
On-screen keyboard

Contents1

Terminology and concepts 22

Text input . 23

Input method . 34

Virtual keyboard . 55

Use cases 66

Requirements 67

Obsolete Approach 68

Using a New Widget . 69

Implementations in Other Systems 710

New Approach 711

Evaluation Report 812

weston-keyboard . 813

Maliit Keyboard 2 . 814

Squeekboard . 915

Implementation status . 916

Recommendations 917

Risks 1018

References 1019

Apertis can be used with a touchscreen only, in this case the user will need20

an on-screen keyboard to be able to enter information like passwords, URLs,21

messages.22

This document outlines the current state of the Wayland protocols dealing with23

input methods, their implementation status as well as a possible approach for24

integrating this support into Apertis.25

Terminology and concepts26

In Wayland, multiple protocols are involved to allow users to enter text.27

Text input28

The text-input protocol allows compositors to send text to applications in a29

way which supports various input methods other than direct physical keyboard30

input. Examples of this include complex text composition methods such as31

2

CJK1 alphabets in which each character is typically composed from multiple32

keypresses, or state-aware input methods such as on-screen virtual keyboards33

which may offer text suggestions, correction, autocompletion, emoji, and other34

complex input types which are not supported by the traditional keyboard input35

mechanism.36

A text input object is used to manage state of what are typically text entry37

fields in the application. Client applications send enable/disable events to the38

compositor following text input focus changes (this is typically done by the39

GUI framework in use), and the compositor can then decide when and where40

to display the on-screen keyboard.41

Apart from enable/disable events, a number of state requests may also be sent42

by the client, allowing the compositor to keep track of the state of the input43

field. For example, set_content_type can be used by the client to specify what44

kind of text is expected, while set_cursor_rectangle can be used to specify an45

area around the cursor and thus allow the compositor to put a window with46

word suggestions near the cursor, without obstructing the text being input.47

48

This protocol is currently on version v32 upstream, with v43 being discussed.49

Input method50

The input-method protocol allows the compositor to delegate work to let user51

input text to some other program.52

1https://en.wikipedia.org/wiki/CJK_characters
2https://gitlab.freedesktop.org/wayland/wayland-protocols/-/blob/master/unstable/te

xt-input/text-input-unstable-v3.xml
3https://gitlab.freedesktop.org/wayland/wayland-protocols/-/merge_requests/73#note_

850436

3

https://en.wikipedia.org/wiki/CJK_characters
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/blob/master/unstable/text-input/text-input-unstable-v3.xml
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/merge_requests/73#note_850436
https://en.wikipedia.org/wiki/CJK_characters
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/blob/master/unstable/text-input/text-input-unstable-v3.xml
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/blob/master/unstable/text-input/text-input-unstable-v3.xml
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/merge_requests/73#note_850436
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/merge_requests/73#note_850436

53

This protocol is very similar to text-input, because it lets a program (e.g. an54

on-screen keyboard application) to send text to the compositor, and allows the55

compositor to tell this program what kind of text is needed.56

The program will then communicate to the user (e.g. through interaction with57

the on-screen keyboard) and give the text to the compositor. Once received,58

the compositor will typically send the text onward to the currently focused59

application using the text-input protocol, creating a chain: special program →60

compositor → focused application.61

4

62

Additionally, because there is typically only one application using this protocol,63

it can do things which would not work with multiple applications. One of them64

is grabbing the keyboard, by allowing the input method to receive all hardware65

keyboard input (exclusive grab). This allows the input method to preprocess66

the input before forwarding it, which is common to CJK language users, for67

example by allowing the input method to send the text “你好”when “nihao”is68

typed.69

The latest protocol supported upstream is on version v14, with version v2570

available and v36 under development.71

Virtual keyboard72

The virtual-keyboard protocol is designed for programs which want to tell73

the compositor to issue “fake”keyboard events, as if they came from a physical74

keyboard.75

This should allow inputting text in legacy applications which don’t support the76

text-input protocol or triggering actions which would normally need a keyboard,77

and is done by emulating key presses.78

Important to note that if the compositor enables a keyboard to perform arbitrary79

actions, it should prevent untrusted clients from using this interface.80

4https://gitlab.freedesktop.org/wayland/wayland-protocols/-/blob/master/unstable/in
put-method/input-method-unstable-v1.xml

5https://github.com/swaywm/wlroots/blob/master/protocol/input-method-unstable-
v2.xml

6https://gitlab.freedesktop.org/wayland/wayland-protocols/-/merge_requests/112

5

https://gitlab.freedesktop.org/wayland/wayland-protocols/-/blob/master/unstable/input-method/input-method-unstable-v1.xml
https://github.com/swaywm/wlroots/blob/master/protocol/input-method-unstable-v2.xml
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/merge_requests/112
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/blob/master/unstable/input-method/input-method-unstable-v1.xml
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/blob/master/unstable/input-method/input-method-unstable-v1.xml
https://github.com/swaywm/wlroots/blob/master/protocol/input-method-unstable-v2.xml
https://github.com/swaywm/wlroots/blob/master/protocol/input-method-unstable-v2.xml
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/merge_requests/112

This protocol is not yet available upstream, with a proposal7 adding v1 support81

currently under discussion.82

Use cases83

• A user wants to enter a text without a physical keyboard (i.e. using an84

on-screen keyboard)85

• A user wants to be able to enter text in a number of languages and writing86

systems8 (e.g. English/Latin, CJK)87

• A user wants to be able to make use of text input features such as correc-88

tion and completion suggestions89

• A user wants to be able to select and input emoji characters90

Requirements91

The chosen on-screen keyboard implementation must:92

• allow to configure the keyboard layout93

• be automatically enabled when user selects a text input field and allow94

users to show it manually (for legacy applications - see below)95

• not require any changes to the applications themselves96

Obsolete Approach97

In previous versions of Apertis, a custom widget in the client application9 was98

used for spell checking. This widget was built to exclusively target the legacy99

Mildenhall platform, and thus it brings several problems:100

• It is exclusively tied to Mildenhall applications; no other GUI frameworks101

are supported.102

• Each app has their own instance of the widget, thus the application side is103

also responsible for tasks such as positioning the keyboard on the screen,104

while not actually knowing the full screen layout as a compositor does.105

Attempting to migrate it away from being dependent on Mildenhall would essen-106

tially amount to a full rewrite, resulting in little advantage versus an alternative107

solution.108

Using a New Widget109

Even if a new in-application widget were created, both of these points would110

still apply:111

7https://gitlab.freedesktop.org/wayland/wayland-protocols/-/merge_requests/11
8https://en.wikipedia.org/wiki/Writing_system
9https://gitlab.apertis.org/pkg/mildenhall/-/blob/apertis/v2021/widgets/mildenhall-

speller/mildenhall_speller.c

6

https://gitlab.freedesktop.org/wayland/wayland-protocols/-/merge_requests/11
https://en.wikipedia.org/wiki/Writing_system
https://en.wikipedia.org/wiki/Writing_system
https://en.wikipedia.org/wiki/Writing_system
https://gitlab.apertis.org/pkg/mildenhall/-/blob/apertis/v2021/widgets/mildenhall-speller/mildenhall_speller.c
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/merge_requests/11
https://en.wikipedia.org/wiki/Writing_system
https://gitlab.apertis.org/pkg/mildenhall/-/blob/apertis/v2021/widgets/mildenhall-speller/mildenhall_speller.c
https://gitlab.apertis.org/pkg/mildenhall/-/blob/apertis/v2021/widgets/mildenhall-speller/mildenhall_speller.c

• There would need to be a widget for every graphical application framework,112

and every application using the framework would need to explicitly include113

the widget.114

• The problems and inefficiency with having the application position the115

keyboard on the screen without full knowledge of the entire screen persist116

outside of Mildenhall, as it is purely an architectural problem.117

Implementations in Other Systems118

Qt uses a framework-specific, client-side plugin, qtvirtualkeyboard10. Thus, like119

the obsolete Mildenhall speller widget mentioned previously, qtvirtualkeyboard120

is exclusively tied to Qt applications. In addition, code reuse is not possible, as121

it is under the GPLv3 license.122

Samsung’s Tizen has a custom IME framework11 built on top of HTML5 and123

JavaScript, as with the rest of the OS’s applications. The only native code used124

is essentially for communication between the IME and the client application,125

resulting in little use for building off of Tizen’s approach.126

LG webOS OSE uses custom plugins12 on top of the Maliit IME framework13.127

Although Maliit itself is LGPL-2.1, the reference keyboard implementation is128

under LGPL-3.129

New Approach130

A fully-fledged input method program will be a Wayland client using the input-131

method protocol for submitting text, but also supporting virtual-keyboard for132

submitting actions, and as a fallback for legacy applications.133

134

A compositor would ferry text around between the input method program and135

whichever application is focused. It would also carry synthetic keyboard events136

10https://doc.qt.io/qt-5/qtvirtualkeyboard-deployment-guide.html
11https://github.com/Samsung/tizen-docs/blob/master/docs/application/web/guides/tex

t-input/input-method.md
12https://github.com/webosose/ime-manager
13https://maliit.github.io/

7

https://doc.qt.io/qt-5/qtvirtualkeyboard-deployment-guide.html
https://github.com/Samsung/tizen-docs/blob/master/docs/application/web/guides/text-input/input-method.md
https://github.com/webosose/ime-manager
https://maliit.github.io/
https://doc.qt.io/qt-5/qtvirtualkeyboard-deployment-guide.html
https://github.com/Samsung/tizen-docs/blob/master/docs/application/web/guides/text-input/input-method.md
https://github.com/Samsung/tizen-docs/blob/master/docs/application/web/guides/text-input/input-method.md
https://github.com/webosose/ime-manager
https://maliit.github.io/

from the input method program to the focused application.137

An application consuming text would support text-input, generally through a138

GUI framework like GTK or Qt, and it would send enable and disable events139

whenever a text input field comes into focus or becomes unfocused.140

Legacy applications won’t send enable and disable events, even when a text field141

is focused and the user is ready to type. When that happens, the compositor142

and the input method won’t realize when to display the on-screen keyboard or143

when text should be submitted. Because of that, it’s best to always make sure144

the user can bring up the on-screen keyboard to be able to input text, which145

would then be delivered as keyboard events (which are always supported by146

applications) via the virtual-keyboard protocol.147

Currently the majority of the on-screen keyboard applications was developed148

for the X11 display server. For Wayland only a few are available:149

• weston-keyboard150

• Maliit Keyboard 214151

• Squeekboard15152

Evaluation Report153

weston-keyboard154

Simple implementation of an on-screen keyboard. The application only supports155

roman, numeric and arabic keyboards, which are hardcoded, and it is built on156

top of outdated versions of the text-input and input-method protocols. (This157

can be improved, however.)158

• License: X11, MIT and CC-BY-SA159

• Languages: C160

Maliit Keyboard 2161

Maliit Keyboard 2 is an evolution of the Ubuntu Keyboard16 plugin for Maliit,162

which can be run standalone and supports many different languages and emoji.163

• License: LGPL-3, BSD and CC-BY (The license of the combined work is164

LGPL-3.0-only)165

• Languages: QML, C++166

14https://github.com/maliit/keyboard
15https://source.puri.sm/Librem5/squeekboard
16https://launchpad.net/ubuntu-keyboard

8

https://github.com/maliit/keyboard
https://source.puri.sm/Librem5/squeekboard
https://launchpad.net/ubuntu-keyboard
https://github.com/maliit/keyboard
https://source.puri.sm/Librem5/squeekboard
https://launchpad.net/ubuntu-keyboard

Squeekboard167

Squeekboard has been developed to be the on-screen keyboard of Librem 5168

phone OS, using Phoc17 compositor which is based on wlroots18.169

• License: GPL-3170

• Languages: Rust, C171

Implementation status172

The following table lists GUI frameworks, clients and compositors and their173

corresponding implementation status:174

text-input input-method virtual-keyboard
GTK v3 - -
Qt v2 - -
IBus - v1 -
Chromium v1 - -
WebKitGTK v3 - -
Weston v1 v1 -
weston-keyboard v1 v1 -
Squeekboard v3 v2 v1
Maliit Keyboard - v1 -

Recommendations175

Given the only (currently) GPL-3 free (matching Apertis licensing expecta-176

tions19) on-screen keyboard implementation is a simple/demo version (weston-177

keyboard), Apertis may either opt to improve it, use one of the other existing178

implementations (as a GPL-3 exception) or implement a new one from scratch.179

The recommended approach is to patch Weston to support the latest protocols180

versions and ship weston-keyboard as the reference on-screen keyboard imple-181

mentation. A merge request20 exists to integrate text-input v3, input-method182

v2 and virtual-keyboard v1 to Weston (including weston-keyboard) and could be183

used as a starting point.184

As needed, weston-keyboard could potentially be forked as a separate project185

from Weston to allow using a more modern GUI toolkit for its implementation.186

Optionally, other changes could be made to weston-keyboard to improve or imple-187

ment new features such as supporting more languages or adding emoji support.188

17https://gitlab.gnome.org/World/Phosh/phoc
18https://github.com/swaywm/wlroots
19https://www.apertis.org/policies/license-expectations/
20https://gitlab.freedesktop.org/wayland/weston/-/merge_requests/150

9

https://gitlab.gnome.org/World/Phosh/phoc
https://github.com/swaywm/wlroots
https://www.apertis.org/policies/license-expectations/
https://www.apertis.org/policies/license-expectations/
https://www.apertis.org/policies/license-expectations/
https://gitlab.freedesktop.org/wayland/weston/-/merge_requests/150
https://gitlab.gnome.org/World/Phosh/phoc
https://github.com/swaywm/wlroots
https://www.apertis.org/policies/license-expectations/
https://gitlab.freedesktop.org/wayland/weston/-/merge_requests/150

This should allow existing applications to interact with the on-screen keyboard189

without modifications, even for legacy applications not supporting the text-input190

protocol.191

Risks192

The different Wayland protocols involved in an on-screen keyboard are cur-193

rently under development and subject to change, see Stalled Upstream Protocol194

Work21.195

References196

This documentation and some of the illustrations are based on or come from:197

• Wayland and input methods22 blog post198

• It’s not about keyboards23 blog post199

• Input Method Hub24 Wayland issue200

21https://gitlab.freedesktop.org/wayland/wayland-protocols/-/issues/39#stalled-upstre
am-protocol-work

22https://dcz_self.gitlab.io/posts/input_method/
23https://dcz_self.gitlab.io/posts/not_keyboard/
24https://gitlab.freedesktop.org/wayland/wayland-protocols/-/issues/39

10

https://gitlab.freedesktop.org/wayland/wayland-protocols/-/issues/39#stalled-upstream-protocol-work
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/issues/39#stalled-upstream-protocol-work
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/issues/39#stalled-upstream-protocol-work
https://dcz_self.gitlab.io/posts/input_method/
https://dcz_self.gitlab.io/posts/not_keyboard/
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/issues/39
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/issues/39#stalled-upstream-protocol-work
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/issues/39#stalled-upstream-protocol-work
https://dcz_self.gitlab.io/posts/input_method/
https://dcz_self.gitlab.io/posts/not_keyboard/
https://gitlab.freedesktop.org/wayland/wayland-protocols/-/issues/39

	Terminology and concepts
	Text input
	Input method
	Virtual keyboard

	Use cases
	Requirements
	Obsolete Approach
	Using a New Widget

	Implementations in Other Systems
	New Approach
	Evaluation Report
	weston-keyboard
	Maliit Keyboard 2
	Squeekboard
	Implementation status

	Recommendations
	Risks
	References

