
Multimedia

Contents1

Requirements . 22

Hardware-accelerated media rendering 23

Multimedia Framework . 34

Progressive download and buffered playback 35

Distributed playback support . 36

Camera display on boot . 47

Video playback on boot . 48

Camera widget . 49

Transcoding . 410

DVD playback . 411

Traffic control . 512

Solutions . 513

Multimedia Framework . 514

Hardware-accelerated Media Rendering 615

Buffering playback in GStreamer and clutter-gst 616

Distributed playback . 717

Camera and Video display on boot 718

Camera widget and clutter-gst 919

Transcoding . 920

DVD playback . 921

Traffic control . 1022

This document covers the various requirements for multimedia handling in the23

Apertis platform.24

The FreeScale I.MX/6 platform provides several IP blocks offering low-power25

and hardware-accelerated features:26

• GPU : For display and 3D transformation/processing27

• VPU : For decoding and encoding video streams28

The Apertis platform will provide robust and novel end-user features by getting29

the most out of those hardware components. However, in order to retain power30

efficiency, care must be taken in the way those components are exposed to31

applications running on the platform.32

The proposed solutions outlined in this document have also been chosen for the33

Apertis platform to re-use as many “upstream”open-source solutions as possible,34

to minimize the maintenance costs for future projects based upon Apertis.35

Requirements36

Hardware-accelerated media rendering37

The Apertis system will need to make usage of the underlying GPU/VPU hard-38

ware acceleration in various situations, mainly:39

2

• Zero copy of data between the VPU decoding system and the GPU display40

system41

• Be usable in WebKit and with the Clutter toolkit42

• Integration with FreeScale and ADIT technologies43

Multimedia Framework44

In a system like Apertis, writing a wide array of applications and end-user45

features offering multimedia capabilities requires a framework which will offer46

the following features:47

• Handle a wide variety of use-cases (playback, recording, communication,48

network capabilities)49

• Support multiple audio, video and container formats50

• Capability to add new features without having to modify existing applica-51

tions52

• Capability to handle hardware features with as little overhead as possible53

• Widely adopted by a variety of libraries, applications and systems54

In addition, this system needs to be able to handle the requirements specified55

in Hardware accelerated media rendering.56

Progressive download and buffered playback57

The various network streams played back by the selected technology will need58

to provide buffering support based on the playback speed and the available59

bandwidth.60

If possible a progressive download strategy should be used, using such a strategy61

the network media file is temporarily stored locally and playback starts when it62

is expected the media can be played back without a need to pause for further63

buffering. Or in other words, playback starts when the remaining time to finish64

the download is less then the playback time of the media.65

For live media where progressive downloading is not possible (e.g. internet66

radio) a limited amount of buffering should be provided to offset the effect of67

temporary jitter in the available bandwidth.68

Apart from the various buffering strategies, the usage of adapative bitrate69

streaming technologies such as HLS or MPEG-DASH is recommended if avail-70

able to continuously adapt playback to the current network conditions.71

Distributed playback support72

The Apertis platform wishes to be able to share playback between multiple73

endpoints. Any endpoint would be able to watch the same media that another74

3

is watching with perfect synchronization.75

Camera display on boot76

Apertis requires the capability to show camera output during boot, for example77

to have rear camera view for parking quickly. Ideally, the implementation of78

this feature must not affect the total boot time of the system.79

Video playback on boot80

Apertis requires the capability to show a video playback during boot. This81

shares some points with the section Camera display on boot regarding the re-82

quirements, the implementation, and risks and concerns. Collabora has some83

freedom here to restrict the fps, codecs, resolutions, quality of the video to be84

playback in order to be able to match the requirements.85

Camera widget86

Apertis requires that a camera widget that can be embedded to applications to87

easily display/manipulate camera streams is provided. The widget should offer88

the following features:89

• Retrieve the list of supported camera devices and ability to change the90

active device91

• Support retrieving and updating color balance (saturation, hue, brightness,92

contrast), gamma correction and device capture resolution93

• Provides an interface for image processing94

• Record videos and take pictures95

Transcoding96

Transcoding can be loosely described as decoding, optionally processing and re-97

encoding of media data (video, audio, ⋯) possibly from one container format to98

another. As a requirement for Apertis, transcoding must be supported by the99

Multimedia Framework.100

DVD playback101

Most DVDs are encrypted using a system called CSS1 (content scrambling sys-102

tem), that is designed to prevent unauthorized machines from playing DVDs.103

CSS is licensed by the DVD Copy Control Association (DVD CCA), and a CSS104

license is required to use the technology, including distributing CSS enabled105

DVD products.106

1http://www.dvdcca.org/css

4

http://www.dvdcca.org/css
http://www.dvdcca.org/css

Apertis wishes to have a legal solution for DVD playback available on the plat-107

form.108

Traffic control109

Traffic control is a technique to control network traffic in order to optimize or110

guarantee performance, low-latency, and/or bandwidth. This includes deciding111

which packets to accept at what rate in an input interface and determining112

which packets to transmit in what order at what rate on an output interface.113

By default traffic control on Linux consists of a single queue which collects114

entering packets and dequeues them as quickly as the underlying device can115

accept them.116

In order to ensure that multimedia applications have enough bandwidth for117

media streaming playback without interruption when possible, Apertis requires118

that a mechanism for traffic control is available on the platform.119

Solutions120

Multimedia Framework121

Based on the requirements, we propose selection of the GStreamer mul-122

timedia framework2, a LGPL-licensed framework covering all of the required123

features.124

The GStreamer framework, created in 1999, is now the de-facto multimedia125

framework on GNU/Linux systems. Cross-platform, it is the multimedia back-126

bone for a wide variety of use-cases and platforms, ranging from voice-over-127

IP communication on low-power handsets to transcoding/broadcasting server128

farms.129

Its modularity, through the usage of plugins, allows integrators to re-use all the130

existing features (like parsers, container format handling, network protocols,131

and more) and re-use their own IP (whether software or hardware based).132

Finally, the existing eco-system of application and libraries supporting133

GStreamer allows Apertis to benefit from those where needed, and benefit134

from their on-going improvements. This includes the WebKit browser, and the135

Clutter toolkit.136

The new GStreamer 1.0 series will be used for Apertis. In its 6 years137

of existence, the previous 0.10 series exhibited certain performance bottlenecks138

that could not be solved cleanly due to the impossibility of breaking API/ABI139

compatibility. The 1.0 series takes advantage of the opportunity to fix the140

bottlenecks through API/ABI breaks, so Apertis will be in a great position to141

have a clean start.142

2http://gstreamer.freedesktop.org/

5

http://gstreamer.freedesktop.org/
http://gstreamer.freedesktop.org/
http://gstreamer.freedesktop.org/
http://gstreamer.freedesktop.org/

Amongst the new features the 1.0 series brings, the most important one is related143

to how memory is handled between the various plugins. This is vital to support144

the most efficient processing paths between plugins, including first-class support145

for zero-copy data passing between hardware decoders and display systems.146

Several3 presentations4 are available detailing in depth the changes in the147

GStreamer 1.0 series.148

Hardware-accelerated Media Rendering149

The current set of GStreamer plugins as delivered by Freescale targets the150

Gstreamer 0.10 series, for usage with GStreamer 1.0 these plugins will need151

to be updated.152

As freescale was not able to deliver an updated set of plugins in a reasonable153

timeframe Collabora has done a initial proof of concept port of the VPU plugins154

to Gstreamer 1.0 allowing ongoing development of the middleware stack to focus155

purely on Gstreamer 1.0.156

Eventually it is expected that freescale will deliver an updated set of VPU157

plugins for usage with Gstreamer 1.0.158

to benefit as much as possible from improvements provided by the “upstream”159

GStreamer in the future, it is recommend need to ensure that the platform-160

specific development is limited to features specific to that platform.161

Therefore it is recommended for the updated VPU plugins to be based on exist-162

ing base video decoding/encoding classes (See GstBaseVideoDecoder5, GstBa-163

seVideoEncoder6). This will ensure that:164

• The update plugins will benefit from any improvements done in those base165

classes and future adjustments to ensure proper communication between166

decoder/encoder elements and other elements (like display and capture167

elements).168

• The updated plugins will benefit from commonly expected behaviors of169

decoders and encoders in a wide variety of use-cases (and not just local file170

playback) like QoS (Quality of Service), low-latency and proper memory171

management.172

Buffering playback in GStreamer and clutter-gst173

ClutterGstPlayer7 uses the playbin28 GStreamer element for multimedia content174

3https://events.static.linuxfound.org/images/stories/pdf/lf_elc12_hervey.pdf
4http://gstconf.ubicast.tv/videos/keynote-gstreamer10/
5https://www.freedesktop.org/software/gstreamer-sdk/data/docs/latest/gst-plugins-bad-

libs-0.10/gst-plugins-bad-libs-GstBaseVideoDecoder.html
6https://www.freedesktop.org/software/gstreamer-sdk/data/docs/latest/gst-plugins-bad-

libs-0.10/gst-plugins-bad-libs-GstBaseVideoEncoder.html
7http://developer.gnome.org/clutter-gst/stable/ClutterGstPlayer.html
8https://www.freedesktop.org/software/gstreamer-sdk/data/docs/2012.5/gst-plugins-

6

https://events.static.linuxfound.org/images/stories/pdf/lf_elc12_hervey.pdf
http://gstconf.ubicast.tv/videos/keynote-gstreamer10/
https://www.freedesktop.org/software/gstreamer-sdk/data/docs/latest/gst-plugins-bad-libs-0.10/gst-plugins-bad-libs-GstBaseVideoDecoder.html
https://www.freedesktop.org/software/gstreamer-sdk/data/docs/latest/gst-plugins-bad-libs-0.10/gst-plugins-bad-libs-GstBaseVideoEncoder.html
https://www.freedesktop.org/software/gstreamer-sdk/data/docs/latest/gst-plugins-bad-libs-0.10/gst-plugins-bad-libs-GstBaseVideoEncoder.html
https://www.freedesktop.org/software/gstreamer-sdk/data/docs/latest/gst-plugins-bad-libs-0.10/gst-plugins-bad-libs-GstBaseVideoEncoder.html
http://developer.gnome.org/clutter-gst/stable/ClutterGstPlayer.html
https://www.freedesktop.org/software/gstreamer-sdk/data/docs/2012.5/gst-plugins-base-plugins-0.10/gst-plugins-base-plugins-playbin2.html
https://events.static.linuxfound.org/images/stories/pdf/lf_elc12_hervey.pdf
http://gstconf.ubicast.tv/videos/keynote-gstreamer10/
https://www.freedesktop.org/software/gstreamer-sdk/data/docs/latest/gst-plugins-bad-libs-0.10/gst-plugins-bad-libs-GstBaseVideoDecoder.html
https://www.freedesktop.org/software/gstreamer-sdk/data/docs/latest/gst-plugins-bad-libs-0.10/gst-plugins-bad-libs-GstBaseVideoDecoder.html
https://www.freedesktop.org/software/gstreamer-sdk/data/docs/latest/gst-plugins-bad-libs-0.10/gst-plugins-bad-libs-GstBaseVideoEncoder.html
https://www.freedesktop.org/software/gstreamer-sdk/data/docs/latest/gst-plugins-bad-libs-0.10/gst-plugins-bad-libs-GstBaseVideoEncoder.html
http://developer.gnome.org/clutter-gst/stable/ClutterGstPlayer.html
https://www.freedesktop.org/software/gstreamer-sdk/data/docs/2012.5/gst-plugins-base-plugins-0.10/gst-plugins-base-plugins-playbin2.html
https://www.freedesktop.org/software/gstreamer-sdk/data/docs/2012.5/gst-plugins-base-plugins-0.10/gst-plugins-base-plugins-playbin2.html

playback, which uses queue29 element to provide the necessary buffering for both175

live and on demand content. For the Apertis release (12Q4) new API was added176

to clutter-gst to make it more easier for applications to correctly control this177

buffer. Work is currently in progress to upstream these changes.178

Progressive buffering based on expected bandwidth Depending on the179

locality it might be desirable to not only buffer based on the currently available180

bandwidth, but also on the expected bandwidth. For example the navigation181

system may be aware of a tunnel coming up, where no or only very limited182

bandwidth is available.183

Due to the way buffering works in Gstreamer the final control for when playback184

starts rests with the application, normally an application uses the estimates for185

remaining download time provided by gstreamer (which is based on the current186

download speed). In the case where the application has the ability to make a187

more educated estimate by using location/navigation information, it can safely188

ignore Gstreamers estimate and purely base playback start on its own estimate.189

Distributed playback190

As the basis for the distributed playback proof of concept solution Collabora191

suggest the usage of the Aurena10 client/daemon infrastructure. Aurena is a192

small daemon which announces itself on the network using avahi. This daemon193

provides the media and control information over http and also provide provides194

a Gstreamer based network clock for to use for clients to synchronize against.195

Aurena will be integrated in the Apertis distribution an example clutter-gst196

client will be provided.197

As Aurena is an active project and further work on this topic is scheduled for the198

Q2 of 2014, more details will be provided on the current state and functionality199

available in Aurena closer to that time.200

Camera and Video display on boot201

In order to keep the implementation both low in complexity and flexible a pure202

user-space solution is recommended, that is to say no kernel modification or203

bootloader modification are done to enable this functionality.204

The advantage of such a solution is that a lot of common userspace function-205

ality can be re-used by the implemention. The main disavantage is that this206

functionality will only be available when userspace is started.207

base-plugins-0.10/gst-plugins-base-plugins-playbin2.html
9http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-plugins/html/gst

reamer-plugins-queue2.html
10https://github.com/thaytan/aurena

7

https://www.freedesktop.org/software/gstreamer-sdk/data/docs/2012.5/gst-plugins-base-plugins-0.10/gst-plugins-base-plugins-playbin2.html
https://github.com/thaytan/aurena
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-plugins/html/gstreamer-plugins-queue2.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-plugins/html/gstreamer-plugins-queue2.html
https://github.com/thaytan/aurena

To provide a general feeling for the timings involved when running an unopti-208

mized darjeeling image (130312) on the I.MX6 Sabrelite board the boot break-209

down is as follows (Note that darjeeling isn’t optimized for startup time) :210

• 0.00s: Power plugged in211

• 0.26s: u-boot started212

• 1.23s: Kernel starting213

• 4.12s: LVDS screen turns on214

• 4.59s: Initramfs/mini userspace starting215

• ~6.00s: Normal userspace starting.216

The u-boot boot delay was disable for this test, no other changes217

Even though these number should be improved by the boot optimisation work218

(planned for Q2, 2013), the same order of magnitude will most likely remain for219

the SabreLite hardware booting from MMC.220

As a basis building block for providing this functionality Plymouth11 will be221

used. Plymouth is the de-factor application used for showing graphical boot222

animations while the system is booting, being using by Fedora, Ubuntu and223

many others. On most systems Plymouth takes advantage of the modesetting224

DRM drivers, with fallbacks to using the old-style dumb framebuffer or even a225

pure text mode.226

Plymouth has a extensive pluggable theming system. New themes can227

be written either in C or using a simple scripting language. A good228

overview/introduction of the plymouth specific theme scripting can be found229

in a series of blog posts by Charley Brey12.230

Plymouth has the ability to use themes which consists of a series of full-screen231

images or in principle even a video file, however most boot animations are kept232

relatively simple and are rendered on the fly using plymouths built-in image233

manipulation support. The reason for this is simply an efficiency trade-of, while234

on-the-fly rendering adds some cpu load for simpler animations that cpu load will235

be still lower then loading every frame from an image file or rendering a video.236

Furthermore this approach reduces the size and number of assets which have to237

be loaded from storage. As such, to minimize the impact on boot performance238

the use simple themes which are rendered on the fly is recommended over the239

use of full-screen images or videos.240

To add support for the “camera on boot”functionality plymouth will be extended241

such that it can be requested to switch to a live-feed of the (rear-view) camera242

during boot-up. To be able to support a wide range of cameras (e.g. both243

11http://www.freedesktop.org/wiki/Software/Plymouth
12http://brej.org/blog/?p=158

8

http://www.freedesktop.org/wiki/Software/Plymouth
http://brej.org/blog/?p=158
http://www.freedesktop.org/wiki/Software/Plymouth
http://brej.org/blog/?p=158

directly attached cameras and e.g. ip cameras) the use of Gstreamer is recom-244

mended for this functionality. However to ensure boot speed isn’t negatively245

impacted Gstreamer can’t be used from the initramfs as this would signifi-246

cantly increase its size and thus slowing down the boot. An alternative to247

using Gstreamer would be to implement dedicated, hardware/camera specific248

plugins which are small enough to be included in the initramfs.249

During Q2 of 2013 work will be done to optimise the boot time of Apertis. At250

which point it will become more clear what the real impact of delaying camera-251

on-boot until the start of full userspace is.252

Camera widget and clutter-gst253

To provide the camera widget functionality a new actor was developed for254

clutter-gst. As any other clutter actor, the ClutterGstCameraActor can be em-255

bedded in any clutter application and supports all requirements either through256

the usage of provided convenience APIs or using GStreamer APIs directly. Im-257

age processing is achieved with the usage of pluggable GStreamer elements.258

Transcoding259

GStreamer already supports transcoding13 of various different media formats260

through the usage of custom pipelines specific to each input/output format.261

In order to simplify the transcoding process and avoid having to deal with several262

different pipelines for each supported media format, Collabora proposes adding263

a new transcodebin GStreamer element which would take care of handling the264

whole process automatically. This new element would provide a stand-alone265

everything-in-one abstraction for transcoding much similar to what the play-266

bin2 element does for playback. Applications could then take advantage of this267

element to easily implement transcoding support with minimal effort.268

DVD playback269

Fluendo DVD Player14 is a certified, commercial software designed to reproduce270

DVDs on Linux/Unix and Windows platforms allowing legal DVD playback on271

Linux using GStreamer. It supports a wide range of features including, but not272

limited to, full DVD playback support, DVD menu and subtitles support.273

Other open-source solutions are available, but none of them meets the legal274

requirements and for that Collabora proposes the usage of Fluendo DVD Player275

and to provide the integration of it on the platform.276

13http://gentrans.sourceforge.net/docs/head/manual/html/howto.html#sect-introduction
14https://fluendo.com/en/products/multimedia/oneplay-dvd-player/

9

http://gentrans.sourceforge.net/docs/head/manual/html/howto.html#sect-introduction
https://fluendo.com/en/products/multimedia/oneplay-dvd-player/
http://gentrans.sourceforge.net/docs/head/manual/html/howto.html#sect-introduction
https://fluendo.com/en/products/multimedia/oneplay-dvd-player/

Traffic control277

Traffic control and shaping comes in two forms, the control of packets being278

received by the system (ingress) and the control of packets being sent out by the279

system (egress). Shaping outgoing traffic is reasonably straight-forward, as the280

system is in direct control of the traffic sent out through its interfaces. Shaping281

incoming traffic is however much harder as the decision on which packets to282

sent over the medium is controlled by the sending side and can’t be directly283

controlled by the system itself.284

However for systems like Apertis control over incoming traffic is far more im-285

portant then controlling outgoing traffic. A good example use-case is ensuring286

glitch-free playback of a media stream (e.g. internet radio). In such a case,287

essentially, a minimal amount of incoming bandwidth needs to be reserved for288

the media stream.289

For shaping (or rather influencing or policing) incoming traffic, the only practi-290

cal approach is to put a fake bottleneck in place on the local system and rely on291

TCP congestion control to adjust its rate to match the intended rate as enforced292

by this bottleneck. With such a system it’s possible to, for example, implement293

a policy where traffic that is not important for the current media stream (back-294

ground traffic) can be limited, leaving the remaining available bandwidth for295

the more critical streams .296

However, to complicate matters further, in mobile systems like Apertis which297

are connected wirelessly to the internet and have a tendency to move around it’298

s not possible to know the total amount of available bandwidth at any specific299

time as it’s constantly changing. Which means, a simple strategy of capping300

background traffic at a static limit simply can’t work.301

To cope with the dynamic nature a traffic control daemon will be implemented302

which can dynamically update the kernel configuration to match the current303

needs of the various applications and adapt to the current network conditions.304

Furthermore to address the issues mentioned above, the implementation will305

use the following strategy:306

• Split the traffic streams into critical traffic and background traffic. Police307

the incoming traffic by limiting the bandwidth available to background308

traffic with the goal of leaving enough bandwidth available for critical309

streams.310

• Instead of having static configuration, let applications (e.g. a media player)311

indicate when the current traffic rate is too low for their purposes. This312

both means the daemon doesn’t have to actively measure the traffic rate313

and allows it cope with streams that don’t have a constant bitrate more314

naturally.315

• Allow applications to indicate which stream is critical instead to properly316

support applications using the network for different types of functionality317

10

(e.g. a webbrowser). This rules out the usage of cgroups which only allows318

for per-process level granularity.319

Communication between the traffic control daemon and the applications will be320

done via D-Bus. The D-Bus interface will allow applications to register critical321

streams by passing the standard 5-tuple (source ip and port, destination ip322

and port and protocol) which uniquely identify a stream and indicate when a323

particular stream bandwidth is too low.324

To allow the daemon to effectively control the incoming traffic, a so-called In-325

termediate Functional Block device is used to provide a virtual network device326

to provide an artificial bottleneck. This is done by transparently redirecting the327

incoming traffic from the physical network device through the virtual network328

device and shape the traffic as it leaves the virtual device again. The reason for329

the traffic redirection is to allow the usage of the kernels egress traffic control to330

effectively be used on incoming traffic. The results in the example setup shown331

below (with eth0 being a physical interface and ifb0 the accompanying virtual332

interface).333

334

To demonstrate the functionality as describe above a simple demonstration me-335

dia application using Gstreamer will be written that communicates with the336

Traffic control daemon in the manner described. Furthermore some a testcase337

will be provided to emulate changing network conditions.338

11

	Requirements
	Hardware-accelerated media rendering
	Multimedia Framework
	Progressive download and buffered playback
	Distributed playback support
	Camera display on boot
	Video playback on boot
	Camera widget
	Transcoding
	DVD playback
	Traffic control

	Solutions
	Multimedia Framework
	Hardware-accelerated Media Rendering
	Buffering playback in GStreamer and clutter-gst
	Distributed playback
	Camera and Video display on boot
	Camera widget and clutter-gst
	Transcoding
	DVD playback
	Traffic control

