
Contacts

Contents1

Integrated Address Book Versus Alternative Solutions 32

Contact Sources . 33

Local Sources . 34

Bluetooth-paired phone . 35

Chat and Voice-over-IP Services 46

Web services . 57

SIM Card . 58

Read-only Operation for External Sources 59

Standard Behavior and Operations . 510

Contact Management . 511

Contact Aggregation and Linking 612

Local Address Book Management 613

Search . 614

Event Logging . 715

Caching . 816

Components . 817

Folks . 818

Telepathy . 1019

Evolution Data Server (EDS) . 1120

libsocialweb . 1121

SyncEvolution . 1122

Zeitgeist . 1123

Architecture . 1224

Accessibility of Contacts By Source 1225

User interfaces . 1226

Multiple Users . 1327

Storage considerations . 1328

Abstracting Contacts Libraries . 1329

This document outlines our design for address book contacts within the Apertis30

system. It describes the many sources the system can draw upon for the user’s31

contacts, how it will manage those contacts, which components will be necessary,32

and what work will be needed in the middleware space to enable these features.33

Contacts are representations of people that contain some details about that34

person. These details are often directly actionable: phone numbers can be35

called, street addresses may be used as destinations for the navigation system.36

Other details, such as name and avatar are purely representational.37

We propose a contact system which uses the Folks contact aggregator to retrieve38

contacts from multiple sources and automatically match up contacts which cor-39

respond to a single person. This will give a thorough and coherent view of one’40

s contacts with minimal effort required of the user.41

2

Integrated Address Book Versus Alternative Solutions42

The following design is based around the concept of a heavily-integrated address43

book which links together contacts from many contact sources, providing a44

common interface for applications to access these contacts. As presented below,45

the only available contacts which will not be fully-integrated into the common46

contact view will be contacts available on a paired Bluetooth device.47

The level of contact source integration is flexible. If it is preferred to limit48

contact integration to the local address book and chat/Voice-over-IP contacts to,49

for example, isolate Facebook or Twitter contacts in their own address book(s),50

to be accessed by a special library, Collabora is ready and able to adjust this51

design.52

Contact Sources53

There are many potential sources for contacts, as people’s contact details are54

frequently split over many services. The proposed system aggregates contacts55

from multiple sources in a way that is seamless to the user. See the Components56

section on Folks for more details of the components involved.57

Local Sources58

New contacts may be created locally by importing contacts from a Bluetooth-59

paired phone or a contact editor dialog (see User interfaces).60

These local contacts may contain a wide variety of detail types, including (but61

not limited to):62

• Full name63

• Phone numbers64

• Street addresses65

• Email addresses66

• Chat usernames on various services67

• User-selected groups68

• Notes69

Bluetooth-paired phone70

Synchronization Contacts may be simply synchronized to a Apertis system71

by means of a SyncML1 contact transfer from a phone paired with the Apertis72

system over Bluetooth. This operation is designed to intelligently merge fields73

added to contacts on the source phone to avoid creating duplicates.74

To manage complexity, this function will only be supported from a phone to75

the Apertis system, not the other way around. Systems which support two-way76

contact synchronization have a number of issues to contend with, including:77

1http://en.wikipedia.org/wiki/SyncML

3

http://en.wikipedia.org/wiki/SyncML
http://en.wikipedia.org/wiki/SyncML

• Contacts do not contain “last modified”time stamps, so it is rarely obvious78

how to resolve conflicts79

• “Fuzzy-matching”fields for cases of equivalent names or phone numbers is80

not consistently implemented across different systems (if it is implemented81

at all)82

• Even if equivalent fields are correctly matched, it is not clear which version83

should be preferred84

• Because conflict resolution may not be symmetrical between the two direc-85

tions of synchronization, the contacts in the two systems may never reach86

a stable state, potentially causing other side effects (such as duplicates on87

the phone)88

By limiting synchronization from the phone to the Apertis instance (with a89

“source wins”conflict resolution policy), we can avoid the aforementioned issues90

and more. This simpler scheme will also be easier for users to understand,91

improving the user exeperience.92

Synchronization will be performed automatically each connection of a phone to93

the Apertis system.94

Each phone device will receive its own contact address book on the Apertis95

system which will be created upon first connection and re-used upon subsequent96

connections. This is meant to make it trivial to remove old address books based97

upon storage requirements.98

Chat and Voice-over-IP Services99

Most chat and some Voice-over-IP (VoIP) services maintain contact lists, so100

these are another potential source of contacts. We recommend supporting con-101

tacts from audio- and video-capable services, such as Session Initiation Protocol102

(SIP), Google Talk, and XMPP. These contacts and their services provide an al-103

ternative type of audio call which users may occasionally prefer to mobile phone104

calls for purposes of call quality and billing.105

Additionally, contacts on some of these services may provide extended informa-106

tion, such as a street address, which the user might not otherwise have in their107

address book.108

Our system will cache these contacts and their avatars from the service contact109

list. This will allow Apertis applications to always display these contacts. When110

the user attempts to call a chat/VoIP contact while offline, the system may111

prompt the user to go online and connect that account to complete the action.112

From a user perspective, the configuration of chat and VoIP accounts within113

Apertis would be simple. In most cases, just providing a username and password114

will add that user’s tens or hundreds of service contacts to the local address book.115

For limited effort, this can significantly increase the ways the user can reach their116

acquaintances in the future.117

4

Web services118

The growing number of web services with social networking is yet another source119

of contacts for many users. Some services may provide useful contact informa-120

tion, such as postal addresses or phone numbers. In these cases, it may be121

worthwhile to include web service contacts (since implementation for some ser-122

vices already exist within Folks and libsocialweb.123

In the case of multi-seat configurations, it may also be worthwhile to support124

additional web services for entertainment purposes. Potential uses include play-125

back of contacts’YouTube videos, reading through contacts’Facebook status up-126

dates, Twitter tweets, and other use cases which do not apply to a driver due127

to their attention requirements.128

In general, web services require third parties access their content through a129

specially-issued developer key. In many cases, this will require to secure license130

agreements with the provider to guarantee reliable service as their terms of131

service change frequently (usually toward less access).132

Our system will cache these contacts and their avatars from the service contact133

list. This will allow Apertis applications to always display these contacts, even134

when offline.135

SIM Card136

Contacts may be retrieved from a SIM card within a vehicle’s built-in mobile137

phone stack. These contacts will be accessible from the Apertis contacts system.138

However, any changes to these contacts will not be written back to the SIM card.139

See Read-only operation for external sources.140

Read-only Operation for External Sources141

Modifications of contacts will be limited to Local sources. Depending upon the142

user interfaces created, users may be able to set details upon local contacts143

which may appear to affect external contacts such as web service contacts or144

Bluetooth-connected phone contacts. However, these changes will not actually145

be written to the corresponding contact on the external source.146

Standard Behavior and Operations147

Contact Management148

Our proposed system will support adding, editing, and removing contacts. New149

contacts will be added to Local sources. Though the Components which will en-150

able contact management already support these features, User interfaces needs151

to be implemented to present these functions to the user. Similarly, contacts152

will need to be presented as necessary by end-user applications.153

5

Contact Aggregation and Linking154

Contacts will be automatically aggregated into “meta-contacts”which contain155

the sum details amongst all sub-contacts. The criteria for matching up contacts156

will be:157

• Equivalent identifier fields –for instance, two contacts with the email158

address bob@example.com2 or phone numbers “+18001234567”and “1-800-159

123-4567”160

• Similar name fields –for instance, contacts with the full names “Robert161

Doe”, “Rob Doe”, and “Bob Doe”(which all contain variations of the same162

given name)163

This system will be careful to avoid matching upon unverified fields which would164

allow a remote contact to spoof their identity for the purpose of being matched165

with another contact. In a real-world example, Facebook contacts may claim to166

own any chat name (even those which belong to other people). If we automat-167

ically matched upon this field, they could, theoretically, initiate a phone call168

and appear to the user as that other person.169

The user will also be able to manually “link”together any contacts or, similarly,170

manually “anti-link”any contacts which are accidentally mismatched through171

the automatic process.172

Linking and anti-linking will be reversible operations. This will avoid a user173

experience issue found in some contact aggregation systems, such as the one174

used on the Nokia N900.175

Local Address Book Management176

The Apertis contacts system will support adding and removing local contact177

stores in an abstract way that does not assume prior knowledge of the under-178

lying address book store. In other words, to add or remove an underlying179

Evolution Data Server contact database, a client application will be able to use180

functionality within Folks and, indeed, not even need to know how the contacts181

are stored.182

Search183

This contact system will include the ability to search for contacts by text. Search184

results will be drawn from all available contact sources and will support support185

“fuzzy”matching where appropriate. For instance, a search for the phone number186

“(555) 123-4567”will return a contact with the phone number “+15551234567”187

and a search for the name “Rob”will match a contact named “Robert.”188

Each type of contact detail field supports checking for both equality (for example,189

“Alice”� “Carol”) and equivalence (for example, the phone number “(555) 456190

7890”is equivalent to “4567890”). This allows the contact system to add or191

2mailto:bob@example.com

6

mailto:bob@example.com
mailto:bob@example.com

change fuzzy matching for fields without needing to break API or treat certain192

field details specially based upon their names.193

Sorting and Pagination As a convenience for applications and potentially194

an optimization, the contacts system will support returning search results in195

sorted order (for example, by first name).196

Furthermore, the search system will support returning a limited number of197

results at a time (“paginating”the result set). This may improve performance198

for user interfaces which only require a small number of results at once.199

Event Logging200

Related to the contacts system, Collabora will provide an event logging which201

logs simple, direct communication between the user and their contacts. Sup-202

ported events include VoIP and standard mobile phone calls, SMS messages,203

and chat conversations.204

Events will include at least the following fields:205

• User Account ID –e.g., “+15551234567”, “alice@example.jabber.org3”206

• Contact service ID –the unique ID of the contact involved207

• Direction –sent or received208

• Event type –call, text message209

• Timestamp210

• Message content –for text messages of any type211

• Success –whether the call successfully connected, whether a text message212

was successfully sent213

The contact service ID can be used by applications to look up extended infor-214

mation from the contacts system, such as full names and avatars. These details215

can then be displayed within the application to provide a consistent view of216

contacts when displaying their conversations.217

Out of Scope Email conversations will be out of scope due to their relatively218

large message sizes and their common use for indirect conversations (such as219

mailing list messages, advertisements or promotions, social networking status220

updates, and so on).221

Messages exchanges with web service contacts will not be supported by default.222

However, the event logging service will allow third-party software to add events223

to the database. So events not logged by default by the middleware may be224

added by entirely third-party applications.225

3mailto:alice@example.jabber.org

7

mailto:alice@example.jabber.org
mailto:alice@example.jabber.org

Caching226

In general, contact sources will be responsible for maintaining their own cache227

in a way that is transparent to client applications.228

Opportunistic Caching It may be best to defer bandwidth-intensive opera-229

tions (such as full contact list and avatar downloads) until the Apertis system230

can connect to an accessible WiFi network (such as the user’s home or work231

network).232

Open Questions Will there be a general framework for libraries and ap-233

plications to check whether network data should be considered “cheap”or “too234

expensive”? And should the contacts system factor that into its network opera-235

tions?236

Most bare contact lists (not including avatars) have trivial data length. For237

example, my very large Google contacts list of 1,600 contacts only contains 171238

kilobytes of data. Common contact lists are substantially smaller than that.239

When factoring in avatars (for the first contact list download), contact list sizes240

can potentially reach a few megabytes in the worst case. This could be an241

unacceptable amount of data to transfer on a pay-as-you-go data plan. But242

at the same time, this is a relatively small amount of data and will only get243

relatively smaller as data service plans improve.244

Considering the factors above, would it be worthwhile for the contacts system245

to support opportunistically caching remote contact lists on bandwidth-limited246

networks?247

Components248

Folks249

Folks4 is a contact management library (libfolks) and set of backends for dif-250

ferent contact sources. One of Folks’core features is the ability to aggregate251

meta-contacts from different contacts (which may come from multiple back-252

ends). These meta-contacts give a high-level view of people within the address253

book, making it easy to select the best method of communication when needed.254

For instance, the driver could just as easily call someone by their SIP address255

as their mobile phone if they prefer it for call quality or billing reasons.256

The actively-maintained Folks backends include:257

• – Telepathy –Chat and audio/video call contacts, including Google258

Talk, Facebook, and SIP259

– Evolution Data Server (EDS) –Local address book contacts260

– libsocialweb –Web service contacts, including YouTube and Flickr261

4https://wiki.gnome.org/action/show/Projects/Folks

8

https://wiki.gnome.org/action/show/Projects/Folks
https://wiki.gnome.org/action/show/Projects/Folks

Many of these backends have associated utility libraries which allow client soft-262

ware to access contact features which are unique to that service. For instance,263

the Telepathy backend library provides Telepathy contacts, which may be used264

to initiate phone calls.265

Bindings The Folks libraries have native bindings for both the C/C++ and266

Vala programming languages. There is also support for binding any languages267

supported by GObject Introspection (including Python, Javascript, and other268

languages), though this approach has less real-world testing than the C/C++269

and Vala bindings.270

Required work As described in Contact aggregation and linking, our system271

will support automatic linking of contacts as well as anti-linking (for mismatched272

automatic links). Folks currently supports recommending links but does not273

yet act upon these recommendations automatically, so this would need to be274

implemented.275

Along with this, Folks will need the ability to mark contacts specifically as non-276

matches (by anti-linking them). There is preliminary code for this feature, but277

it will need to be completed for this functionality.278

In order to enable display of chat/VoIP contacts while offline, we will need to279

implement a chat/VoIP contact list cache within Folks. This will be similar to280

existing code for caching avatars, but simpler.281

Similarly, we will need to implement a web service contact cache to display web282

service contacts while offline.283

Search functionality in Folks is nearly complete but still needs to be merged to284

mainline5.285

Additionally, the ability to perform “deep”searches will require support for286

search-only backends6.287

The search functionality will also need to support sorting and pagination as288

described in Sorting and pagination before it can be merged upstream.289

Folks external contact sources will need the ability to be designated as290

“synchronize-only”or “keep-remote”. Contact sources designated as synchronize-291

only will be automatically synchronized as necessary (such as when a phone292

is connected over Bluetooth). Keep-remote sources will not be synchronized293

to the Apertis system and will only be accessible while the remote source is294

available (whether over a local or Internet connection).295

For Folks to access contacts stored on a vehicle’s built-in SIM card, we will need296

to write an oFono backend to retrieve the contacts from that hardware.297

5https://bugzilla.gnome.org/show_bug.cgi?id=646808
6https://bugzilla.gnome.org/show_bug.cgi?id=660299

9

https://bugzilla.gnome.org/show_bug.cgi?id=646808
https://bugzilla.gnome.org/show_bug.cgi?id=660299
https://bugzilla.gnome.org/show_bug.cgi?id=646808
https://bugzilla.gnome.org/show_bug.cgi?id=660299

Abstract contact address book creation and deletion within Folks will require298

new work.299

In case Opportunistic caching is required for the contacts system, this will need300

to be added as a new feature to Folks and its Telepathy and libsocialweb back-301

ends.302

Support for storing arbitrary data in contacts has not yet been implemented in303

Folks, but has already been discussed7 and will be implemented.304

Out of scope We recommend application logic for synchronizing an entire305

address book from a Bluetooth-paired phone be implemented in a new library306

or application on top of SyncEvolution (which we will provide in our Reference307

images). The contacts created in this process will automatically be stored as308

any other local contact.309

Speech-based search has been identified as a major use case for the address310

book software in Apertis. The text-based search portion of this use case will be311

supported by Folks; however, the parsing of audio data into a text for searching312

will be the responsibility of specific software above the middleware. Global313

search in general will be covered in the upcoming document “Apertis Global314

Search”.315

Collabora recommends to implement the voice search in whole or in part as a316

service daemon started automatically upon boot. This would allow dependent317

functionality, including Folks, to be initialized in advance of user interaction.318

This will be necessary to minimize latency between voice search and the display319

of results.320

Support for contact caching for abstract third-party backends certainly would321

be possible and would likely take the form of a vCard contact store. However,322

at this time, Collabora recommends not implementing this feature. We would323

much prefer to delay this until there exist at least two third-party Folks backends324

with which to test this functionality during development. This is primarily due325

to the risks involved with committing to an API. Once officially released, this326

API will need to be kept stable. So it is critical that the API be tested by327

multiple independent code bases before finalization. Furthermore, at this time,328

there exist no known third-party Folks backends. In the meantime, third-party329

backends could still implement opaque contact caches suited to their own needs330

and migrate to a centralized implementation if and when it is created.331

Telepathy332

The Telepathy8 communications framework, which Collabora created and main-333

tains, retrieves contacts for many types of chat services, including Google Talk,334

7https://bugzilla.gnome.org/show_bug.cgi?id=641211
8http://telepathy.freedesktop.org/wiki/

10

https://bugzilla.gnome.org/show_bug.cgi?id=641211
http://telepathy.freedesktop.org/wiki/
https://bugzilla.gnome.org/show_bug.cgi?id=641211
http://telepathy.freedesktop.org/wiki/

Facebook, XMPP, and most other popular chat services. It also supports sup-335

ports audio and video calls over SIP, standard mobile phone services, and the336

previously-mentioned chat services (depending upon provider).337

Evolution Data Server (EDS)338

Evolution Data Server is a service which stores local address book contacts339

and can retrieve contacts stored in Google accounts or remote LDAP contact340

stores. Contacts may contain all defined and arbitrary9 vCard10 attributes341

and parameters, which is a common contact exchange format in address book342

systems. This allows Folks to store and retrieve contacts with many types of343

details.344

EDS is the official address book store for the Gnome Desktop and has been345

used in Nokia’s internet tablet devices and N900 mobile phone. It has been346

the default storage backend for Folks since Gnome 3.2, which was released in347

September, 2011.348

libsocialweb349

In the case that we support web service contacts, libsocialweb will be the compo-350

nent that provides these contacts through its Folks backend. Note that exactly351

which web services can be used depends upon both implementation in libso-352

cialweb and license agreements with those services. See Web services for more353

details.354

SyncEvolution355

SyncEvolution11 is a service which supports synchronizing address books be-356

tween two sources. While it supports many protocols and storage services, it357

best supports synchronizing contacts from a SyncML client over Bluetooth to358

Evolution Data Server, which will be our primary contact store. Many mobile359

phones support the SyncML protocol as a means of contact synchronization.360

This method requires Bluetooth OBEX12 data transfer support, which is widely361

supported by most Bluetooth stacks, including BlueZ13.362

Zeitgeist363

Zeitgeist14 is open source event-tracking software that will serve as the Event364

logging service for Apertis. It is a flexible event store and uses external services365

9http://www.ietf.org/rfc/rfc2426.txt
10http://en.wikipedia.org/wiki/VCard
11http://syncevolution.org/
12http://en.wikipedia.org/wiki/OBEX
13http://www.bluez.org/
14https://zeitgeist.freedesktop.org/

11

http://www.ietf.org/rfc/rfc2426.txt
http://en.wikipedia.org/wiki/VCard
http://syncevolution.org/
http://en.wikipedia.org/wiki/OBEX
http://www.bluez.org/
https://zeitgeist.freedesktop.org/
http://www.ietf.org/rfc/rfc2426.txt
http://en.wikipedia.org/wiki/VCard
http://syncevolution.org/
http://en.wikipedia.org/wiki/OBEX
http://www.bluez.org/
https://zeitgeist.freedesktop.org/

to store their events in a central location. So, by its nature, it supports third-366

party applications without prior knowledge of them.367

Zeitgeist is committed to API stability in part because Ubuntu’s Unity user368

interface depends upon it.369

Required Work A simple service to monitor and send Telepathy chat and370

VoIP call events to Zeitgeist is in progress, so this work will need to be finished371

and merged upstream.372

Architecture373

In our recommended architecture, contacts applications will use libfolks directly.374

Libfolks, in turn, will use its Telepathy backend for chat and VoIP service con-375

tacts; Evolution Data Server backend for local contacts, and its libsocialweb376

backend for web service contacts.377

Not pictured in is the optional linking between the application and each backend’378

s utility library (for accessing service-specific contact features).379

Accessibility of Contacts By Source380

Contacts within this system are accessible on two levels: Meta-contacts, rep-381

resenting an entire person, are available for all contacts in the system. Each382

meta-contact contains at least one contact. For many use cases, applications383

can work entirely with meta-contacts and ignore the underlying contacts. For384

use cases requiring service-specific functionality, such as initiating an audio call385

with a Telepathy contact, applications can iterate through a meta-contact’s sub-386

contacts.387

Additionally, applications can access contacts for each user account. Each ac-388

count has a corresponding contact store containing only the contacts for that389

account. So, an application could be written to display only contacts from sin-390

gle account or service provider at a time (ignoring any parent meta-contacts if391

it instead wishes to work in terms of service contacts).392

User interfaces393

As Folks and Telepathy are a set of libraries and low-level services, they do394

not provide user interfaces. There exist a few open source, actively-maintained395

applications based upon Folks and Telepathy:396

• Gnome Contacts –an “address book”application which supports contact397

management and searching398

• Empathy –a chat application which provides a chat-style contact list and399

both audio/video call and chat handler programs400

Together, these components provide most contact functionality including:401

12

• Adding new contacts402

• Editing or removing contacts403

• Browsing/searching through contacts404

• Importing contacts from a Bluetooth-paired phone405

• Initiating and accepting incoming phone calls406

However, these applications are designed for use on a typical desktop environ-407

ment and do not suit the needs of an in-vehicle infotainment user experience.408

We recommend to examine these applications as real-world examples of contact409

applications which use the components we recommend for the Apertis contacts410

system.411

Multiple Users412

Each user in the system will have their own contacts database, chat/VoIP ac-413

counts, and web service accounts. Changes by one user will not affect the414

contacts or accounts of another user.415

Storage considerations416

The storage requirements for our proposed contacts system will be very modest.417

Storage of local address book contacts should be under a few megabytes for418

even large sets of contacts with up to several megabytes of storage for contacts’419

avatars.420

These storage requirements do not factor in files received from contacts.421

Abstracting Contacts Libraries422

In general, Collabora discourages direct, complete abstractions of libraries be-423

cause the resulting library tends to have fewer features, more bugs, and gives its424

users less control than the libraries it’s meant to abstract. Particularly, when ab-425

stracting two similar libraries, the resultant library contains the “least common426

denominator”of the original libraries’features.427

However, partial-abstraction “utility”libraries which simplify common use pat-428

terns can prove useful for limited domains. For instance, if many applications429

required the ability to simply play an audio file without extended multimedia430

capabilities, a utility library could dramatically simplify the API for these ap-431

plications.432

As such, Collabora recommends against abstracting Folks or Zeitgeist on a per-433

component basis as they are designed to be relatively easy to integrate into434

applications. But, for example, it would make sense to create a library or two435

which provide widgets based upon these libraries. This could create a contact436

selector widget based on top of Folks, allowing applications to prompt the user437

to pick a contact with only a small amount of code.438

13

Another recommended widget to add to such a library is a “type-ahead”contact439

selector as is common in many email applications. As the user types into a440

“To:”entry field, the widget would the Folks search capabilities to return a list441

of suggestions for the user to select from.442

14

	Integrated Address Book Versus Alternative Solutions
	Contact Sources
	Local Sources
	Bluetooth-paired phone
	Chat and Voice-over-IP Services
	Web services
	SIM Card
	Read-only Operation for External Sources

	Standard Behavior and Operations
	Contact Management
	Contact Aggregation and Linking
	Local Address Book Management
	Search
	Event Logging
	Caching

	Components
	Folks
	Telepathy
	Evolution Data Server (EDS)
	libsocialweb
	SyncEvolution
	Zeitgeist

	Architecture
	Accessibility of Contacts By Source

	User interfaces
	Multiple Users
	Storage considerations
	Abstracting Contacts Libraries

