
Interface discovery

Contents1

Use cases . 22

In other systems . 33

Security considerations . 34

Restricting who can advertise a given interface 35

Communication between consumers and implementors 46

Visibility of applications to other applications 47

Recommendation . 48

Selecting a preferred implementation 59

Enabling/disabling providers . 610

Restricting who can advertise a given interface 611

Communication between consumers and implementors 712

Visibility of applications to other applications 713

Various features on Apertis require a way to discover the applications and/or14

agents that implement a particular set of functionality. We refer to the “API15

contract”for this set of functionality as an interface.16

Use cases17

• A global search user interface1 requires a list of services that can act as18

“Auxiliary Sources”(see §6.2 in the Global Search design document). For19

example, a Spotify client might register itself as a search provider so that20

searching for a term in a global search will find artists or songs matching21

that term.22

• An application that will display a Sharing2 menu similar to the one in23

Android requires a list of applications with which files or data can be24

shared.25

• A navigation app, potentially from an app-store, obtains points of inter-26

est3 from a number of providers, again potentially from an app-store. In27

a “pull”model, the navigation app would consume the interface “points-28

of-interest provider”by sending queries to the implementors and getting29

results back, and the points-of-interest providers would implement that30

interface. Conversely, in a “push”model, the navigation app could im-31

plement the interface “points-of-interest sink”, and the points-of-interest32

providers could consume that interface by sending points of interest to33

each sink.34

• If more than one navigation app is installed (for example because an Aper-35

tis system includes the OEM’s own simple navigation solution, but it is36

possible to install premium navigation software from the app-store), a set-37

tings user interface to select the preferred navigation app might need to38

list all the possible navigation apps.39

1/images/apertis-global-search-design-0.3.2.pdf
2https://www.apertis.org/concepts/archive/application_security/sharing/
3https://www.apertis.org/concepts/archive/application/points_of_interest/

2

https://www.apertis.org/concepts/archive/application_security/sharing/
https://www.apertis.org/concepts/archive/application/points_of_interest/
https://www.apertis.org/concepts/archive/application/points_of_interest/
https://www.apertis.org/concepts/archive/application/points_of_interest/
/images/apertis-global-search-design-0.3.2.pdf
https://www.apertis.org/concepts/archive/application_security/sharing/
https://www.apertis.org/concepts/archive/application/points_of_interest/

• Interface discovery could potentially be used with the interface “is the40

preferred navigation app”to start the navigation app on-demand. If it is,41

it must be possible to mark one as preferred.42

• A navigation app could have a preferences dialog in which points of inter-43

est4 providers can be selected or deselected. It should not display points of44

interest from deselected providers, and should not waste system resources45

on receiving points of interest from those providers. However, if another46

application also consumes points of interest, disabling a points of interest47

provider in the navigation app should not prevent it from being used by48

the other application.49

• The platform could have a preferences dialog in which points of interest550

providers can be selected or deselected. If a POI provider is deselected51

here, POI consumers such as the navigation app should behave as though52

the deselected provider had not been installed at all.53

In other systems54

GNOME Shell’s search provider API6 relies on applications registering their55

support for the search provider “interface”by installing files in /usr/share/gnome-56

shell/search-providers. This is not ideally suited to a platform like Apertis57

with a strong division between the “platform”and “app bundle”layers, and does58

not generalize trivially (each interface would have to define its own location in59

which to place metadata files).60

The freedesktop.org Desktop Entry specification7 shared by GNOME, KDE and61

other open source desktop environments uses .desktop metadata files to store62

metadata about applications. It defines an Interfaces key8 whose value is a63

list of syntactically valid D-Bus interface names9. Each interface name may64

represent either a D-Bus interface, or any other “API contract”; there is no65

requirement that D-Bus is actually used.66

Security considerations67

Restricting who can advertise a given interface68

If arbitrary ISVs10 can publish app-bundles that advertise arbitrary interfaces,69

there is a risk that consumers of those interfaces would have an inappropriate70

level of trust in those app-bundles by assuming that only their own app-bundles71

can advertise “their”interfaces, for example “leaking”private information to them.72

4https://www.apertis.org/concepts/archive/application/points_of_interest/
5https://www.apertis.org/concepts/archive/application/points_of_interest/
6https://git.gnome.org/browse/gnome-shell/tree/js/ui/remoteSearch.js
7http://standards.freedesktop.org/desktop-entry-spec/latest/
8http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#in

terfaces
9http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-

interface
10https://en.wikipedia.org/wiki/Independent_software_vendor

3

https://www.apertis.org/concepts/archive/application/points_of_interest/
https://www.apertis.org/concepts/archive/application/points_of_interest/
https://www.apertis.org/concepts/archive/application/points_of_interest/
https://www.apertis.org/concepts/archive/application/points_of_interest/
https://git.gnome.org/browse/gnome-shell/tree/js/ui/remoteSearch.js
http://standards.freedesktop.org/desktop-entry-spec/latest/
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces
http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-interface
https://en.wikipedia.org/wiki/Independent_software_vendor
https://www.apertis.org/concepts/archive/application/points_of_interest/
https://www.apertis.org/concepts/archive/application/points_of_interest/
https://git.gnome.org/browse/gnome-shell/tree/js/ui/remoteSearch.js
http://standards.freedesktop.org/desktop-entry-spec/latest/
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces
http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-interface
http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-interface
https://en.wikipedia.org/wiki/Independent_software_vendor

Communication between consumers and implementors73

If a particular interface involves direct communication between a consumer and74

an implementor, then discovery is not sufficient: it is also necessary to ensure75

that the security model allows the consumer and the implementor to communi-76

cate. Conversely, if a particular interface forces all communication between a77

consumer and an implementor through a trusted intermediary, then it is nec-78

essary to ensure that the security model allows both the consumer and the im-79

plementor to communicate with the trusted intermediary, and that the trusted80

intermediary is able to determine that forwarding data between consumer and81

implementor will not violate the security model.82

The desired security model for this interface is that some subset of interfaces are83

considered to be public interfaces. Trusted platform components may list the84

implementors of any interface, public or not, and may initiate communication85

with those implementors. Store applications may list the implementors of public86

interfaces, and may initiate communication with the implementors of public87

interfaces, but cannot do the same for non-public interfaces.88

Visibility of applications to other applications89

Our security model does not consider it to be acceptable for app-bundles to90

be able to enumerate other app-bundles’entry points (with the exception that91

public interfaces may be enumerated). This implies that the implementation of92

get_implementations() (and the objects that it returns) must be done via IPC93

(most likely D-Bus) to a trusted service, which can read the .desktop files in94

XDG_DATA_DIRS/applications and apply appropriate filtering for the caller’95

s limited view of the system.96

Recommendation97

For each entry point in a Flatpak application bundle, we recommend98

that a freedesktop.org .desktop file is provided in the standard location99

/app/share/applications, containing the standardized Interfaces key as100

described above.101

This information should be made available to API users via a C API re-102

sembling GLib’s GAppInfo11 and GDesktopAppInfo12 APIs, in particular103

g_desktop_app_info_get_implementations()13. However, we recommend an104

asynchronous version of that API in order to support the implementation being105

via D-Bus. Specifically, it should look something like this, with Namespace106

replaced by some suitable API namespace:107

11https://developer.gnome.org/gio/stable/GAppInfo.html
12https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html
13https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html#g-

desktop-app-info-get-implementations

4

https://developer.gnome.org/gio/stable/GAppInfo.html
https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html
https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html#g-desktop-app-info-get-implementations
https://developer.gnome.org/gio/stable/GAppInfo.html
https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html
https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html#g-desktop-app-info-get-implementations
https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html#g-desktop-app-info-get-implementations

1

2

3

4

5

6

7

8

9

void namespace_app_registry_get_implementations_async (NamespaceAppRegistry *self,

 const gchar *interface_name,

 GCancellable *cancellable,

 GAsyncReadyCallback *callback,

 gpointer user_data);

/* Returns: (element-type GAppInfo) (transfer full): */

GList *namespace_app_registry_get_implementations_finish (NamespaceAppRegistry *self,

 GAsyncResult *result,

 GError **error);

where the result is a list of objects that implement the GAppInfo GInterface. If108

there is an order of preference, the most-preferred should come first. If there109

is no particular preference order, the implementation should use a predictable110

order, such as ordering by most-recently-used, most-recently-installed or alpha-111

betically.112

Either this could be implemented in terms of a D-Bus API, or it could have a113

D-Bus API based on it for access by non-C applications, for example:114

/* returns a list of pairs (desktop file ID, text of .desktop file) */115

org.apertis.Namespace1.GetImplementations(s interface_name) → a(ss)116

For interfaces (API contracts) that already have a system-wide registration117

mechanism, such as Telepathy connection managers, D-Bus session services and118

systemd user services, manual integration may be needed to ensure the registra-119

tion system is Flatpak-compatible.120

Selecting a preferred implementation121

Some of the possible use-cases for interfaces benefit from the concept of a pre-122

ferred implementation: for example, a navigation button should launch the pre-123

ferred (default) navigation application, and if points-of-interest providers have124

a “push”model, they should not start non-preferred navigation applications in125

order to push points of interest into those implementations.126

For other use-cases, having a preferred implementation is unnecessary: for ex-127

ample, for a Sharing menu, global search, or points-of-interest providers with a128

“pull”model, the natural design is to query all known implementations in parallel,129

possibly excluding some that have been disabled.130

We recommend addressing the question of a default/preferred implementation131

on a case-by-case basis (for example by introducing a platform setting for each132

interface that needs a preferred choice), and only developing a more general133

solution if experience demonstrates that it is needed in practice.134

For example, a preferred navigation application could be selected with an API135

like136

5

1

2

3

4

5

6

7

void namespace_app_registry_get_default_navigation_implementation_async (NamespaceAppRegistry *self,

 GCancellable *cancellable,

 GAsyncReadyCallback *callback,

 gpointer user_data);

GAppInfo *namespace_app_registry_get_default_navigation_implementation_finish (NamespaceAppRegistry *self,

 GAsyncResult *result,

 GError **error);

if required.137

The storage of preferred implementations should be considered to be an imple-138

mentation detail of the platform component that implements this platform API.139

For example, it could have a GSetting for each well-known interface, whose value140

is the string app-ID (D-Bus well-known name) of the preferred entry-point, or141

an ordered list of preferred entry-points with the most-preferred first.142

Enabling/disabling providers143

If a provider is disabled system-wide, the platform component that implements144

interface discovery must behave as though it was not installed at all when an-145

swering queries from other components. The storage of enabled/disabled imple-146

mentations can be considered to be an implementation detail of that component:147

for example it could store a string-list of disabled app IDs in GSettings. Unin-148

stalling a provider should probably remove it from that list, so that reinstalling149

the provider automatically enables it.150

If a provider is disabled for a particular consumer, we recommend that the con-151

sumer stores its own string-list of disabled app IDs, and filters the results of152

queries on the client-side, encapsulated in a library. This probably only makes153

sense for interfaces where the consumer will use all non-disabled implementa-154

tions.155

Restricting who can advertise a given interface156

We recommend that interfaces advertised by a provider should be restricted by157

app-store curators, as follows:158

• each ISV14 that will publish apps on the app-store registers one or159

more reversed-DNS prefixes with the app-store curator as part of their160

app-developer account (for example, Collabora Ltd.15 might register161

com.collabora and/or uk.co.collabora)162

• the app-store curator verifies the ISV’s ownership of the relevant domain163

names before accepting uploads from that ISV164

14https://en.wikipedia.org/wiki/Independent_software_vendor
15https://www.collabora.com/

6

https://en.wikipedia.org/wiki/Independent_software_vendor
https://www.collabora.com/
https://en.wikipedia.org/wiki/Independent_software_vendor
https://www.collabora.com/

• app-bundles published by the ISV may implement interface names in the165

namespace of those reversed-DNS prefixes without necessarily triggering166

extensive checking by the app-store curator (for example, Collabora Ltd.167

could publish an app-bundle implementing com.collabora.MyInterface)168

• a whitelist of known-“safe”interface names in shared namespaces such as169

org.apertis, org.freedesktop and org.gnome could also be implemented170

without necessarily triggering extra checks by the app-store curator (for171

example, an org.apertis.SharingProvider interface which adds the app to172

the Sharing menu might be considered to be “safe”for anyone to imple-173

ment)174

• all other interface names would be “red flags”leading to rejection or addi-175

tional checking by the app-store curator176

This implies that cooperating ISVs cannot invent their own interfaces without177

app-store curators’involvement.178

It is important to note that if the platform initially has this policy, it cannot be179

relaxed to “anyone may implement any interface”later. If it was, ISVs writing180

previously-correct code would potentially become susceptible to cross-app re-181

source access attacks (for example, if the ISV owning example.net had assumed182

that every implementation of net.example.MyInterface was necessarily trusted183

code).184

Communication between consumers and implementors185

App-bundles that implement public interfaces should ensure that their Flatpak186

permissions allow them to receive D-Bus messages from anywhere on the system.187

App-bundles that do not implement public interfaces should ensure that their188

Flatpak permissions do not expose any services that would allow D-Bus messages189

from anywhere outside the application, other than any needed platform services.190

Visibility of applications to other applications191

App-bundles’Flatpak permissions should not include unrestricted read access to192

any part of the filesystem that could list other app bundles or their information,193

such as ~/.var or the Flatpak repository.194

The implementation of the interface discovery should be done via D-Bus. The195

service providing this D-Bus API should be a platform component. It is con-196

sidered to be a trusted component for the purposes of security between app-197

bundles: it must reveal public interface implementations to other app-bundles,198

but must only reveal non-public interface implementations to trusted platform199

components.200

7

	Use cases
	In other systems
	Security considerations
	Restricting who can advertise a given interface
	Communication between consumers and implementors
	Visibility of applications to other applications

	Recommendation
	Selecting a preferred implementation
	Enabling/disabling providers
	Restricting who can advertise a given interface
	Communication between consumers and implementors
	Visibility of applications to other applications

