
Media management

Contents1

Solution . 32

Technology and Solution Overview 33

Local Storage Media Source 54

Media Browsing Requirements 65

Media Indexing Database Requirements 86

Indexing Scheduling . 127

Thumbnailing . 188

DLNA (UPnP) . 199

Online Media Sources . 2010

Bluetooth AVRCP . 2011

Playability check . 2012

Appendix: Media Management Technologies 2113

Tracker . 2114

Thumbnail Management . 3015

Grilo . 3216

Google Data Protocol . 3617

Librest and libsoup . 3618

Playlists support . 3719

Appendix: Questions & Answers . 3720

This document covers the management of media content in the Apertis platform.21

There are several types of media content to handle in the platform: images,22

audio, video and documents. We can identify the following operations with23

media:24

• Media Indexing: extracting metadata from media content and store it25

in a format that allows fast retrieval.26

• Media Browsing: locate the media content and access its metadata.27

Solution provides a general overview of the technologies used, like an executive28

summary of Appendix: Media management technologies, as well as a high level29

view of the solution proposed. Additionally, it exposes in detail the media30

management requirements in the Apertis platform, providing an analysis as31

well as a solution to each requirement, which might involve modifying existing32

technologies or even create new ones.33

Although this document is mostly focused on the media content, the technolo-34

gies introduced are related with other features in the platform like global search,35

which allows to search not only in media content but also in applications, mes-36

sages, calendar events, etc. For details on global search please check its specific37

design.38

Appendix: Media management technologies is mostly used as reference material39

from other sections of the document, so it is not necessary to read from start-40

to-finish. It has a detailed description of the current state of the technologies41

2

used for media management without including specific requirements, additions42

and modifications described on Solution.43

This document assumes the adoption of a media-centric approach for applica-44

tions (every media source provider will have its own application for browsing45

and playback). This provides a customized fully-featured experience for each of46

the media provider services. See below the list of media content providers that47

have been identified as requirements, these services will be analyzed in more48

detail in chapter 2 Solution.49

• Local Storage.50

• Removable Storage Devices.51

• CD and DVD.52

• DLNA (UPnP).53

• Media Online Services: YouTube, Shoutcast, Dropbox, last.fm, podcasts,54

etc.55

• Bluetooth AVRCP.56

Solution57

The following sections will provide a high level view of the technologies and58

solutions followed by a detailed analysis of the requirements for media content59

sources supported.60

Technology and Solution Overview61

This document looks at what changes could be made to the open source com-62

ponents to better support the Apertis use cases, it is important to note that63

those changes may not be possible for the scope of this project and may not be64

accepted upstream.65

See below an enumeration and a brief overview of the main technologies used66

in the design:67

• Tracker is a central repository for user information. It is made of several68

components: Tracker Miner, Tracker Extract and Tracker Store. Tracker69

Miner automatically crawls for media content files. Tracker Extract gath-70

ers useful metadata from these files and it stores this metadata in the71

Tracker Store database. Metadata can be retrieved from the Tracker Store72

with SPARQL queries. See Tracker for more details. Although this doc-73

ument will only focus on the Tracker features specific to media indexing,74

Tracker can be used to store other information as well, like applications,75

messages, calendar events, etc. or in general any information that is worth76

to share between applications.77

3

• Grilo is a simple API for browsing media content and provide media78

content metadata. Grilo layer helps to hide the complexities of Tracker79

and its query language, by focusing on media content (since Tracker is80

much more generic). See Grilo for more details.81

• Tumbler. It is a service for accessing and caching thumbnails. See82

Thumbnail management for more details.83

• libsoup and librest are libraries simplifying the creation of HTTP84

client/servers and the access to REST-based services respectively. See85

Librest and Libsoup.86

• libgdata is a library implementing the Google Data Protocol. It provides87

access to Google Services like YouTube and Picasa, among others.88

The proposed solution combines Grilo, Tumbler and Tracker for locating media89

content and retrieving its metadata from the local system and removable storage.90

Tracker does the heavy work: filesystem crawling, metadata extraction and91

metadata storage. Grilo is a simple API which lies on top of Tracker, used by92

applications to discover media content and its metadata. Tumbler is responsible93

of thumbnail generation.94

Tracker’s scheduling algorithms needs to be modified to support the require-95

ments. The goal is to prioritize the different tasks of information retrieval, so96

what applications need first must be retrieved first. There are different cases97

depending on the specific requirements:98

• Prioritization done automatically by Tracker in a hard-coded way (not99

configurable), like gathering all metadata from filesystem (filename, size,100

modification time, etc.) before extracting metadata from the file contents.101

• Prioritization done automatically but configurable, like prioritizing the102

indexing of music files over video files.103

• Prioritization influenced or requested by upper layers. In some cases, up-104

per layers need to provide some clues about what needs to be done first or105

what is more important, like a picture viewer application boosting priority106

to metadata extraction of image files (instead of the default which could107

be music files).108

The details on Grilo API stability can be checked in the API stability design.109

In summary, it is still a young API and its API will be broken on version 0.2.110

Under this situation, it might be convenient to layer an Apertis SDK API on111

top of the Grilo API to improve API stability for the application layer.112

See this illustration for an overview of the general architecture. Some of the113

components listed will be introduced with more detail in the following chapters.114

4

115

Local Storage Media Source116

Requirement R1. Support local storage as a media source.117

Analysis. The system has storage memory to store media locally. Locating118

5

media content in the system local storage and retrieving its metadata is required.119

Solution. Collabora proposes a combination of Tracker and Grilo, as a powerful120

solution for this endeavor (see section 2.1). Tracker can be reviewed in detail in121

Technology and solution overview, and Grilo in chapter 3.3. Upper layers will122

just interact with the Grilo layer, which is a simple API specialized in media123

browsing hiding the complexity of Tracker.124

Grilo allows to browse, search and locate the media content in the system. The125

application can access the media content through the filesystem API via the URI126

(Uniform Resource Identifier), e.g. file://home/username/Music/song1.ogg.127

See requirement R5 for comments on public and private content.128

Status. Satisfied.129

Media Browsing Requirements130

File-system based browsing Requirement R2. Support filesystem based131

browsing for early access.132

Analysis. This is required in order to quickly render a user interface to the133

user, for example when plugging in a USB flash device. Removable devices are134

potentially slow and it takes time to actually index and capture all metadata,135

so information like author and album could not be available on time. Therefore,136

a filesystem view should be available through the media browsing framework137

itself at least, in order to provide quick access to the media content by browsing138

the filesystem structure; as opposed to other ways to browse content using the139

metadata (by author, album, etc.).140

Solution.141

There is a Grilo Filesystem plugin. This is the fastest way to access the filesys-142

tem entries in the device. Content would be available soon after the filesystem is143

mounted on the system. Additionally, this plugin already monitors and reports144

for changes on the directories or files. One disadvantage of the Grilo Filesystem145

plugin is that it could be hard to access the metadata or get notified about146

changes in an efficient way.147

Another solution would be to use Grilo Tracker plugin. Grilo plugins provide148

access to the media content in a hierarchical way. Grilo Tracker plugin has two149

modes of hierarchical navigation, one based on categories and another one based150

on the filesystem. The latter one provides the info in the same structure as it is151

stored in the filesystem. It allows to browse from a root folder or from specific152

folders. However, the information has to be previously available in Tracker Store153

for this to work. To minimize this delay, Tracker scheduler will be changed to get154

filesystem information before other media metadata. Obtaining the filesystem155

information is very fast compared to the extraction of the metadata (which156

involves reading the file contents). Some timings have been gathered to show this157

6

fact, check the table in [Appendix: Questions Appendix: Questions (#appendix-158

questions–answers) Answers Answers] for the details. This solution plays nicely159

with requirement R3 (to get notifications of ready metadata as soon as it is160

available) and with R8 and R13 (regarding the scheduling of operations like161

crawling, metadata extraction, etc.).162

The last solution provided looks more promising than the first one, since it163

integrates better with the overall architecture and it does not have a negative164

impact in other requirements.165

Required work.166

Grilo Tracker plugin will need to be modified to operate as specified in the167

solution, and it actually depends on requirement R8 and R13 related to Tracker168

scheduling. Additionally, an API would need to be provided to change easily169

from one hierarchical model to the other on run-time. See Grilo Media Source170

Plugins for more information about Grilo.171

Status. Satisfied.172

Notification on metadata changes Requirement R3. Metadata info can173

change during run-time, so the media browsing API has to notify whoever is174

interested through some mechanism when these changes happen.175

Analysis. The indexing process is asynchronous, it can happen that media176

content gets its metadata updated while the content is already being shown to177

the user.178

Tracker internally uses the file system monitor service provided by the Linux ker-179

nel, which is a very efficient way to get notified about changes on the filesystem180

and it is not doing active polling.181

Once Tracker Miner gets notified about a change in the filesystem, it will check182

what needs to be done depending on the specific type of change. For example,183

if a new file is added it will determine if the new file is interesting for Tracker184

or not, much in the same way it does when crawling through the filesystem185

looking for files to index. In the case of a notification of a deleted file, it would186

remove its associated information in Tracker Store. In the case of modified files,187

it would extract the information again.188

Solution: Grilo tracks changes in Tracker Store by subscribing to the Gra-189

phUpdated D-Bus signal from the Tracker Store service (see Tracker storage190

for more details). Grilo processes this information and provides notifications of191

changes on media content. See the following illustration for an overview of the192

interaction between the components involved.193

Status. Satisfied.194

7

195

Paged queries Requirement R4. Provide queries to request content infor-196

mation by pages of fixed size.197

Analysis. There are potentially lots of results in a query for browsing media198

content. Therefore, a mechanism to get the results incrementally as needed is199

required.200

Solution: Grilo supports paging in all requests via skip and count numbers. In-201

ternally Grilo uses both mechanisms provided by Tracker SPARQL (OFFSET /202

LIMIT modifiers in the SELECT SPARQL statements and TrackerSparqlCur-203

sor). See Grilo for details on Grilo.204

Status. Satisfied.205

Media Indexing Database Requirements206

Media indexing of shared and private files Requirement R5: The207

system must be capable of indexing shared and private files. Shared files can be208

accessed by all users in the system. Private files are only accessible for the user209

who created them initially.210

Analysis. The reason of this requirement is to guarantee a minimum level211

of data confidentiality among the users in the system (for example regarding212

personal photos and documents). This would be even more important if we213

consider Tracker could be used to store other information as well.214

We assume there are folders which are public (shared and accessible to all users215

in the system) and folders which are private (only accessible to the owner of the216

folder). Due to the existence of private content, each user must have its own217

Tracker database for storing metadata.218

8

In the future, the device may have different configurations for privacy. First219

case would be that all user files are public, and they should be available for220

indexing by all other users. Second case, where each user’s files are private. A221

third case would be that the user would be prompted which files to make public.222

Those public files should be available for indexing by all.223

Solution. Due to Tracker’s architecture, it is not neither easy nor efficient to224

add the capability to have more than one database managed by a Tracker in-225

stance. Due to the nature of SPARQL queries, it would require very complex226

database joins and performance would suffer. SQLite is known to be very slow227

in such setup. Additionally, Tracker developers are not keen on accepting this228

change, since Tracker had a similar behavior in the past, and it was abandoned229

due to multiple problems. Therefore, this would probably produce a fork of the230

Tracker version in the middleware and it would be a huge increase on mainte-231

nance cost. In summary, Tracker managing multiple databases does not seem232

feasible for now.233

The proposed solution is to have a just a Tracker instance for each user, which234

holds both the metadata for private files belonging to the user and the metadata235

for public files.236

A drawback of this solution is the additional space needed, since the metadata237

for the public files is stored in each Tracker instance. Due to the local system238

storage in the automotive industry being very expensive, we could think there239

will not be really many public files to index. Additionally, the database space240

used to index those public files is really minimal (0.03% as shown in Table 1)241

and the number of potential users in a system is very reduced. In the case of242

removable storage files, that will be treated as public files. The solution for243

indexing and thumbnailing will be covered in Indexing database on removable244

device.245

Another drawback is the extra processing required to index the public contents246

for each user. There are also some risks about overloading too much the system247

in this case, but those could be managed in the Tracker scheduler.248

In the case of the thumbnails, it is possible to share the thumbnails objects,249

since they are stored in files. Also note a Tracker instance would need to run250

for every user logged in into the system; only Tracker Store and Tracker Miner251

though, not Tracker Extract which automatically shuts down when idle.252

To handle future privacy configurations, file permissions should be set accord-253

ingly, and Tracker configured to index files of all users. Thumbnails should be254

generated and stored in a central location where they could be retrieved by all255

Grilo instances. Also, AppArmor profiles should be probably tweaked to allow256

Tracker instances to read other users’files.257

Status. Satisfied.258

9

Database version management Requirement R6. The system should be259

able to cope with database version updates.260

Analysis. Database version updates is very tricky regarding Tracker, since the261

updates could happen in different levels:262

• SQLite database level. Every effort is made to keep SQLite fully back-263

wards compatible from one release to the next. Rarely, however, some264

enhancements or bug fixes may require a change to the underlying file265

format. There are two types of updates, and you can differentiate by266

comparing the version numbers of the old and new libraries.267

• First digit update on the version number. A reload of the database will be268

required. Therefore, the contents of the database has to be dumped into269

a portable ASCII representation using the old version of the library and270

then reload the data using the new version of the library. So we would271

need either a backup done with the old version or have the old version272

distributed to do a dump of the database. Last first digit change was on273

June 2004.274

• Second digit update on the version number. It is backwards compatible,275

so newer versions will be able to read and write older database files. But276

there is no guarantee of forward compatibility. Last second digit change277

was on July 2010. Provided we want to upgrade to the new version, the278

update of the database could be done with just the new version.279

• Tracker RDF mapping level and Ontology level. First is related280

with the mapping from RDF database model to a relational database281

model (SQLite in this case). Second is related with changes on the mod-282

els defining the domains, objects, its properties and links. Both of these283

changes are tracked by the Tracker database version. If the version is dif-284

ferent, then Tracker must perform a full re-index, as there is no backwards285

compatibility. However, by using the Tracker journal, it would just be like286

a reload of information, since the journal is like a log of all transactions287

done in the database. This does not guarantee all the information will288

be retained, since due to changes in the ontology, some data might be in-289

valid on the new model. There is also another way to cope with ontology290

changes, via ALTER TABLE directly in SQLite, but this requires some291

custom coding to be done and it is very complex to handle all the cases in292

ontology changes. The last time the Tracker database version was changed293

was in version 0.9.38 (February 2011). See Tracker storage.294

It is clear that changes in the Tracker database version is a larger risk than295

changes in SQLite. Let us analyze various scenarios:296

• If Tracker Store just holds indexing information, this could be regenerated297

by re-indexing, so there would be no real data loss on an database version298

update.299

• If Tracker Store keeps information entered by the user, like user tags, then300

10

it would be lost during a full re-index. To prevent this, an ad-hoc tool301

could be implemented to convert this information to the new database302

version.303

• Often the manufacturers or distribution maintainers decide to not deploy304

new changes on the ontologies to avoid these database update problems.305

Anyhow, some changes could be supported via some custom code, like306

adding / removing properties; but others affecting the domains or class307

hierarchy are much harder to handle. Each case of ontology change needs308

to be analyzed particularly.309

Solution. It is a bit of a case by case trade-off between storage space for the310

Tracker journal vs CPU time for re-indexing. Assuming we cannot use unlimited311

storage space on the device, then using the Tracker journal is not an option. The312

way to handle database version updates is to analyze them on a case by case313

basis. There are several points to evaluate like what is the impact of the update314

in the existing database, what type of data it is (generated data vs user data),315

and what solutions are possible to keep the data (either implementing ad-hoc316

tools to migrate data or make use of already available tools).317

See more details on Tracker Journal in Tracker storage.318

Status. Satisfied.319

Indexing database on removable device Requirement R7. Storage of320

the indexing information for removable storage in the removable storage itself.321

Analysis. The main motivation for this requirement is to avoid using the scarce322

expensive storage in the system. Here are some general problems and risks with323

this approach:324

• Data corruption. The user can disconnect the removable device at any325

time without properly syncing. For a holistic view on robustness see Ro-326

bustness document. See points below to consider:327

– Risk of corruption for user files and filesystem metadata. The device328

could have been ejected in the middle of a write operation. The329

device would not be usable unless its filesystem is recovered, and the330

user could lose some or all the files.331

– Journalled filesystems work more reliably, guaranteeing at least the332

filesystem will not be left in an inconsistent state. In any case, the333

user is the one who chooses the filesystem for its own USB flash334

devices, and not the system, so there is not much to do here since335

the FAT filesystem is typically the de facto standard used in USB336

flash devices, which is not a journalled filesystem. Another point is337

that USB flash devices are typically optimized for FAT filesystems.338

– Write cache disabling for the USB flash device decreases the data339

corruption risk, but the risk does not disappear. The user could340

11

still eject on the middle of a write operation. As a result of the341

disabled cache write operations will be slower. Additionally, USB342

flash manufacturers tend to lie regarding sync requests.343

– Note: the size of thumbnails has not been considered in this section,344

since the thumbnail storage is independent from the metadata stor-345

age. However, as we can see in the modeling spreadsheet, the size of346

the thumbnails is really significant, even more than the metadata size,347

so most probably it would make sense to store thumbnails and album348

art in the USB flash device. Therefore the risk of data corruption349

cannot be avoided in the end, just minimized.350

Solution. The alternative to use a dedicated metadata database in remov-351

able storage devices was discarded due to data corruption and maintainability352

problems. However, thumbnails and album art will be stored in the removable353

storage. That is a large portion of the metadata, and will help save local storage354

space.355

A single Tracker instance per user in local storage holding the metadata for356

media content in the USB flash devices.357

The thumbnails and album art will be stored in the USB flash device. As we358

saw before, any write to a USB flash device could end up into corruption if359

the user does not behave correctly. A check should be added when generating360

thumbnails to use local storage when the removable device is full.361

Note: In the current implementation, If the device does not have enough free362

space, thumbnails will be generated. Album art will be generated in the local363

storage cache.364

The disk space usage can be controlled by removing metadata of unmounted365

external devices when the disk space is low and/or when the DB size exceeds a366

given limit.367

Currently Tracker removes metadata only after 3 days, and when the disk space368

is low, the indexing engine simply stops. A trigger shall be added to remove369

metadata if the disk space is low, starting with data from removable storage370

devices.371

Also, the default for the database size limit is unlimited. A limit will be set, to372

prevent waste of local disk space, and the database will purge old data when373

the limit is hit.374

Status. Satisfied.375

Indexing Scheduling376

There are many specific requirements related with metadata extraction prioriti-377

zation. They will be analyzed in detail in the following subsections.378

12

The Tracker Scheduler will need modifications to be able to specify priorities379

as well as separate the operations on different stages. Additionally some extra380

hooks might be needed in order to provide hints from the browsing applica-381

tions. There are several ways to implement this prioritization. One way would382

be by an API that allows the application to explicitly give priority to certain383

operations or use cases. Another way would be a heuristic way based on recent384

queries done to the media framework. This automatic approach although ini-385

tially interesting looks a bit risky, as there could be unpredictable interactions386

between applications. See Tracker scheduling for more details on how Tracker387

Scheduling works in the upstream version.388

The following illustration shows an overview of how the scheduling and priorities389

of indexing operations works. There is a main component, the Tracker Filesys-390

tem Miner, feeding the task queues. Generating new tasks is based on previous391

queries, filesystem events (e.g. new file created) and as a result of crawling the392

filesystem. Tasks are consumed from the queues by different components in393

order, the lower the priority the first it gets executed. The priority of a task is394

determined by the type of task, which defines the queue where the task belongs.395

Additionally, tasks resulting from recent queries are normally placed in the front396

of the queue since they will most likely be a result of user interaction. Also note397

this design allows to do some configuration regarding the type of tasks and their398

priority, as well as test for other ideas during the development. Requirement399

R12 has more details about the abstraction of different types of tasks in the400

queues.401

13

402

Media Content Counters Requirement R8. Provide the number of items403

per content type as soon as possible.404

Analysis. To determine the number of items per content type, all files must be405

crawled first, and its mime type must be determined. It is not needed to do a406

full extract of metadata to determine the mime type, but in some cases it might407

be needed to read the first few bytes of a file (see Q&A for more details about408

determining the mime type).409

Tracker crawls the filesystem for new files to be indexed, and adds these files to a410

internal queue. Each time a file from the queue is processed, there are two steps.411

The first step, which is done by the Tracker filesystem Miner, gathers metadata412

from the filesystem attributes without actually inspecting the file contents. In413

a second step, more information is extracted by Tracker Extract by inspecting414

the file contents, which is a more expensive operation. These steps are done415

for every file processed. However to meet the requirements above, we would416

perform the first pass for all the items found before starting the second pass for417

every item.418

Solution. Collabora will add an option in Tracker’s configuration to enable two419

pass indexing. If enabled, tracker will first crawl the whole filesystem to store420

files’attributes but won’t try to get embedded information (e.g. MP3 metadata,421

14

etc). A boolean property will be added in Tracker’s database for files that need a422

2nd pass, so Tracker knows which files needs a 2nd pass when it is done crawling423

the filesystem. That property needs to be written into the database (and not424

only in-memory) so Tracker is able to correctly resume its indexing after a425

system reboot. Additionally, directories containing partially indexed files will426

be flagged (in memory), to avoid re-crawling the whole filesystem when doing427

the 2nd pass (a list of all partially indexed files would be too big and consume428

too much memory).429

This solution has been discussed with upstream developers and has great chances430

to be accepted.431

Status. Satisfied.432

Prioritized extraction per content type Requirement R9. prioritize433

metadata extraction per content type: first music play-list, music, video, pic-434

tures and documents. Default prioritization can be adjusted on run-time de-435

pending on user activity, e.g. if user starts browsing pictures.436

Analysis. Current Tracker scheduling does the metadata extraction in no spe-437

cific order.438

Solution. A D-Bus interface will be added on Tracker. That interface will be439

used by applications to tell Tracker about their current priorities. For example,440

a music application will ask Tracker to index “audio/*”mime-type first.441

If an application requests priority for a certain mime-type, Tracker will skip442

any other file while crawling the filesystem. Additionally, directories containing443

skipped files will be flagged (in memory), to avoid re-crawling the whole filesys-444

tem when Tracker is done indexing all files that have the priority (a list of all445

skipped files would be too big and consume too much memory).446

When Tracker is done crawling the whole filesystem, it will do the 2nd pass447

indexing (see 2.5.1) on the files that have the priority (e.g. if the music appli-448

cation is running, the 2nd pass is done only on audio files at this point). When449

done, it will do the 2nd pass on all files, ignoring the filters.450

If an external storage device is plugged while Tracker is doing the 2nd pass, it451

stops and crawls the new media first (doing first pass on prioritized files). When452

done, Tracker will resume doing the 2nd pass.453

If priorities changes while Tracker is doing the 2nd pass, it stops and crawl di-454

rectories where files have been skipped earlier. When done, Tracker will resume455

doing the 2nd pass.456

In summary, Tracker will do the 1st pass indexing (file attributes only, no em-457

bedded metadata) on prioritized files, then 2nd pass on prioritized files, then458

1st pass on not prioritized files, and finally the 2nd pass on not prioritized files.459

15

This solution has been discussed with upstream developers and has great chances460

to be accepted.461

Status. Satisfied.462

Selective prioritized extraction Requirement R10. Prioritize metadata463

extraction for certain files, e.g. music files currently shown to the user.464

Analysis. The goal is to influence the scheduling of extract operations in465

Tracker based on the user behavior. for example, If a user is browsing a specific466

folder in the filesystem, the metadata extraction of the files currently displayed467

to the user, must have priority over others. Additionally, the system could468

anticipate the needs of the user, by trying to extract metadata for next media469

content items in the page. This can be done by influencing the priority of extract470

operations in Tracker by checking the results of recent queries.471

Solution. The D-Bus interface proposed in 2.5.2’s solution will be extended to472

let applications give the priority on some specific files, in addition to the general473

mime-type priority.474

The following would be implemented as part of the solution:475

• Extract normal. The current behavior, that is without automatic prior-476

itization of extraction based on queries.477

• Extract recent. This will automatically request the metadata extraction478

for media content items returned in recent queries.479

• Extract next. This will automatically request the metadata extraction480

for media content items that would result in next page of recent queries.481

This setting will imply “Extract recent”as a dependency.482

• Extract thumbnail. This will automatically request the thumbnail com-483

putation for media content items returned in recent queries (or next page484

items if “Extract next”is also set).485

The application or SDK layer would be the responsible for enabling the settings486

more appropriate for every specific case. Alternatively, Grilo could have extract487

recent, new and thumbnails enabled by default. This is a trivial change that488

could be decided later on during the development phase.489

Solution needs to be discussed in more detail with upstream Tracker maintainers.490

Status. Satisfied.491

Selective prioritized thumbnailing Requirement R11. Prioritize492

thumbnails depending on user activity.493

Solution. This is already covered by requirement R10.494

Status. Satisfied.495

16

Multi pass metadata extraction Requirement R12. Iterative process496

for metadata extraction in multiple passes: blank entry just file names, textual497

information, graphical information like thumbnails, information from internet,498

etc.499

Solution. The proposed solution in 2.5.1 already describe 2 pass indexing. A500

third pass can be added the same way to create thumbnails, get information501

from internet, etc.502

The solution needs to be discussed in more detail with upstream Tracker main-503

tainers.504

Collabora proposes Tumbler to generate and manage the thumbnailings (but505

not scheduling the thumbnailing). In current version, Tumbler provides a D-506

Bus service with schedulers to manage the thumbnails. Tumbler does not do507

any crawling to look for contents to be thumbnailed; Tracker will request thumb-508

nailing operations to Tumbler. Although Tumbler has several schedulers to keep509

track of the thumbnailing requests with different priorities, it will be Tracker510

who takes care of the scheduling.511

Thumbnail calculation is particularly expensive in CPU and storage resources.512

See the table in Thumbnail management for more detailed information.513

Status. Satisfied.514

Concurrency configurable Requirement R13. The scope (e.g. quantity515

of extracted data) within one step, grabbing the data concurrent for multiple516

files.517

Solution. Tracker has a scheduler priority parameter which allows to issue new518

operations when the CPU is idle. Additionally there is an internal setting to519

set the task pool limit, which controls the number of concurrent tasks that can520

run at the same time. Currently this value is hard-coded to one, but it could be521

exposed via configuration or make it dependent on the number of cores in the522

system depending on Apertis’ needs. Additionally there is support to adjust the523

amount of work to do concurrently, in order to avoid overloading the system.524

This is set by the throttle parameter, which basically allows to specify how many525

extract operations can be carried per second (see Tracker miner for more details526

on throttle and scheduler priority).527

The operations handled by the scheduler have small granularity (a single file),528

so it is expected the whole system can react in time to get in / out from the529

idle state. The management of the idle status is done directly by the kernel,530

by setting the appropriate input / output priorities and CPU priorities to idle.531

Additionally, a specific cgroup could be set up to have more control over the532

resources used for media indexing.533

Solution needs to be discussed in more detail with upstream Tracker maintainers.534

Status. Satisfied.535

17

Thumbnailing536

Two-step thumbnailing Requirement R14. Provide an additional itera-537

tion to generate metadata which is not already embedded within the content,538

such as thumbnails for pictures. First, use a very fast algorithm (time beats539

quality). At a later time, use a better more time-consuming algorithm.540

Solution. This is dependent on requirement R12. The Thumbnailer service541

already supports several flavors for a thumbnail. It currently provides a normal542

and large size which could fulfill this requirement by using different algorithms543

for each size.544

Requirement R12 solution includes an abstract mechanism to add additional545

passes. The first and second pass for thumbnail extraction could be considered as546

additional passes to be configured in this abstract mechanism. This mechanism547

will provide enough flexibility to connect to different algorithms.548

Solution needs to be discussed in more detail with upstream Tracker maintainers.549

Status. Satisfied.550

Thumbnail resolution configuration Requirement R15. Resolutions for551

thumbnail flavors normal and high must be configurable.552

Analysis. Currently the resolution sizes are hard-coded in Tumbler source553

code.554

Solution. The list of flavors for thumbnails, as well as its resolution will be555

exposed through configuration files or via an API.556

Status. Satisfied.557

Thumbnailing algorithm configuration Requirement R16. The algo-558

rithm used for calculating the thumbnails must be configurable.559

Analysis. Currently Tumbler implements several plugins for thumbnail calcu-560

lation.561

Solution. It is possible to add new plugins with specific algorithms or modify562

existing plugins to use other algorithms. The algorithm used for thumbnailing563

should be configurable. As an example, see the list of algorithms available564

currently through gdk_pixbuf_scale() functions:565

• Nearest: nearest neighbor sampling. This is the fastest and lowest quality566

mode. Quality is normally unacceptable when scaling down, but may be567

OK when scaling up.568

• Tiles: this is an accurate simulation of the PostScript image operator569

without any interpolation enabled. Each pixel is rendered as a tiny par-570

allelogram of solid color, the edges of which are implemented with an-571

18

tialiasing. It resembles nearest neighbor for enlargement, and bilinear for572

reduction.573

• Bilinear: best quality/speed balance; use this mode by default. For en-574

largement, it is equivalent to point-sampling the ideal bilinear-interpolated575

image. For reduction, it is equivalent to laying down small tiles and inte-576

grating over the coverage area.577

• Hyper: this is the slowest and highest quality reconstruction function. It578

is derived from the hyperbolic filters in Wolberg’s “Digital Image Warping”579

.580

Status. Satisfied.581

DLNA (UPnP)582

Requirement R17. Browsing DLNA (Digital Living Network Alliance) media583

sources.584

Analysis. There will be a player application in the Apertis platform to access585

and control DLNA media sources. This application plays the role of Controller586

in DLNA spec, it would be able to browse the media collection of remote Media587

Servers. This information is provided by the Content Directory service on the588

Media Server. The information provided about media content includes metadata589

like name, artist, date created, size, album art, etc., as well as the protocols and590

data formats supported by the server for that particular content item.591

For more specific details on these topics see the UPnP AV (Universal Plug And592

Play Audio Video) architecture documentation1.593

Metadata indexing of media content in remote Media Servers is not required.594

Indexing is not desirable normally, since enough metadata is normally provided595

by the Content Directory service for browsing purposes, and local storage is596

scarce. Apart the amount of storage needed could be in practice very high due597

to the usage of remote sources.598

Providing the Media Server and Media Renderer roles are out of scope for this599

document of the Apertis platform.600

Solution. Collabora proposes the GUPnP framework to fulfill the requirements.601

The GUPnP library implements the UPnP specification: resource announce-602

ment and discovery, description, control, event notification, and presentation.603

On top of that, GUPnP*-*AV library is a collection of helpers for building AV604

(audio/video) applications using GUPnP. The GUPnP framework is licensed605

under LPGL v2.1 and it is written in C using GObject and libsoup. GUPnP is606

entirely single-threaded (though asynchronous) and integrates with the GLib2607

main loop.608

1http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1.pdf
2http://gtk.org/

19

http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1.pdf
http://gtk.org/
http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1.pdf
http://gtk.org/

Status. Satisfied.609

Online Media Sources610

Requirement R18. Access to online media sources.611

Analysis. Depending on the actual media source, the specific functionality612

and the API style provided will be different. For example, Google services like613

YouTube and Picasa are accessed through the Google Data Protocol. In general,614

most of these media sources are based on a REST based interface.615

Solution. With few exceptions, like libgdata for Google Data Protocol, there616

are not many good options in FOSS to access specific media source online617

providers. However, in the worst case scenario we could use librest and lib-618

soup, which are described in Librest and Libsoup.619

Status. Satisfied.620

Bluetooth AVRCP621

Requirement R19. Browsing of media content from Bluetooth devices.622

Analysis. Bluetooth AVRCP 1.4 allows to browse media contents in the Blue-623

tooth device. Indexing of this contents is not required.624

Solution. This can be implemented by using the BlueZ API. Exact status about625

AVRCP 1.4 implementation will be covered in more detail in Connectivity design626

document.627

Status. Moved to Connectivity design.628

Playability check629

Requirement R20. Playability check. Determine if a file is playable or not.630

Analysis. We want to avoid showing the user a file which cannot be played. It631

is not enough to do it through simple mime type checking, since this might lead632

to false positives. Minimal check for corruption and codecs is required.633

Solution. The playability has two steps:634

1) At indexing time. During the Tracker indexing process, Tracker Extract is635

able to extract information information about the mime type and audio / video636

codec for a media content file. Additionally Tracker Extract process should be637

able to mark the file in Tracker Store if any corruption is found on the file during638

the process of metadata extraction.639

As an example, during the process of thumbnail extraction for a video file some-640

thing similar happens, corruption or inability to decode a frame could be found641

when trying to decode a specific frame to use it as a thumbnail. This file would642

be marked as corrupted in Tracker Store.643

20

Although the last example was about a video file, this applies to other types as644

well, like audio files, and in general to any file where metadata extraction makes645

sense. The metadata extraction process will be responsible to mark those files646

as corrupted in the case it was not possible to extract metadata from them.647

Tracker has the flexibility to change or add new extract plugins. Therefore, it648

will be possible to customize or replace the plugins with more robust ones in649

case it is needed.650

2) At browsing time. There are some checks to do for media content files before651

showing to the user. Check the file is not marked as corrupted. Check the file is652

from a known mime type. Check a compatible decoder exists in the system for653

the codec of the audio / video file. The list of codecs available can be obtained654

through the GStreamer registry.655

There is an special case at browsing time, in the case where the required meta-656

data is not available yet (probably due to the reason the file has not been657

processed yet). In this case, the default would be to show the file until the658

metadata is retrieved.659

The solution comprehends changes in the two layers. Tracker (mostly Tracker660

Extract) for the metadata retrieved at indexing time. And also at a higher level661

for using the information and determine if the file is ultimately playable or not.662

Note that the system is not 100% safe, since to guarantee that we would have663

to decode all the frames.664

Additionally, applications will be able to mark specific files as non-playable for665

those cases playability cannot be determined until playback time.666

Solution needs to be discussed in more detail with upstream Tracker maintainers.667

Status. Satisfied.668

Appendix: Media Management Technologies669

This chapter is focused on describing the current status of the various technolo-670

gies, without really including the specific additions or modifications discussed671

on the requirements, which are covered in Solution. Therefore, some of the672

technologies do not fully obey the requirements yet in its current status, the673

modifications or additions needed to make them work as desired are described674

on Solution.675

Tracker676

Tracker3 is a semantic data storage for desktop and mobile devices. A semantic677

data storage is basically a central repository of user information, which stores678

relationships between pieces of data in a way that is re-usable among multiple679

applications.680

3https://tracker.gnome.org/

21

https://tracker.gnome.org/
https://tracker.gnome.org/

The concept is quite wide and applicable to different types of information like681

pictures, messages, etc. But this document is just focused on media content,682

the indexing of which is one of Tracker’s primary functions.683

This makes use of several existing technologies and standards:684

• Resource Description Framework (RDF4). RDF is a directed, la-685

beled graph data format for representing information, and is a W3C stan-686

dard.687

• SPARQL5 is a W3C standard defining a query language for databases,688

able to retrieve and manipulate data stored in RDF format.689

• Ontologies6. An ontology represents knowledge as a set of concepts690

within a domain, and the relationships between those concepts. It can be691

used to reason about the entities within that domain and may be used to692

describe the domain.693

• Nepomuk7 (Networked Environment for Personalized, Ontology-based694

Management of Unified Knowledge). Nepomuk is a research project, which695

defined a set of ontologies describing desktop entities like files, pictures,696

etc.697

Tracker is a data store, an indexer and a search engine that allows the user698

to find and link data easily. Tracker is typically used for searching the local699

storage. By default Tracker comes with several indexing services called “miners”700

. Tracker is made up of several components:701

• Tracker Storage. The data store and daemon to interface to Tracker’s702

databases.703

• Tracker SPARQL8. The libtracker-sparql library is the foundation for704

Tracker querying and inserting data into the data store based on the Nepo-705

muk ontology.706

• Tracker Miner9. The libtracker-miner library is the foundation for707

Tracker data miners. These miners will extract metadata and insert it708

in SPARQL form into the Tracker store, following the Nepomuk ontolo-709

gies. Developers can add new miners in order to index new data sources.710

• Tracker Extract10. The libtracker-extract library is the foundation for711

Tracker metadata extraction of embedded data in files. Tracker comes712

with extractors written for the most common file types (like MP3, JPEG,713

4http://www.w3.org/RDF/
5http://www.w3.org/TR/rdf-sparql-query/
6http://developer.gnome.org/ontology/0.12/
7http://www.semanticdesktop.org/ontologies/
8https://gitlab.gnome.org/GNOME/tinysparql
9https://gitlab.gnome.org/GNOME/localsearch

10https://gitlab.gnome.org/GNOME/localsearch

22

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://developer.gnome.org/ontology/0.12/
http://www.semanticdesktop.org/ontologies/
https://gitlab.gnome.org/GNOME/tinysparql
https://gitlab.gnome.org/GNOME/localsearch
https://gitlab.gnome.org/GNOME/localsearch
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://developer.gnome.org/ontology/0.12/
http://www.semanticdesktop.org/ontologies/
https://gitlab.gnome.org/GNOME/tinysparql
https://gitlab.gnome.org/GNOME/localsearch
https://gitlab.gnome.org/GNOME/localsearch

PNG, etc.). However, for rarer formats, it is possible to write plugins to714

extract the metadata.715

Ubuntu 12.04 currently has Tracker version 0.12.10, while the Apertis platform716

was using 0.10.6. During these versions many fixes have been done as well717

as some enhancements and improvements, but nothing really substantial. The718

performance of several components, specially the Tracker filesystem miner has719

improved in the 0.12 release. The limitations of Tracker are exposed in the720

context of the requirements in Solution.721

The preferences for each Tracker component can be managed through GSettings,722

although there is also a UI application which is not interesting in the scope of723

this project (tracker-preferences).724

Tracker Storage The Tracker storage is divided in several parts as shown in725

the following illustration.726

727

23

• The public libtracker-sparql is the API layer used by the applications728

to access the Tracker storage using SPARQL. Internally, it uses the D-Bus729

interface when writing access to the database is required. However, it730

allows a more direct access to the database for read-only access (through731

libtracker-data), which reduces the D-Bus traffic.732

• The Tracker store daemon (tracker-store) provides a D-Bus interface733

to access the RDF storage, and it also provides also a mechanism to notify734

when changes happen in the RDF storage.735

• libtracker-data is the library interfacing directly with SQLite database,736

used by both tracker store and libtracker-sparql.737

Below, there are listed the ontologies related with media content which are738

supported by Tracker:739

• Nepomuk File Ontology (nfo).740

• Nepomuk ID3 (nid3).741

• Nepomuk MultiMedia (nmm).742

See below more details about the storage needs required by Tracker:743

• SQLite11 database. The common configuration is to have separate744

Tracker storage for each user. However, this can be set up depending745

on the requirements of the platform, by changing environment variable746

XDG_CACHE_HOME, as the Tracker SQLite database is stored in747

$XDG_CACHE_HOME/tracker. Here are some rough numbers on748

SQLite database space usage:749

– Empty SQLite database. The database with initialized data, but750

without indexing files requires about 1.2 Mbytes.751

– Indexing Photos. As an approximate figure, our measurements show752

about 800 Kbytes of database size is used for every 500 photos (aprox.753

3 Gbytes of media). Note, the size in Gbytes is just an approximate754

figure, since the amount of metadata scales with number of media755

items and not with their size.756

– Indexing Music. As an approximate figure, our measurements show757

about 800 Kbytes of database size is used for every 300 mp3 songs758

(3 Gbytes of media).759

• Write Ahead Log (WAL12) files. The Tracker database is stored in760

SQLite using WAL. The WAL option allows better performance, concur-761

rency and reliability; at a cost of consuming extra disk space. This file is762

part of SQLite. which is limited to 10,000 pages maximum, i.e. max of 10763

Mbytes. Furthermore, this space used is temporal since it will get deleted764

11http://www.sqlite.org/
12http://www.sqlite.org/draft/wal.html

24

http://www.sqlite.org/
http://www.sqlite.org/draft/wal.html
http://www.sqlite.org/
http://www.sqlite.org/draft/wal.html

as soon as the the database is checkpointed, which happens automatically765

or when the limit is reached. There is an additional relatively small file for766

shared memory, but that is transient and it does not even use disk space,767

just memory.768

• Ontologies. The file ontologies.gvdb is stored in the same directory as769

the SQLite files. It is about 350 Kbytes, created on initialization. The770

size does not depend on the data indexed, but on the ontology models.771

• Tracker Journals. It stores all inserts, updates and deletes. Basically772

it is a file that grows without bound, a reason why it has received some773

criticism. It is meant for data redundancy and backup. The journal is also774

used to cope with ontology changes. It can be disabled at compile time.775

In fact, it was disabled on the Nokia N9, mainly due to the ever-growing776

problem and privacy. Tracker journal can be a reasonable choice for a777

desktop system, but in case of embedded devices it is better disabled. It778

is stored in the $XDG_DATA_HOME/tracker/data directory.779

Tracker Use Case Media in GiB Index in MiB Index in %
Empty database 0 GiB 11.5 NA
500 photos or 300 songs 3 GiB 12.3 0.4 %
5K photos or 3K songs 30 GiB 19.5 0.06%
5K photos and 3K songs 60 GiB 27.5 0.04%
83K photos and 50K songs 1000 GiB 277 0.03%

Tracker use cases for storage utilization780

Note: at the time of this writing, Ubuntu 12.04 was currently using SQLite 3.7.9781

(November 2011), while the latest stable version available is 3.7.10 (January782

2012).783

Here are some configuration parameters for the Tracker Storage:784

• Tracker DB Journal size. Size of the journal at rotation. By default785

50 Mbytes.786

• Tracker DB Journal rotate destination. Where to store the journal787

chunk when it hits the max size.788

Tracker Miner Tracker miners are responsible of finding content to index.789

Although in the context of this document we are normally just interested in790

files, it could be any resource able to be stored in Tracker. Tracker already791

comes with a filesystem miner. Additionally other miners can be implemented792

for specific data sources (either local or remote sources). Here are some config-793

uration parameters for the filesystem miner:794

• Startup wait time. Primarily to avoid prevent Tracker from heavily795

loading the system just after boot. By default 15 seconds.796

25

• Scheduler priority. Specifies the priority of indexing directories and797

files. There are three levels: when idle, first indexing on idle (default) and798

anytime.799

• Throttle. Controls the throttle of file indexing operations. This specifies800

to control the overhead indexing has on the system. Of course, it is a801

trade-off between system load and speed, but it can be tuned to make UI802

applications more responsive. It is a value between 0 and 20, the higher803

the slower. A value of 0 denotes “as fast as possible”(default), any other804

number N denotes 20/N indexing operations per second. These limits can805

of course be adjusted internally.806

• Low disk space limit. A configurable parameter to stop indexing in807

case of low free disk space. It is configurable between 0% (no limit) and808

100%. It is 1% by default.809

• Crawling interval. Specifies the interval in days to check whether the810

filesystem is up to date with the database. A value of -1 specifies the811

check should only be done on unclean shutdowns and -2 specifies this812

check should be disabled entirely.813

• Removable days threshold. Specifies the threshold in days after which814

metadata for files from removable devices will be removed if their filesys-815

tem is not mounted. Zero means never. Configured to 3 days by default.816

• File monitoring. Option to track filesystem changes directly in order to817

know what needs to be indexed.818

• File Writeback. Option to write information back in the files, e.g. meta-819

data retrieved from other sources or updated by the application, it can be820

stored back in the original file. It is limited to a few formats currently.821

• Index Removable Devices. Option to enable / disable the indexing of822

removable devices.823

• Index Optical Discs. Option to enable / disable the indexing of CDs,824

DVDs, and in general any optical media.825

• List of directories to index recursively. It can also refer to special826

XDG directories like Desktop, Documents, Download, Music, Pictures,827

Public, Templates and Videos.828

• List of single directories to index (non-recursively). Same notes as829

before.830

• List of ignored files. Filenames can be specified with wildcards.831

• List of ignored directories. Wildcards can be used to specify them.832

• List of ignored directories with content. Avoid any directory con-833

taining a file whose name is blacklisted in this list.834

26

The Tracker Miner Manager keeps track of available miners, their current835

progress/status, and also allows basic external control of them, such as836

pausing or resuming data processing. It controls the scheduling of the different837

operations through the configuration parameters already specified before. The838

miner only does the crawling operation for files and sequencing the metadata839

extraction scheduling. The actual metadata extraction is accomplished by840

Tracker Extract, described in the next section.841

The most widely used miner is the filesystem miner, responsible for indexing842

local files. Other miners exist like UPnP miner, which indexes UPnP servers.843

The way to create new filesystem miners will not be shown in this document,844

since there is no requirement for it in this project.845

See a general overview in the following illustration.846

27

847

Tracker Extract Tracker extract does the actual metadata extraction. It848

inspects the media content and it extracts metadata information, which is stored849

in Tracker Store. There is a list of the currently Tracker supported file formats13.850

It includes the main formats for all the media content types of interest (music,851

music playlist, video, picture, picture album and documents).852

Note: in some Tracker extract plugins like the GStreamer one, the actual for-853

mats able to be extracted depend on the specific GStreamer plugins installed854

on the system.855

13https://wiki.gnome.org/Projects/Tracker/SupportedFormats

28

https://wiki.gnome.org/Projects/Tracker/SupportedFormats
https://wiki.gnome.org/Projects/Tracker/SupportedFormats

The extract plugins are built as dynamic libraries which are load at run-time.856

There is a text file to configure what mime types an extract plugin understands857

and which library file is. There are two types of extract plugins, specific and858

generic. Specific extractors are preferred if they exist, otherwise generic ones859

are used (e.g. like audio/*).860

In case more formats need to be supported, they can be easily added to Tracker861

by implementing extra plug-ins. They are relatively simple to implement; the862

function tracker_extract_get_metadata() simply has to be provided. For863

more details, check the example in the Tracker Extract [documentation][Tracker864

Extract-doc].865

Tracker Extract is a D-Bus daemon with a very simple interface, to get metadata866

and to cancel existing tasks. Tracker Extract daemon can be configured to867

automatically shutdown when idle after a certain period of time, allowing to868

free resources. Also, it detects extract operations that take too much time and869

aborts them.870

These are the configuration options for Tracker Extract:871

• Scheduler priority. Specify the priority of extracting metadata. There872

are three levels: when idle, first indexing on idle (default) and anytime.873

• Max bytes. Maximum number of bytes to extract for text files. This874

is used just for text extraction (when full text search is enabled), since it875

can make grow the index database significantly. The default is 1 MByte,876

and the maximum 10 MBytes.877

Tracker Scheduling Tracker employs several background processes: Tracker878

Store, Tracker Miner and Tracker Extract. Tracker Miner and Extract do the879

heavier work in a autonomous way and they can potentially consume a lot of880

resources. Tracker Miner Manager controls and monitors Tracker Miners,881

scheduling all their operations, including crawling the filesystem and invoking882

metadata extract operations.883

Tracker Miner and Extract can have their CPU scheduling priority configured884

(as described before). Tracker Store daemon does not need its CPU priority885

configured since it works on demand; it must always be running and process886

any request by user apps or other processes. Additionally, all Tracker daemons887

have IO priority set to minimum, to interfere the least possible with other888

applications.889

The Tracker Filesystem Miner sets up a filesystem notifier with the directories890

to index. The filesystem notifier is responsible for finding the directories and891

files to index, and to monitor and notify of any changes. Tracker Filesystem892

Miner has several priority queues; one per type of operation. Tracker Miner893

processes items from these queues when it becomes idle. The priority of the894

types of operations from highest to lowest is: writeback operations, deleted895

items, created items, updated items, moved items.896

29

After the operation is removed from the queue, it gets added to the task pool897

while it is running. The length of the task pools is checked before adding new898

operations to it to avoid overloading the system. The items in the task pools899

are processed in several steps. Initially, the information is captured without900

inspecting the content files, properties like mime type, size, modification and901

creation time, etc. In a second step, a request is done to Tracker Extract to902

extract more information from the file.903

Thumbnails are not requested by the Tracker Miner Manager. But if a file with904

an existing thumbnail gets moved or deleted, the thumbnail will be updated too905

(so the thumbnail filename will get renamed or deleted too).906

Thumbnail Management907

The Thumbnail Managing Standard14 deals with the permanent storage908

of previews for file content. The Thumbnail Management D-Bus speci-909

fication15 is a standardized D-Bus API to deal with thumbnailing. This D-910

Bus specification is currently implemented by Tumbler, which has been already911

used successfully in consumer products like the Nokia N9 phone. With a D-Bus912

specification for thumbnail management, applications don’t have to implement913

thumbnail management themselves. If a thumbnailer is available they can dele-914

gate thumbnail work to a specialized service. The service then calls back when915

it has finished generating the thumbnail.916

Thumbnailing is an expensive operation. Therefore, it is meant to be requested917

by applications on-demand, i.e. If the application needs a thumbnail for a file918

it should request explicitly for it to the Thumbnailer service.919

Some features provided by the Thumbnailing service that can be interesting in920

our context:921

• Provide the ability to handle different thumbnail flavors (sizes). By default922

two flavors exist:923

1. Normal configured by default as 128x128.924

2. Large configured by default as 256x256.925

• Possibility to implement thumbnailers for closed formats or with cus-926

tomized features.927

• Complexity of a LIFO queue and setting I/O and scheduling priorities for928

background thumbnailing is no longer the responsibility of the application929

developer.930

• Extensibility with plug-ins. This is useful to support for additional file931

types or when different interpolation algorithms are required.932

There are several components in the Thumbnailer service:933

14http://specifications.freedesktop.org/thumbnail-spec/thumbnail-spec-latest.html
15https://wiki.gnome.org/DraftSpecs/ThumbnailerSpec

30

http://specifications.freedesktop.org/thumbnail-spec/thumbnail-spec-latest.html
https://wiki.gnome.org/DraftSpecs/ThumbnailerSpec
https://wiki.gnome.org/DraftSpecs/ThumbnailerSpec
https://wiki.gnome.org/DraftSpecs/ThumbnailerSpec
http://specifications.freedesktop.org/thumbnail-spec/thumbnail-spec-latest.html
https://wiki.gnome.org/DraftSpecs/ThumbnailerSpec

• Thumbnailer. Calculates the thumbnail for a specific file format.934

• Thumbnailer Manager. A register of available Thumbnailers is avail-935

able at runtime.936

• Thumbnail Cache. This avoids regeneration of thumbnails when files937

are copied or moved and cleans up the cache sporadically and when a file938

is deleted. This is managed automatically by Tracker Filesystem Miner.939

The thumbnails are stored in $XDG_CACHE_HOME/thumbnails/[SIZE]/(md5sum940

of original URI).png. Thumbnails for files on removable devices may instead941

be stored in a shared thumbnail repository on the removable device, as942

.sh_thumbnails/[SIZE]/(md5sum of original filename not including path).png,943

relative to the file. See §10 of the Thumbnail Managing Standard.944

One of the advantages of Tumbler is that the scheduler is abstracted, there945

are two options implemented: a background scheduler using a first-in-first-out946

(FIFO) queue and a foreground one using a last-in-first-out (LIFO) queue. Tum-947

bler has been used successfully in several environments including XFCE, Maemo948

and MeeGo. GNOME uses GnomeThumbnail API to generate thumbnails. EFL949

is using ethumb. Although there are not many differences between the differ-950

ent Thumbnailing services, Tumbler is one of the most advanced since it is a951

real service and not a library, and it provides scheduling features. Additionally,952

Tumbler comes packaged for popular distributions like Ubuntu and Fedora, and953

it has the extra advantage of being already integrated with Tracker, as we saw954

in previous section.955

Tumbler can be extended to support new thumbnails types as needed with956

plugins. There are already existing plugins for GStreamer, JPEG, font, a large957

collection of image formats (GDK pixbuf), PDFs (libpoppler), etc.958

See here16, to discover the mime types they currently support you959

need to navigate to their provider_get_thumbnailers implementation,960

for example gst_thumbnailer_provider_get_thumbnailers in http://gi961

t.xfce.org/xfce/tumbler/plain/plugins/gst-thumbnailer/gst-thum962

bnailer-provider.c963

Keep in mind that if a given format is not supported by Tumbler, support can964

be added through its plugin API.965

Video thumbnails can be generated using the GStreamer thumbnailing plugin.966

This plugin already provides an heuristic method to extract the thumbnail from967

a video stream, by selecting a frame with a wide distribution of colors (to avoid968

presenting a title screen or other essentially-blank frame).969

It is interesting to keep a look on the disk space utilization for thumbnails.970

After doing some measures, we found out that thumbnails occupy 13 kilobytes971

for 128x128 pixel size, and about 29 kilobytes for 256x256 size.972

16http://git.xfce.org/xfce/tumbler/plain/plugins/

31

http://git.xfce.org/xfce/tumbler/plain/plugins/
http://git.xfce.org/xfce/tumbler/plain/plugins/gst-thumbnailer/gst-thumbnailer-provider.c
http://git.xfce.org/xfce/tumbler/plain/plugins/gst-thumbnailer/gst-thumbnailer-provider.c
http://git.xfce.org/xfce/tumbler/plain/plugins/gst-thumbnailer/gst-thumbnailer-provider.c
http://git.xfce.org/xfce/tumbler/plain/plugins/gst-thumbnailer/gst-thumbnailer-provider.c
http://git.xfce.org/xfce/tumbler/plain/plugins/gst-thumbnailer/gst-thumbnailer-provider.c
http://git.xfce.org/xfce/tumbler/plain/plugins/

Thumbnail Use Case Media in Gb Thumbnail size in Mb normal + large = total Usage in %
500 photos 3 Gb 6.3 + 13.7 = 20 0.65 %
5K photos 30 Gb 63.5 + 141.6 = 205.1 0.67 %
166K photos 1000 Gb 2107.4 + 4701.2 = 6808.4 0.66 %

Thumbnail storage utilization973

Media Art Storage Media Art Storage17 provides a mechanism for appli-974

cations to store and retrieve artwork associated with media content, like music975

from an album, the logo for a radio station, or a graphic representing a podcast.976

The storage medium for artwork is the filesystem inside a user’s home direc-977

tory or in $XDG_CACHE_HOME/media-art/. Tracker manages and requests978

media art for the albums and artists.979

In some situations it is desirable to have a local media art repository (for example,980

for read-only media or for USB removable devices). The location for local media981

art will be a subdirectory named .mediaartlocal/ within the same directory as982

the album’s files.983

Tracker already checks for media art present in the indexed folders. Additionally984

it is able to request the downloading of album art to the album art provider985

installed in the system. There is already a FOSS album art provider example986

using Google Images, but it can be replaced by other implementations extracting987

album art from other sources just by implementing a D-Bus service with the988

interface com.nokia.albumart.Requester.989

Thumbnails of media art follow the Thumbnail Specification. The URI used990

to determine the thumbnail path is the full URI pointing to the original media991

art. For the path to the thumbnail refer to the Thumbnail Specification itself.992

A media art fetcher is allowed to store the normal and large thumbnails imme-993

diately after download of the media art is completed. A media art fetcher is,994

however, not required to do this by itself (the thumbnail infrastructure will or995

should take care of this if the media art is not thumbnailed yet).996

Grilo997

Grilo18 is a simple API for browsing and searching media content from various998

sources using a single API. Applications will be able to browse and discover999

media content by using the Grilo API. This API will provide media content1000

and its metadata, and GStreamer framework will be able to play video or audio1001

content (either local or remote).1002

A single, high-level API that abstracts the differences among various media1003

content providers, allowing application developers to integrate content from1004

17https://wiki.gnome.org/DraftSpecs/MediaArtStorageSpec
18https://wiki.gnome.org/Projects/Grilo

32

https://wiki.gnome.org/DraftSpecs/MediaArtStorageSpec
https://wiki.gnome.org/Projects/Grilo
https://wiki.gnome.org/DraftSpecs/MediaArtStorageSpec
https://wiki.gnome.org/Projects/Grilo

various services and sources easily. Grilo comes with a collection of plugins for1005

accessing various media providers, like Vimeo, Flickr, YouTube etc. so they can1006

be presented uniformly via the Grilo API. Additionally a grilo-tracker plugin1007

exists, which uses the Tracker service (described in past sections), to make media1008

indexed by Tracker available through the Grilo API.1009

There is an additional Grilo plugin for accessing the filesystem directly (grl-1010

filesystem), which checks for media content in a set of configured directories.1011

The defaults are the XDG user directories for pictures, music and videos.1012

Although Grilo can be used to access many media content sources, we suggest1013

only using it for accessing local media content. The next sections will dig into1014

Grilo’s details and its advantages. The main advantages of using Grilo instead1015

of Tracker directly for this specific use case:1016

• Tracker is a semantic data storage, which can be used to store other bits1017

of information apart of indexing information from media content like mes-1018

sages, calendars, etc. In other words, it is a very general framework usable1019

for many purposes. Therefore, it makes sense to provide a higher level1020

specialized API for media browsing (Grilo) on top of Tracker to hide its1021

complexity from media applications.1022

• Grilo has some plugins that might be useful to extract additional metadata,1023

e.g. album art from last.fm. Grilo is specially recommended for accessing1024

to metadata from the Internet, which is not meant to be indexed. In1025

addition, the platform could take advantage of future plug-ins which are1026

planned to be developed by the FOSS community like lyrics, moviedb.org,1027

etc.1028

• Grilo would support using an indexer other than Tracker if a better one1029

becomes available. More importantly, applications wouldn’t have to be1030

modified to take advantage of such a change.1031

See the following illustration for an overview of the Grilo Architecture. Note1032

the boxes with grey background are not going to be used in the context of the1033

Apertis project.1034

33

1035

Grilo Media Source Plugins The plugin must create at least one GrlMe-1036

diaSource instance, and register it in the Grilo registry. A GrlMediaSource1037

represents a particular source of media. These plugins provide several func-1038

tions:1039

• Search content by keywords.1040

• Browse the media content in a hierarchical way. It is similar to exploring1041

a filesystem, entering into folders (GrlMediaBox) and browsing files in it.1042

• Query allows access to content using service specific language. Normally1043

it provides additional filtering capabilities. This is used by applications to1044

support plugin-specific functionality.1045

• Metadata used to request additional metadata.1046

• Store (optional), supports to push content to the source.1047

• Remove (optional), to remove stored contents from the source.1048

• Supported keys provides information on which metadata keys are pro-1049

vided by the plugin. Typical metadata keys are: id, title, url, thumbnail,1050

mime, artist, duration.1051

• Slow keys (optional) provides info on which metadata keys are expen-1052

sive to gather. So the applications could just ask for non-expensive ones1053

normally, and only require the slow keys when details are required for a1054

particular media content.1055

• Media from URI. Gets GrlMedia from a URI. For example a file browser1056

may use this to get metadata for a specific file.1057

34

• Test Media from URI (optional). To check if the plugin can convert a1058

URI into a GrlMedia object.1059

• Notifications on changes on media content.1060

At least one of the content retrieval methods is expected to be implemented:1061

search, browse or query. Each media content result of the search/browse/query1062

is represented by a GrlMedia object.1063

Plugins should be implemented in a non-blocking way to have a smooth user1064

experience in applications. Also threads are not recommended; splitting work1065

into chunks using the idle loop is encouraged.1066

There is a standard set of metadata keys defined, but plugins can define their1067

own custom metadata keys.1068

A GrlMedia can have multi-valued properties; for example a YouTube video with1069

different resolutions (and thus, different URIs). It is also possible to associate1070

different properties with each URI of a GrlMedia.1071

Grilo Metadata plugins Grilo metadata source plugins do not provide ac-1072

cess to media content, but additional metadata information. An example would1073

be to provide thumbnail information for local audio content from an online1074

service.1075

This plugin must create at least one GrlMetadataSource instance, and register1076

it in the Grilo registry. The plugin provides several functions:1077

• Resolve retrieves additional information for a GrlMedia object.1078

• May resolve: to check if Resolve may be performed with existing infor-1079

mation.1080

• Set metadata (optional): set the play count or the last time a media1081

was played.1082

• Writable keys (optional): reports which keys can be stored.1083

• Supported keys: provides information on which metadata keys are pro-1084

vided by the plugin.1085

• Slow keys (optional): provides info on which metadata keys are expensive1086

to gather. So the applications can ask for inexpensive keys normally, and1087

only request the slow keys when details are required for a particular media1088

content.1089

• Cancel operations: cancels ongoing operations.1090

35

Google Data Protocol1091

YouTube, as well as other Google services like Picasa, use the Google Data1092

Protocol19. The Google Data Protocol is a REST-inspired technology for read-1093

ing, writing, and modifying information on the web. The protocol currently1094

supports two primary modes of access: AtomPub and JSON. The JSON is a1095

mapping of Atom items to JSON objects meant to be used for web applications1096

written in JavaScript.1097

The AtomPub mode is based on the Atom Publishing protocol, with names-1098

paced XML additions. Communication between the client and server is broadly1099

achieved through HTTP requests with query parameters, and Atom feeds being1100

returned with result entries. Each service has its own namespaced additions to1101

the GData protocol; for example, the Google Calendar’s API has specializations1102

for addresses and time periods.1103

Collabora proposes libgdata20, which is a library to allow access to web ser-1104

vices using the Google Data Protocol from traditional applications. Results are1105

always returned in the form of result feeds, containing multiple entries. How the1106

entries are interpreted depends on what was queried from the service, but when1107

using libgdata, this is all taken care of transparently. The main dependencies1108

of libgdata are libsoup, libxml and liboauth.1109

Other frameworks and applications are already using libgdata with success, e.g.1110

evolution-data-server, Totem’s YouTube plugin and Grilo’s YouTube plugin.1111

The library libgdata already provides an implementation for the GDataY-1112

ouTubeService21, which provides the following functionality:1113

• Query videos.1114

• Query videos related to a specific video.1115

• Query standard feed types: top rated, top favorites, most viewed, most1116

popular, most recent, most discussed, most linked, most responded, re-1117

cently featured and watch on mobile.1118

• Upload a video.1119

• Get categories.1120

Librest and libsoup1121

It is difficult to find libraries to access online media sources if they are not pro-1122

vided by the vendors themselves. However, most of these online media sources1123

are based on HTTP protocol with REST22 interfaces. Therefore, in general, [li-1124

19http://code.google.com/apis/gdata/
20http://developer.gnome.org/gdata/0.10/gdata-overview.html
21http://developer.gnome.org/gdata/0.10/GDataYouTubeService.html
22http://en.wikipedia.org/wiki/Representational_state_transfer

36

http://code.google.com/apis/gdata/
http://code.google.com/apis/gdata/
http://code.google.com/apis/gdata/
http://developer.gnome.org/gdata/0.10/gdata-overview.html
http://developer.gnome.org/gdata/0.10/GDataYouTubeService.html
http://developer.gnome.org/gdata/0.10/GDataYouTubeService.html
http://developer.gnome.org/gdata/0.10/GDataYouTubeService.html
http://en.wikipedia.org/wiki/Representational_state_transfer
http://code.google.com/apis/gdata/
http://developer.gnome.org/gdata/0.10/gdata-overview.html
http://developer.gnome.org/gdata/0.10/GDataYouTubeService.html
http://en.wikipedia.org/wiki/Representational_state_transfer

brest] and/or libsoup23 will be useful. Librest is a library designed to make it1125

easier to access web services that are designed in a “RESTful”manner. Libsoup1126

is an HTTP client/server library for GNOME. It uses GObjects and the glib1127

main loop, to integrate well with GNOME applications. Collabora can suggest1128

or provide advise for open-source ways for accessing these services on request.1129

This is the most effective way to access all the features.1130

Playlists support1131

Playlists are supported in Tracker. There is an specific Tracker Extract plugins1132

to handle playlists, which is using internally the Totem Playlist Parser24 li-1133

brary, which is conveniently abstracted and independent of Totem. Tracker1134

Extract introduces the metadata retrieved in Tracker Store using the class1135

nmm:Playlist, which is a subclass of nfo:MediaList. The entries in the playlist1136

are introduced as nfo:MediaFileListEntry.1137

The supported playlist formats in Totem Playlist Parser are: audio/x-1138

mpegurl, totem-plparser, audio/x-scpls, audio/x-pn-realaudio, application/ram,1139

application/vnd.ms-wpl, application/smil and audio/x-ms-asx.1140

Grilo does not support playlists in the latest stable version available, so this1141

feature would need to be added as specified in the requirements section.1142

Appendix: Questions & Answers1143

These chapter contains very specific questions that have been asked during work-1144

shops.1145

Q: Will asking for a specific prioritization during metadata extrac-1146

tion increase the load by running multiple indexing jobs ? A: No,1147

the Tracker scheduler will manage all metadata indexing operations in internal1148

queues, so prioritization will just change the sorting of the metadata indexing op-1149

erations, but not the overall system load. Note the scheduling system proposed1150

in this document is not implemented in Tracker yet. See Indexing scheduling1151

and Tracker scheduling for more details on prioritization and Tracker scheduling.1152

Q: How does the system know when to renew thumbnails ? A: When1153

a thumbnail is generated, some properties are stored inside it like the original1154

URI and the modification time of the original file. If the original file is modified1155

at some point, its modification time will get changed automatically by the Linux1156

filesystem. So, it is possible to know when a thumbnail is outdated. Additionally,1157

Tracker is monitoring the filesystem for changes. In case a file is modified,1158

added, moved or deleted its thumbnail will be automatically updated. Note:1159

this feature is not fully implemented yet, but it is part of the modifications1160

Collabora will implement.1161

23https://gitlab.gnome.org/GNOME/libsoup
24http://developer.gnome.org/totem-pl-parser/stable/

37

https://gitlab.gnome.org/GNOME/libsoup
http://developer.gnome.org/totem-pl-parser/stable/
https://gitlab.gnome.org/GNOME/libsoup
http://developer.gnome.org/totem-pl-parser/stable/

Q: How the mime type of the files is determined ? A: This is done1162

through glib, which finds out the mime type in a efficient way and it is used1163

extensively by all GNOME based software. The details of the algorithm used1164

can be seen in the Shared MIME Info Specification25, it has been designed to1165

be robust and efficient. The first thing done is to test the filename extension1166

to see if it is a recognized type. If this operation cannot be done or the result1167

is uncertain, a second check will be done using the first bytes of the file check-1168

ing for the signature of known files. For more details see g_file_query_info,1169

G_FILE_ATTRIBUTE_STANDARD_CONTENT_TYPE and g_file_info_get_content_type1170

in GNOME documentation.1171

Q: How the video thumbnailing works to avoid black video frames1172

or uninteresting frames in general ? A: From Thumbnail management:1173

“Video thumbnails can be generated using the GStreamer thumbnailing plugin.1174

This plugin already provides an heuristic method to extract the thumbnail from1175

a video stream, by selecting a frame with a wide distribution of colors (to avoid1176

presenting a title screen or other essentially-blank frame). Other ways could be1177

implemented if required, just by implementing a thumbnail plugin.1178

Q: How document thumbnailing works to avoid thumbnails of blank1179

pages ? A: The existing Tumbler plugins used to extract thumbnails from1180

Open/LibreOffice, PDF and Microsoft Office documents gets the thumbnail1181

stored inside the file. It is responsibility of the office applications to write a1182

proper thumbnail. Typically it is just the thumbnail of the first page of the1183

document, which usually is the best option since the first page contains the title1184

in bigger font sizes, cover of the document and logos. Any other approach is1185

debatable, so Collabora does not recommend to make thumbnails from only text1186

pages since they are less likely to be useful, thumbnailing normal text would1187

become unreadable.1188

Q: How the applications can store and retrieve the last time a1189

media file was played ? A: This functionality can be provided by the Grilo1190

metadata store plugin. The application must query the last values and set new1191

values through Grilo API. The media file is identified via the file URI. The1192

metadata store plugin stores these values in a Tracker database. It currently1193

supports the following values: last position where media item was played1194

(GRL_METADATA_KEY_LAST_POSITION), number of times a media1195

item has been played (GRL_METADATA_KEY_PLAY_COUNT) and last1196

date a media item was played (GRL_METADATA_KEY_LAST_PLAYED).1197

Grilo is making use of the properties already defined on the Tracker ontologies1198

like nfo:lastPlayedPosition, nie:usageCounter and nie:contentAccessed. A1199

benefit of using Grilo is that Tracker details are not exposed to the applications,1200

for example alternatively Grilo has another plugin to store these fields in a1201

25http://standards.freedesktop.org/shared-mime- info-spec/shared-mime- info-spec-
latest.html

38

http://standards.freedesktop.org/shared-mime-info-spec/shared-mime-info-spec-latest.html
http://standards.freedesktop.org/shared-mime-info-spec/shared-mime-info-spec-latest.html
http://standards.freedesktop.org/shared-mime-info-spec/shared-mime-info-spec-latest.html

separate SQLite database in case Tracker was not used, but the API to set and1202

get these properties would be the same.1203

Q: How a thumbnail is retrieved ? A: Thumbnails can be retrieved1204

through different ways depending on what specific APIs the application is1205

using. The best way for media applications would be through the Grilo API,1206

see grl_media_get_thumbnail and grl_media_get_thumbnail_binary_nth1207

(in case several thumbnails are available for a media item). Grilo API1208

is internally using glib library to retrieve this through g_file_query_info,1209

G_FILE_ATTRIBUTE_THUMBNAIL_PATH and g_file_info_get_attribute_byte_string.1210

Grilo API will need to be modified in case more thumbnails need to be stored1211

on the USB flash devices.1212

Q: How the system behaves on robustness on power loss ? A: This and1213

other questions on system robustness will be answered on a separate document1214

focused on system robustness. Anyway, please see chapter Indexing database1215

on removable device for an advance of some issues regarding USB flash devices.1216

Q: How a media file from a USB Flash device is identified ?1217

A: It is identified by its complete URI, e.g. /media/D8C0-024E/Joaquin1218

Sabina/Joaquin Sabina & Fito Paez - Llueve sobre mojado.mp3”. In some1219

systems, USB flash devices are mounted on a directory with a hex identifier1220

(depending on system configuration). This identifier is the UUID (Universally1221

Unique Identifiers), not the label of the USB flash device. It is generated when1222

the filesystem is created, and it is very. Generally it is a 128 bit identifier, but1223

some filesystems like VFAT have smaller resolution (32 bits).1224

Q: Is it configurable the timeout for Tracker extract operations ? A:1225

No, they are not currently, but it would be simple to make them configurable1226

for example through GSettings. There are two timeouts. A watchdog timeout1227

which is checks that the tracker extract process does not hang during metadata1228

extraction (by default set to 20 seconds). There is an additional idle timeout,1229

which stops a tracker extract process if it has been idle for some time (30 seconds1230

by default).1231

Q: Does Tracker retry in case Tracker Extract fails due to the watch-1232

dog timer ? A: By default, Tracker retries up to two times if a tracker extract1233

process fails. It will also retry in case the file is modified or the USB flash where1234

it is located is reinserted.1235

Q: Does Tracker store marks for the corrupted files ? A: Currently,1236

there is no property to identify corrupted files in Tracker. A file whose extract1237

process has failed due to corruption in the file, it would just have properties1238

from the nfo ontology (nepomuk file object), but it would not have properties1239

from other subclasses like nmm (nepomuk multimedia).1240

39

Q: There are reports of performance of page queries on Tracker1241

databases is negatively affected by the number of rows in the1242

database. Collabora to double check. A: Some tests running SPARQL1243

queries have been done with databases near 6000 items and the mentioned1244

problem was not reproducible (no performance problems found). Please1245

provide data set and application code reproducing this problem for further1246

investigation.1247

Q: Should Tracker be used for Radio Stations information ? A:1248

Tracker has already ontologies to store radio station information. So, it would1249

be possible to use it to store and retrieve the user favorite radio stations.1250

However, the interface to access and update this information would be through1251

plain SPARQL, which has a step learning curve for developers. Additionally,1252

the radio station information is not shared with other applications. The only1253

advantage of using Tracker would be that the global search would automatically1254

work for radio station information, so it would not be necessary to implement1255

an extra global search plugin to look for this info in another database. The1256

final decision must take into consideration how well the existing ontology for1257

radio stations (nmm:RadioStation26) is suited to Apertis’roadmap.1258

Q: What happens when a USB flash device is inserted in a USB port ?1259

A: When the user inserts an USB flash device, there are three main components1260

participating in the action:1261

• Linux kernel (including device drivers). The kernel will be able to com-1262

municate with the device as soon as it is powered up, initialized and1263

announced through the USB Bus.1264

• Udev27 is the device manager for the Linux kernel. Primarily, it manages1265

device nodes in /dev. It is the successor of devfs and hotplug, which1266

means that it handles the /dev directory and all user space actions when1267

adding/removing devices, including firmware load. The Udev daemon1268

listens to the netlink socket used by the kernel to communicate with user1269

space applications. The kernel will send a bunch of data through the1270

netlink socket when a device is added to, or removed from a system. The1271

Udev daemon catches all this data and will do the rest, i.e., device node1272

creation, module loading etc.1273

• UDisks28 (formerly known as DeviceKit-disks) lies on top of udev, and it1274

is an abstraction for enumerating disk and storage devices and performing1275

operations on them. It is is a replacement for part of the functionality1276

which used be provided by the now deprecated HAL (Hardware Abstrac-1277

26http://developer.gnome.org/ontology/0.14/nmm-ontology.html
27http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-

OLS2003.pdf
28http://www.freedesktop.org/wiki/Software/udisks

40

http://developer.gnome.org/ontology/0.14/nmm-ontology.html
http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf
http://www.freedesktop.org/wiki/Software/udisks
http://developer.gnome.org/ontology/0.14/nmm-ontology.html
http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf
http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf
http://www.freedesktop.org/wiki/Software/udisks

tion Layer). UDisks is a user daemon with D-Bus interface which gets1278

notifications from udev.1279

See the following table for an idea of what happens when a USB flash device1280

is inserted. The table provides a general idea about the timings for different1281

operations in the system. Note, although the timings are based on real mea-1282

sures, are not guaranteed since the all the software components have not been1283

completely built yet and timings depend on the actual hardware used.1284

Timeline (s) Delay (s) Event
0 - (1) User inserts a USB flash device in the system, one which has never been indexed before.
2.8 2.8 (2) UDisks daemon reports a USB flash device has been inserted via D-Bus. The user application could be autostarted at this point.
3.6 0.8 (3) UDisks daemon notifies the partition in the USB Flash has been mounted automatically. The filesystem is accessible from now on. Tracker Filesystem Miner will start crawling the filesystem.
4.9 1.3 (4a) Media files in the root directory of the USB flash device are shown to the user.
5.4 0.5 (4b) Tracker has finished crawling the filesystem to find out all entries in the filesystem. At this point we can have counters per media type. This timing measure was taken for a full file system scan of a 7 GiB used USB flash device with 1407 files organized in multiple directories. As we can appreciate, there is a high fixed cost in (4a), while the total scan cost (4b) is not so high.
6 0.6 (5a) Tracker Extract has metadata for the files that have been returned in the first page shown to the user.
46 40 (5b) Tracker Extract finishes gathering metadata for all files in the USB flash device (7 GiB, 1407 files). This gives a throughput of approximately 34 songs extractions/s.

Q: How does the monitoring of filesystem changes work in Tracker ?1285

A: The monitoring of changes in files and directories of the filesystem is handled1286

internally by Tracker Miner via the GFileMonitor29 API. Note GFileMonitor1287

is just an abstraction in glib, which abstracts the file monitoring functional-1288

ity, since there are several backends available implementing such functionality1289

depending on the specific operating system. Note, this mechanism is a very1290

efficient way to get notified about changes on the filesystem, since it is directly1291

provided by the kernel, instead of doing active polling. Linux uses the inotify1292

backend. For a more detailed view of the inotify API see the tutorial “Monitor1293

filesystem activity with inotify30”.1294

29http://developer.gnome.org/gio/unstable/GFileMonitor.html
30http://www.ibm.com/developerworks/linux/library/l-ubuntu-inotify/index.html

41

http://developer.gnome.org/gio/unstable/GFileMonitor.html
http://www.ibm.com/developerworks/linux/library/l-ubuntu-inotify/index.html
http://developer.gnome.org/gio/unstable/GFileMonitor.html
http://www.ibm.com/developerworks/linux/library/l-ubuntu-inotify/index.html

	Solution
	Technology and Solution Overview
	Local Storage Media Source
	Media Browsing Requirements
	Media Indexing Database Requirements
	Indexing Scheduling
	Thumbnailing
	DLNA (UPnP)
	Online Media Sources
	Bluetooth AVRCP
	Playability check

	Appendix: Media Management Technologies
	Tracker
	Thumbnail Management
	Grilo
	Google Data Protocol
	Librest and libsoup
	Playlists support

	Appendix: Questions & Answers

