might be introduced in future.570

10https://android.googlesource.com/platform/external/svox/
11https://www.apertis.org/concepts/archive/application_customization/preferences-and-

persistence/

17

https://android.googlesource.com/platform/external/svox/
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/
https://android.googlesource.com/platform/external/svox/
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/

The audio manager is responsible for limiting the maximum volume of any audio571

stream, to avoid a malicious or faulty application from setting the volume too572

high as to distract the driver.573

Sound icons574

Sound icons are a feature provided by speech-dispatcher, which we could use as575

the basis for our own implementation, as this would allow re-use of the relevant576

features in voice backends.577

Sound icons could be used for identifying punctuation, for example, or for clari-578

fying the pronunciation of certain words. It’s suggested that applications install579

sound icons at install time, in a per-application directory which the application580

points the TTS library at to look up when asked to play a sound icon. Each581

sound icon should have an associated language (or explicitly no associated lan-582

guage), so that the correct sound icon file can be loaded according to a TTS583

request’s language.584

Sound icons should be playable via a TTS library API, similarly to how text585

output is requested. They should be provided in WAV format, as this is what586

the existing speech-dispatcher backends expect.587

Request prioritisation588

There are two dimensions to prioritisation of requests: within a single applica-589

tion, and across multiple applications.590

Requests from within a single application should be handled using a request591

queue within the TTS library. This allows squashing similar requests, or bump-592

ing other requests so they are played before other requests from the same appli-593

cation.594

It is suggested that the speech-dispatcher priorities12 are used for within a single595

application, including their semantics. For example, the TTS library request596

queue would squash multiple progress requests so that only one is played at597

once.598

These priorities should be attached to audio output when it is sent to the audio599

manager, as a hint to assist it in its policy decisions.600

Requests from multiple applications are prioritised by the audio manager, which601

uses the audio priority of each application (whether it is an entertainment or602

interrupt source, and its numerical audio priority) from the application’s man-603

ifest to determine which requests to play, which to pause then resume, and604

which to cancel entirely. The application’s audio priority is under the control605

of the OEM, rather than the application developer, so application developers606

cannot use this to always output audio at an inflated priority and deny other607

applications audio output.608

12http://devel.freebsoft.org/doc/speechd/ssip.html#Priority-Categories

18

http://devel.freebsoft.org/doc/speechd/ssip.html#Priority-Categories
http://devel.freebsoft.org/doc/speechd/ssip.html#Priority-Categories

See the Audio Management design609

There is one situation where an application with a low priority may need to610

output a TTS request at a higher overall priority than an application with a611

high priority: when emitting a pop-up notification via the notification service.612

This should be handled by having notifications submitted as TTS requests by613

the notification service itself, rather than by the application which produced614

the notification. This allows the audio manager to use the notification service’s615

priority for policy decisions, rather than the original application’s priority.616

PulseAudio output617

Output from the TTS library should be sent to PulseAudio in order to be mixed618

with other TTS and non-TTS audio streams and sent to the hardware for output.619

It is PulseAudio and the audio manager which implement the priority policies620

described above.621

In order to differentiate TTS output from different applications, appropriate622

metadata should be attached to the audio stream to identify the application,623

its internal priority for the TTS request, and the fact that the audio is a TTS624

request (as opposed to other audio content). The application identifier must625

be unforgeable (i.e. it must come from a trusted source, like the kernel or626

D-Bus daemon), as it is used as the basis for policy decisions. The internal627

priority and TTS request flag are entirely under the control of the application628

(i.e. forgeable), and therefore must only be used as hints by the audio manager.629

Additional unforgeable metadata may come from the application’s manifest file,630

which is not under the control of the application developer, and can be uniquely631

looked up by the application’s trusted identifier.632

The audio manager most likely will not use forgeable metadata from the applica-633

tion, but this data could be useful for identifying audio streams when debugging,634

for example.635

If an application wishes to submit multiple TTS requests simultaneously, and636

have the audio manager mix them or decide which one to prioritise, it must637

have multiple connections to PulseAudio.638

If, as a result of applying the priority policy, the audio manager corks an applica-639

tion’s TTS output stream, the TTS library must pause the corresponding TTS640

request and notify the application using a signal. Once the request is uncorked,641

the TTS library must unpause the request and notify the application again —642

unless the application has cancelled the request in the meantime, in which case643

the request is already cancelled and removed.644

The same is true if the audio manager cancels an application’s TTS output645

stream: the TTS library must cancel the corresponding TTS request and notify646

the application using a signal.647

Note that the audio manager’s pausing and resuming of TTS requests is separate648

19

from the pause and resume APIs available to the application. The application649

cannot call its resume method to resume a TTS request which the audio manager650

has paused. Similarly, the audio manager cannot call its resume method to651

resume a TTS request which the application has paused. This can be thought652

of as separately pausing or resuming both ends of the audio channel between653

an application and the audio manager.654

Testability655

Testing the TTS system can be split into three major areas: checking that656

the TTS library and its various voice backends work; checking that the audio657

manager correctly applies its priority policies to incoming TTS audio streams658

and normal audio streams; and integration testing of audio output from an659

application calling a TTS API.660

The former can be achieved using unit tests within the TTS library project,661

which test various components of the library in isolation. For example, they662

could compare TTS audio output streams against stored ‘golden’expected output663

sound files.664

The audio manager testing should be implemented as part of the audio manager’665

s test plan, ensuring that TTS audio channel metadata is included in a variety666

of test situations.667

This should be described in the Audio Management design.668

Finally, the integration testing requires the audio output to be checked, so is669

infeasible to implement as an automated test, and would have to be a manual670

test where the human tester verifies that the output sounds as expected for a671

given set of input situations (requests from a test client).672

Security673

The security properties being implemented by the system are:674

• Applications should be independent, in that one application cannot change675

the TTS settings for another application, or affect another application’s676

TTS output other than through prioritisation of requests as controlled by677

the audio manager.678

• Applications must not be able to play a TTS request if the audio manager679

has disallowed or paused it (availability of audio output to other applica-680

tions).681

• Applications should not be able to set the system-wide TTS preferences.682

• Applications should not be able to determine the content of other appli-683

cations’TTS requests (confidentiality of requests).684

• Applications must only be allowed to use the TTS system if they have685

permission to output audio.686

20

These are implemented through the separation of audio priority policies from the687

TTS library, by implementing them in the audio manager. The audio manager688

has a non-forgeable identifier for the application which originated each TTS689

audio stream, and the forgeable priority hints which come from the application690

are not allowed to override the application’s audio priority.691

Audio output from an application is subject to that application having permis-692

sion to output audio, which is enforced by the audio manager.693

Independence and confidentiality of application audio channels is implemented694

as for all audio channels, by having separate connections from each application695

to the audio manager.696

Integrity of system-wide TTS preferences is implemented by the AppArmor697

policy controlling access to those preferences in GSettings.698

Loadable voice backends The TTS library, and hence each application699

which links to it, needs read-only and execute access to the loadable voice back-700

end libraries, plus any resources needed by those voices. It also needs read-only701

access to the TTS system-wide preferences in GSettings.702

Suggested roadmap703

There are few opportunities for splitting this system up into stages. The TTS704

library needs to be written first, including its loadable voice backend interface705

and the first voice backend. More complex features like sound icons could be706

ignored in the first version of the library. With this working, applications could707

start to use the TTS APIs. The unit tests and integration tests for the TTS708

library should be written from the very beginning.709

With TTS output working, a second stage could implement the priority policies710

in the audio manager, and ensure those are working. The system preferences711

could also be integrated at this stage.712

A third stage could produce more voice backends (if needed), potentially includ-713

ing a voice backend which is implemented in the automotive domain, to ensure714

that asynchronous calls to the backends work.715

It is worth highlighting that aside from initially ignoring features like sound716

icons, there is little scope for simplifying the TTS API for its first implementa-717

tion. Specifically, we feel it would be a mistake to implement a non-queue-based718

API for scheduling TTS requests to begin with, and then ‘expand’it into a queue-719

based API later on. To do so would expose applications to a lot of semantic720

changes in the API which they would then have to adapt to use. The TTS721

library API should be implemented as a queue-based one from the start.722

Requirements723

• Basic TTS API: Implemented as a C API on the TTS library.724

21

• Progress signalling API: Implemented using GObject signals emitted by725

the TTS library.726

• Output policy decided by audio manager: Implemented by passing priority727

and application identifiers to the audio manager, and it corking, uncork-728

ing, or cancelling audio streams according to its policy, using standard729

PulseAudio functionality.730

• Output streams are mixable: Audio manager may choose to not cork two731

streams, and mix them instead.732

• Runtime-swappable voice backends: TTS library loads backends from a733

directory as dynamically loaded libraries, and monitors that directory for734

changes.735

• Installable voice backends: Installed or symlinked into the backend library736

directory.737

• Default SDK voice backend: Pico to be shipped as the default backend738

for the SDK.739

• Voice backends are not latency sensitive: Voice backend interface uses740

asynchronous functions to avoid blocking the TTS library.741

• System-wide voice configuration: Stored in GSettings and read by the742

TTS library in each application which uses it. The system preferences743

application can modify the settings in GSettings.744

• Pronunciation data for non-phonetic words: Provided by an API in the745

TTS library similar to the speech-dispatcher API for ‘sound icons’.746

• Per-request language support: Provided as a per-request API to hint at747

the language the source text is written in.748

• Support for concurrent requests: Implemented by allowing multiple audio749

channel connections to the audio manager, which prioritises between them.750

• Prioritisation for concurrent requests: Implemented by allowing multiple751

audio channel connections to the audio manager, which prioritises between752

them. In-application priorities are handled by a per-application request753

queue within the TTS library.754

• Permission for using TTS system: Checked by the audio manager for each755

application which attempts to play audio (including TTS output), using756

permissions from the application’s manifest.757

Summary of recommendations758

As discussed in the above sections, we recommend:759

• Implementing a new TTS library, using an API like the one suggested in760

Appendix: A suggested TTS API. Parts of speech-dispatcher may be used761

22

to aid the implementation if appropriate.762

• Implementing voice backends as dynamically loaded libraries, potentially763

reusing much of the existing backends from speech-dispatcher.764

• Modifying the audio manager to support applying a priority policy to TTS765

requests, using the application’s audio priority, and potentially logging766

TTS-specific metadata for debugging purposes.767

• Implementing unit and integration tests for the TTS library, audio man-768

ager and TTS system as a whole.769

• Packaging and using Pico as the default voice backend in the SDK.770

• Modifying the Apertis software installer to generate AppArmor rules to771

allow access to the TTS voice backends and their resources, plus the TTS772

system settings, if an application is allowed to output audio.773

Appendix A: Suggested TTS API774

The code listing is given in pseudo-code.775

/* TTS context to contain relevant state and loaded resources and776

* settings. */777

class TtsContext {778

async TtsRequest send_request (const string text_to_say,779

TtsPriority priority=TEXT,780

const string language=null,781

TtsVoiceRate voice_rate=TtsVoiceRate.NORMAL,782

TtsVolume volume=TtsVolume.NORMAL,783

TtsPitch pitch=TtsPitch.NORMAL);784

785

async TtsRequest send_sound_icon_request (const string icon_name,786

TtsPriority priority=TEXT,787

const string language=null,788

TtsVoiceRate voice_rate=TtsVoiceRate.NORMAL,789

TtsVolume volume=TtsVolume.NORMAL,790

TtsPitch pitch=TtsPitch.NORMAL);791

}792

793

/* This represents a single pending TTS request. The object may persist794

* after the underlying request has been handled, until the application795

* programmer unrefs the object. */796

class TtsRequest {797

async void pause ();798

async void resume ();799

async void cancel ();800

801

/* The current state of the request. */802

23

property TtsRequestState state;803

804

/* The current progress of reading through the request, as an offset805

* into the original text in Unicode characters. */806

property unsigned int current_offset;807

808

/* In a GLib API, these would be GObject::notify::state and809

* GObject::notify::current_offset. */810

signal notify_state (TtsRequestState state);811

signal notify_current_offset (unsigned int current_offset);812

}813

814

enum TtsRequestState {815

PREROLL,816

PLAYING,817

PAUSED,818

FINISHED,819

CANCELLED,820

}821

822

enum TtsPriority {823

IMPORTANT,824

MESSAGE,825

TEXT,826

NOTIFICATION,827

PROGRESS,828

}829

830

enum TtsVoiceRate {831

SLOW,832

NORMAL,833

FAST,834

}835

836

enum TtsVolume {837

DEEMPHASIZED,838

NORMAL,839

EMPHASIZED,840

}841

842

enum TtsPitch843

{844

LOW,845

NORMAL,846

HIGH,847

}848

24

	Text To Speech
	Introduction
	Terminology and concepts
	Text to speech (TTS)
	Voice

	Use cases
	News application
	Back in a news application
	New e-mail notification
	New e-mail notification then going back
	New meeting notification then cancelled
	Incoming phone call
	Voice installed with the SDK
	Installable voice bundle
	Voice backend in the automotive domain
	Installable languages
	Voice configuration
	Per-request emphasis
	Non-phonetic place names
	Driving abroad
	Multiple concurrent TTS requests
	Permissions to use TTS API
	Multiple output speakers
	Custom TTS implementation in an application

	Non-use-cases
	Accessibility for users with reduced vision

	Requirements
	Basic TTS API
	Progress signalling API
	Output policy decided by audio manager
	Output streams are mixable
	Runtime-swappable voice backends
	Installable voice backends
	Default SDK voice backend
	Voice backends are not latency sensitive
	System-wide voice configuration
	Pronunciation data for non-phonetic words
	Per-request language support
	Support for concurrent requests
	Prioritisation for concurrent requests
	Output routing policy
	Permission for using TTS system

	Existing text to speech systems
	Android
	iOS
	Previous eCore TTS API
	speech-dispatcher
	TTS voices

	Approach
	Overall architecture
	Alternative centralised design
	Use of speech-dispatcher
	TTS library
	Installable and swappable backends
	SDK default backend
	Global configuration
	Per-request configuration
	Sound icons
	Request prioritisation
	PulseAudio output
	Testability
	Security
	Suggested roadmap
	Requirements

	Summary of recommendations
	Appendix A: Suggested TTS API

