
The Apertis application framework

Contents1

Creating a vibrant ecosystem . 32

The next-generation Apertis application framework 33

Application runtime: Flatpak . 54

Compositor: libweston . 75

Audio management: PipeWire and WirePlumber 76

Session management: systemd . 87

Software distribution: hawkBit . 88

Evaluation . 99

Focus on the development user experience 1310

Legacy Apertis application framework 1411

High level implementation plan for the next-generation Apertis12

application framework 1413

Flatpak on the Apertis images . 1514

The Apertis Flatpak application runtime 1615

Implement a new reference graphical shell/compositor 1616

Switch to PipeWire for audio management 1717

AppArmor support . 1718

The app-store . 1719

As a platform, Apertis needs a vibrant ecosystem to thrive, and one of the20

foundations of such ecosystem is being friendly to application developers and21

product teams. Product teams and application developers are more likely to22

choose Apertis if it offers flows for building, shipping, and updating applications23

that are convenient, cheap, and that require low maintenance.24

To reach that goal, a key guideline is to closely align to upstream solutions25

that address those needs and integrate them into Apertis, to provide to appli-26

cation authors a framework that is made of proven, stable, complete, and well27

documented components.28

The cornerstone of this new approach is the adoption of Flatpak, the modern29

application system already officially supported on more than 20 Linux distribu-30

tions1, including Ubuntu, Fedora, Red Hat Enterprise, Alpine, Arch, Debian,31

ChromeOS, and Raspian.32

The target audiences of this document are:33

• for Product Owners and Application Developers this document describes34

how the next-generation Apertis application framework creates a reliable35

platform with convenient and low maintenance flows for building, deploy-36

ing, and updating applications;37

• for Apertis Developer this document offers details about the concepts be-38

hind the next-generation Apertis application framework and a high level39

1https://flatpak.org/setup/

2

https://flatpak.org/setup/
https://flatpak.org/setup/
https://flatpak.org/setup/
https://flatpak.org/setup/

implementation plan.40

The goals of the next-generation Apertis application framework are:41

• employ state-of-the-art technologies42

• track upstream solutions43

• expand the potential application developers pool44

• leverage existing OSS documentation, tooling and workflows45

• reduce ongoing maintenance efforts46

The next-generation Apertis application framework is meant to provide a super-47

set of the features of the legacy application framework and base them on proven48

upstream OSS components where possible.49

Creating a vibrant ecosystem50

Successful platforms such as Android and iOS make the convenient availability51

of applications a strategic tool for adding value to their platforms.52

To be able to build an adequate number of applications with acceptable quality,53

the entire platform is designed around convenience for developing, building,54

deploying, and updating applications.55

Given the relatively small scale of Apertis when compared to the Android and56

iOS ecosystems, the best strategy is to align to the larger Linux ecosystem, and57

Flatpak is the widely adopted solution to the previously listed challenges.58

However, what makes Flatpak particularly compelling for Apertis is that Flat-59

pak effectively creates a shared development ecosystem that crosses the distri-60

bution boundaries: while the fact that being automatically able to run any61

desktop Flatpak on Apertis is an amazing technological feat, the biggest benefit62

for Apertis is that by joining the Flatpak ecosystem the skills developers need63

to learn to develop applications for Apertis become the same as the ones needed64

to write applications aimed at all the mainstream Linux desktop distributions.65

This significantly expands the potential developer pool for Apertis, and ensures66

that the easily available online documentation and workflows to build appli-67

cations for the main Linux desktop distributions also automatically apply to68

building applications for Apertis itself.69

The next-generation Apertis application framework70

The next-generation Apertis application framework is a set of technologies bring-71

ing applications to the state-of-the-art of security and privacy considerations.72

With the use of modern tools, the framework is meant to grant to the user strict73

control over its data. Applications are meant to be run contained, and can talk74

with each other and with the rest of the system only using dedicated interfaces.75

The containment is designed to keep the applications on their restricted envi-76

ronment and prevents to modify the base system in any way without being77

3

explicitly granted to do so.78

Whenever possible, applications have to define upfront their requirements to79

access privileged resources, be it to share files across application or to get In-80

ternet access. It is up to the app store maintainers2 to review and ensure that81

the requested access is sensible before it reaches final users. For other more82

dynamic privileged resources, authorization can be granted at runtime thorugh83

explicit user interaction, usually via dedicated interfaces called “portals”.84

Flatpak provides those guarantees by using the kernel namespacing and control85

groups subsystems to implement containers similarly as what Docker does. Por-86

tals are then implemented as D-Bus interfaces that application can invoke to87

request privileged actions from inside their sandbox.88

Access to the graphical session both to render the application contents and to89

manage input from users is managed securely by a Wayland compositor.90

Audio policies are extremely important for Apertis, specially so in automotive91

environments, and PipeWire provides an excellent foundation to handle those92

by providing the tools to wire applications to the needed resources in a secure93

and customizable way.94

Launching applications, agents, and other services happens through systemd,95

which in charge to run both the system and the user sessions. Systemd provides a96

wide set of options to further secure services3, track their resource consumption,97

ensure their availability, etc.98

2https://www.apertis.org/policies/contributions/#the-role-of-maintainers
3https://gist.github.com/ageis/f5595e59b1cddb1513d1b425a323db04

4

https://www.apertis.org/policies/contributions/#the-role-of-maintainers
https://gist.github.com/ageis/f5595e59b1cddb1513d1b425a323db04
https://www.apertis.org/policies/contributions/#the-role-of-maintainers
https://gist.github.com/ageis/f5595e59b1cddb1513d1b425a323db04

systemd sandbox

systemd sandbox

D-Bus systemd sandbox

Application

Flatpak portals

Session services (e.g. Tracker)

systemd sandbox

Application

AppArmor sandbox

Compositor

PipeWire

WirePlumber

Display

Input
devices

Audio
devices

User
data

AppArmor sandbox

Flatpak sandbox

Flatpak sandbox

AppArmor sandbox

AppArmor sandbox

systemd sandbox

AppArmor sandbox

systemd sandbox

AppArmor sandbox

systemd sandbox

AppArmor sandbox

99

Application runtime: Flatpak100

Flatpak is a framework with the goal of letting developers to deploy and run101

their applications on multiple Linux distributions with little effort. To do so,102

it decouples the application from the base OS: this decoupling also allow an103

application to be deployed with no changes on different variants of the same104

base OS, different versions of the same base OS or even be deployed alongside105

another application which need an incompatible set libraries.106

Decoupling the base OS from applications is particularly valuable for Apertis107

since it allows applications to be deployed seamlessly over multiple variants108

while minimizing the set of components shipped in the base OS.109

Another interesting effect of the decoupling is that the release cycles of applica-110

tions are no longer tied to the one of the base OS: while the latter needs to go111

through a longer validation process, applications can release much faster and in112

a completely independent way.113

Applications as made by the developer114

5

A Flatpak application is a self-contained application based on a runtime, ensur-115

ing that the user runs the application the way it has been meant by the developer116

without depending on what is currently installed on the user machine.117

Secure by design118

A Flatpak application run confined under a restrictive security sandbox. Up-119

dates for the application can be done quickly and atomically or according to120

any system-wide policy. As Flatpak is vendor-agnostic, it allows ensuring that121

the applications are genuine by signing the applications and the source store.122

Flatpak at the moment does not support AppArmor to further confine applica-123

tions. Since Apertis makes heavy use of AppArmor to protect its service, we124

plan to add AppArmor support to Flatpak to add another layer of defense to125

keep applications confined and prevent them from doing unwanted changes to126

the base operating system.127

Privacy128

Every application ship with a security profile that describes the requirements129

of the application and explicit consent from the user is needed to get access to130

any service not described by the security profile.131

Integrated into the environment132

Flatpak is providing the latest standards for building applications: using re-133

versed DNS domain name notation, AppStream and Desktop specifications from134

FreeDesktop.org developers have a complete control over the metadata of their135

applications and have the suitable tools to provide rich information describing136

their application.137

Efficient and lightweight138

Flatpak is very efficient and doesn’t require to spend time configuring a het-139

erogeneous set of tools to work on a system. With libostree at the heart of140

Flatpak, cutting-edge technology is used to reduce its footprint by the use con-141

tent deduplication. The deduplication results in consuming less disk-space and142

less network bandwidth.143

Release at your own pace144

Flatpak decouples applications from the underlying Operating System, so that145

they can follow different release schedules minimizing the impact of conflicting146

changes: applications in Flatpak rely on basic set of libraries called runtimes147

that shield them from the actual libraries used by the OS. OSTree helps to148

keep this redundancy under control, minimizing the storage consumption by149

de-duplicating items in common. Runtimes help to keep the base OS lean and150

minimal as non-core libraries can be moved closer to the applications that need151

it, and thus development and validation can happen faster. On the application152

side, new versions of basic libraries can be used without fearing regressions on153

other applications, reducing the time to market.154

6

Compositor: libweston155

The compositor is the boundary between applications and the actual human-156

machine interface: it is responsible of mediating access to the screen and to the157

input devices, guaranteeing that each application only get the input commands158

directed to it and can’t read or interfere with the resources assigned to other159

applications.160

The next-generation Apertis application framework continues to rely on the161

Wayland protocol to let applications talk to the compositor in a secure, efficient,162

and well-supported way.163

The compositor is meant to be agnostic of the UI toolkit applications use, and164

by sticking to the commonly implemented Wayland interfaces it supports the165

main OSS UI toolkits out of the box, even running at the same time, with no166

custom code being required on the application side.167

While applications targeting the next-generation Apertis application framework168

should work with any compliant Wayland compositor implementing the most169

common extensions, Apertis plans to provide a reference compositor that aims170

to be customizable for the different non-desktop use-cases targeted by Apertis.171

The main requirement for the reference compositor is to be based on libweston,172

as this library is a valuable asset of reusable code for compositors originating173

from the Weston project.174

A good starting point for the compositor reference implementation is to use the175

agl-compositor4 project because it was purposely built as a reference implemen-176

tation. Ease of coding was a design goal, and it is expected that both the client177

shell and the compositor itself are easy to understand and modify. The code178

base is small, trim, maintained and is currently evolving.179

Additional features includes support to clients using XDG shell protocol, and an180

example of a compositor private extension that allows the client shell to provide181

additional roles to surfaces.182

Another option for the reference compositor is the Maynard5 project. Unfortu-183

nately the project is not currently maintained, and it’s internal architecture is184

outdated: it builds Weston plugins out of tree which was the recommended way185

before libweston existed. The main issue of using Maynard is that because it is186

not maintained upstream, we would need to maintain it ourselves.187

Audio management: PipeWire and WirePlumber188

Applications should be able to play sounds and capture the user speech if they189

desire to do it, but the system need to guarantee that:190

• applications cannot interfere with the audio streams of other applications;191

4https://gerrit.automotivelinux.org/gerrit/admin/repos/src/agl-compositor
5https://gitlab.apertis.org/hmi/maynard

7

https://gerrit.automotivelinux.org/gerrit/admin/repos/src/agl-compositor
https://gitlab.apertis.org/hmi/maynard
https://gerrit.automotivelinux.org/gerrit/admin/repos/src/agl-compositor
https://gitlab.apertis.org/hmi/maynard

• access to the audio captured by microphones is granted only on explicit192

authorization by the user whenever possible;193

• on a multi-zone setup like on some cars, sounds are emitted in the zone194

where the application is displayed;195

• important messages can be emitted in clear, audible way even if other196

applications are already playing multimedia contents, by pausing the other197

streams whenever possible or mixing the streams at different volumes.198

PipeWire is the current state-of-the-art solution for secure and efficient audio199

routing. Applications can use it natively, from GStreamer, or via the ALSA and200

PulseAudio compatibility layers, and it is designed to work well when combined201

with the Flatpak sandboxing capabilities.202

Since PipeWire does not include any default policy engine, a separate compo-203

nent is in charge of setting up the connections between the PipeWire nodes204

to ensure that the system rules are enforced. The WirePlumber6 project from205

AGL implements such policy service with goals and restrictions aligned to the206

ones for Apertis.207

Session management: systemd208

While not directly exposed to applications, session management is a fundamental209

part of the application framework with the purpose of:210

• launching applications upon user request from the graphical launcher;211

• running headless agents;212

• activating session services needed by applications and agents;213

• monitor the life-cycle of applications and services;214

• enforce resource tracking on applications and services.215

The systemd user session system provides the currently most advanced solution216

to the above problem space, with the Apertis legacy application framework217

already making use of it and other mainstream environment like GNOME being218

in the process of completely switching to systemd to manage their sessions.219

Software distribution: hawkBit220

For software distribution use-cases Apertis supports Eclipse hawkBit, a domain221

independent back-end framework for rolling out software updates to constrained222

edge devices as well as more powerful controllers and gateways connected to IP223

based networking infrastructure. This software distribution has to be enhanced224

to gain flatpak support.225

With Flatpak, bundle repositories can be created and configured as needed, and226

a single system can fetch applications from multiple repositories at the same227

time.228

6https://gitlab.freedesktop.org/gkiagia/wireplumber

8

https://gitlab.freedesktop.org/gkiagia/wireplumber
https://gitlab.freedesktop.org/gkiagia/wireplumber

Apertis will offer a reference instance where application can be shared and made229

available to all the Apertis users, to foster collaboration and to provide a rich230

set of readily available applications.231

Downstreams and product teams can set up their own instance to publish ap-232

plications intended for a more limited audience.233

The Apertis reference store also builds on top of the Apertis GitLab code hosting234

services to define a reproducible Continuous Integration workflow to automati-235

cally build applications from source and publish them to the app store.236

Once the quality assurance has validated a specific version of an application, an237

easy way is provided to the developer to publish the Apertis hawkBit instance.238

To ensure a good quality of service, and to be certain that the service matches the239

expectations, Apertis core applications may themselves be shipped as Flatpak240

bundles over the Apertis hawkBit instance.241

Evaluation242

The next-generation application framework matches all the requirements that243

have driven the development of the legacy application framework.244

In particular, in no way the next-generation application framework results in245

a loss of functionality or features: it instead builds on top of mature, proven246

technologies to expand what it is possible with the legacy framework, adapting247

to the evolving state-of-the-art application ecosystem on Linux.248

The application framework is compliant with the current requirements of the249

Apertis platform for system services7, user services8, and graphical programs9.250

It relies heavily on the freedesktop.org specifications that specify where appli-251

cations can store their data with different guarantees, how their metadata is to252

be encoded, and how they can best integrate with the system.253

Flatpak uses libostree to implement robust application updates and rollbacks,254

efficiently using network bandwidth and local storage. Updates are signed and255

the alternative signing mechanisms developed by Apertis for its system updates256

can be used to avoid the GPL-3 issues related to the use of GnuPG.257

The requirement of having a security boundary between applications is ad-258

dressed by the use of the control group and namespacing kernel subsystems.259

The use of AppArmor can be introduced to add another layer of defense to the260

already strong security provisions Flatpak offers. Flatpak also let applications261

to be installed per-user, increasing the separation on multi-user systems.262

Application data and settings are stored inside the application sandbox, ensuring263

that they are stored securely, that they can be managed easily for rollback264

7https://www.apertis.org/glossary/#system-service
8https://www.apertis.org/glossary/#user-service
9https://www.apertis.org/glossary/#graphical-program

9

https://www.apertis.org/glossary/#system-service
https://www.apertis.org/glossary/#user-service
https://www.apertis.org/glossary/#graphical-program
https://www.apertis.org/glossary/#system-service
https://www.apertis.org/glossary/#user-service
https://www.apertis.org/glossary/#graphical-program

purposes, and that applications are free to chose any mechanisms to manage265

them.266

App bundle contents267

The Flatpak application bundle contents10 is a well-defined application layout268

that largely matches the approach used by the legacy application framework,269

improving over it in particular with the introduction of “runtimes”as a way to270

decouple the application from the base OS and yet retain efficiency in term of271

deploying updates affecting multiple applications and in term of storage con-272

sumption.273

With the use of Flatpak runtimes any language runtime can be used easily by274

applications even if the base OS does not ship it.275

Data Management276

Flatpak applications can use the XDG Base Directory Specification11 to find277

the appropriate places to store persistent private data that can’t be accessed by278

other applications, and temporary cache files that can be deleted by the system279

to reclaim space.280

Policies for storage space reclaiming and rollback need to be defined and are to281

be implemented in dedicated components.282

Sandboxing and security283

With the use of the control group and namespacing kernel subsystems, Flatpak284

offers a state-of-the-art approach for containing applications to limit what they285

can access on the system and to isolate them from each other.286

The integrity of the application data is guaranteed by the namespaced applica-287

tion filesystem being mounted read-only, and thus being unmodifiable by the288

application itself, and by using namespaces to limit the amount of data each289

application can access.290

Applications can not see the other installed and running applications and neither291

can modify them. They also can’t communicate between each other without user292

consent.293

App pemissions294

The Flatpak pemissions12 system allows to declare in advance any needed per-295

missions to access sensitive resources like user data or special devices, to be296

reviewed by app store curators.297

Additional runtime permissions to access data outside of what the application298

normally need to use can be granted via explicit user actions, usually via dedi-299

cated Flatpak portals.300

10https://github.com/flatpak/flatpak/wiki/Filesystem
11https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
12http://docs.flatpak.org/en/latest/sandbox-permissions.html

10

https://github.com/flatpak/flatpak/wiki/Filesystem
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://docs.flatpak.org/en/latest/sandbox-permissions.html
https://github.com/flatpak/flatpak/wiki/Filesystem
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://docs.flatpak.org/en/latest/sandbox-permissions.html

Integration with Flatpak portals to transparently grant applications privileged301

access on explicit user actions is already available in the main application toolk-302

its like Qt, GTK, etc.303

App launching304

Each installed Flatpak application automatically exports its .desktop entry305

point, in a way that any compliant application launcher can automatically list306

and start the installed Flatpak applications.307

The applications themselves have to use the Desktop Entry Specification13 to308

provide the required metadata and entry points.309

It is possible for applications to explicitly specify that they should not be listed310

in the launcher, to avoid headless agents polluting the menu.311

Document launching312

Applications and entry points can specify the media types they handle using the313

MIME type handling provisions14 from the Desktop Entry Specification15. The314

application framework is responsible of making the selected document visible to315

the associate application and run the application if it wasn’t previously running,316

or queue the queue the file opening on busy systems.317

URI launching318

With the special x-scheme-handler MIME type the same mechanism used for319

Document launching can be used to handle specific URI schemes. In case the320

URI scheme is a file, treat it as launching a local document.321

Content selection322

Flatpak provides portals to let users explicitly grant access to any of their files323

without any upfront special permissions being granted to the application. Inte-324

gration with the file selection portals is already available in the most widespread325

OSS application toolkits.326

Data sharing327

Flatpak applications can be granted special permissions to access D-Bus services328

or filesystem subtrees that can be used to share data across a set of applications.329

Flatpak also let applications to be activated on-demand via D-Bus, which can330

be particularly useful for headless agents.331

Life cycle management332

Each Flatpak sandbox automatically contains all the application processes in333

a secure and efficient way. The system user session management can add an-334

13https://standards.freedesktop.org/desktop-entry-spec/latest/
14https://standards.freedesktop.org/desktop-entry-spec/latest/ar01s10.html
15https://standards.freedesktop.org/desktop-entry-spec/latest/

11

https://standards.freedesktop.org/desktop-entry-spec/latest/
https://standards.freedesktop.org/desktop-entry-spec/latest/ar01s10.html
https://standards.freedesktop.org/desktop-entry-spec/latest/
https://standards.freedesktop.org/desktop-entry-spec/latest/
https://standards.freedesktop.org/desktop-entry-spec/latest/ar01s10.html
https://standards.freedesktop.org/desktop-entry-spec/latest/

other layer of control, tracking both application and system services with a335

homogeneous approach.336

The compositor can track to which process and thus to which application or337

service each window belongs to.338

Last used context339

Applications can store their last status in their private data area and have340

it available on the next launch, enabling the implementation of the simplest341

approach purely on the application side with no specific involvement of the342

application framework.343

More advanced use cases that may require a deeper involvement of the applica-344

tion framework needs to be evaluated.345

Installation management346

Flatpak allows applications to be installed system-wide or per-user, and provides347

extensive tooling to retrieve contents from remote stores, list local applications,348

and fetch updates.349

The use of OSTree to store application contents makes rolling them back simple350

and efficient. Data is not usually rolled back when rolling back an applica-351

tion: if use-cases require data rollback it needs to be implemented in dedicated352

components.353

Flatpak also provides both efficient online and offline installation mechanisms.354

Conditional access355

Flatpak lets applications to be installed either system-wide, making them avail-356

able to every user, or per-user where only user that have explicitly installed an357

application can access it.358

However, the latter means that storage is not de-duplicated. Advanced setups359

may be defined to leverage the de-duplication capabilities of OSTree without360

automatically sharing installed applications with every user of the system.361

UI customization362

One of the key values for Apertis is to be aligned with upstream, so the best UI363

customization strategy is to rely on the upstream theming infrastructure offered364

by toolkits like GTK.365

Flatpak can inject system themes in the containerized runtimes16 to apply a366

global theme without changing anything in the applications.367

16https://blog.tingping.se/2017/05/11/flatpak-theming.html

12

https://blog.tingping.se/2017/05/11/flatpak-theming.html
https://blog.tingping.se/2017/05/11/flatpak-theming.html

Focus on the development user experience368

A key part of delivering the best developer experience is by promoting a369

default Integrated Development Environment (IDE). Visual Studio Code has370

enjoyed ever-increasing popularity and widespread support, but it is under371

a proprietary license and forbids redistribution. As an alternative, [VS-372

Codium]https://www.apertis.org/guides/sdk/virtualbox/#install-vscodium-373

ide) is a fully compatible distribution of the open-source components of Visual374

Studio Code and is thus the foundation of choice for the developer experience.375

Flatpak provides extensive tooling to give developers a working environment376

that is easy to setup and use: the framework provides the necessary tools and377

libraries for developers to create their application and is highly extensible.378

As the framework is composed of a set of different tools interacting with each379

other, it is also possible for the developer to use a classic developer workflow380

and use the command line to build and install an application. Guaranteeing381

the same result independently of the machine it is built on and thus allowing382

fully reproducible builds. The framework itself is built upon existing technology,383

it will benefit from the broadly available documentation and support of highly384

heterogeneous build configuration that each application requires.385

Installing a flatpak application from Flathub only requires a single command,386

here is an example with Goodvides, an internet radio player application:387

1 flatpak install flathub io.gitlab.Goodvibes

The application can then be run by clicking on the desktop icon or simply with:388

1 flatpak run io.gitlab.Goodvibes

Each application can be defined using a standard manifest17 that describes all389

the dependencies, their source and how to build them. If a dependency is not390

in the Apertis framework Runtime, it can be added by the developer itself in391

the definition file. The libraries aren’t shared with the base system, allowing392

the developer to ship the version of the dependency that matches the needs of393

the software and not needing to wait for it to be available in the system itself.394

A set of tools is even available for the developer to build a runtime using the395

same dependencies that are available on its machine.396

To illustrate the comprehensive coverage of flatpak regarding the developer ex-397

perience, here are the few steps to build the Goodvides application that we398

previously mentioned:399

17http://docs.flatpak.org/en/latest/manifests.html

13

http://docs.flatpak.org/en/latest/manifests.html
http://docs.flatpak.org/en/latest/manifests.html

1. Getting the manifest describing the dependencies from the original pack-400

age401

1 flatpak run --command=cat io.gitlab.Goodvibes /app/manifest.json > io.gitlab.Goodvibes.json

2. Build the flatpak locally, allowing to install the dependencies from flathub402

if required403

1 flatpak-builder --install-deps-from=flathub build-dir io.gitlab.Goodvibes.yaml

That’s it, the flatpak is now built404

3. For testing the result, you can directly use405

1 flatpak-builder --run build-dir io.gitlab.Goodvibes.yaml goodvibes

Legacy Apertis application framework406

Both the new and the legacy Apertis application frameworks were available407

during a transition period, the legacy framework being shipped on the reference408

images until the v2022 development cycle when the decision was taken to drop409

the legacy framework in favour of the maturing flatpak implementation. The410

legacy components remain available in the archive.411

High level implementation plan for the next-412

generation Apertis application framework413

The transition to the new infrastructure can follow a process to keep the legacy414

framework fully available during the whole process and ensure that it still con-415

tinue to work afterwards. Both frameworks will be in the Apertis repositories as416

mutually exclusive options to be chosen by product teams based on their needs.417

The new Apertis application framework integrates with the existing QA and418

testing platform for Apertis.419

The implementation will be held whithin a few different axis that can be devel-420

oped in parallel and in the order that might make more sense at the time of the421

implementation.422

14

Kernel

Core
libraries

UI toolkit
 (GTK)

Multimedia
 (GStreamer)

System libraries

Service
manager
(systemd)

Message
bus
(D-Bus)

Networking
(bluez, ofono,
 connman)

Policy
manager
(polkit)

Updates
manager
(aum/ostree)

System services

Download
manager

Settings

Geolocation

Audio
manager
(PulseAudio,
 PipeWire)

Product
specific
audio policy

Display
manager
(Weston)

Product
specific
HMI shell

Session services

Filesystem
integrity

Verified
boot

AppArmor Filesystem
encryption

Device
drivers

Cgroups and
namespaces

Radio FMBrowser

Core libraries
UI toolkit
 (GTK)
Multimedia
 (GStreamer)
Web engine
 (WebKitGTK)

Gfx drivers
 (Mesa)
Codecs

Media player

Core libraries
UI toolkit
 (GTK)
Multimedia
 (GStreamer)
Web engine
 (WebKitGTK)

Gfx drivers
 (Mesa)
Codecs

Navigation

Core libraries
UI toolkit
 (Qt)
Multimedia
 (FFmpeg)

Gfx drivers
 (Mesa)
Codecs

Flickr

Core libraries
Web runtime
 (Electron)

Gfx drivers
 (Mesa)
Codecs

Flatpak apps

Ap
ps

Ru
nt

im
es

Ex
te

ns
io

ns

Standard apps

Flatpak portals

423

Flatpak on the Apertis images424

The goal here is to ensure that all the Flatpak tools and services are working425

on the reference Apertis images.426

1. Ensure that all the Flatpak tools are installed by default on the reference427

Apertis images:428

• target images have the tools needed to install, update, run, and re-429

move Flatpak applications430

• SDK images also ship the tools needed to create Flatpak bundles431

2. Test that a simple test application like GNOME Calculator can be in-432

stalled on the reference Apertis images, that it gets displayed normally433

and that the user interaction is also working.434

3. Test a more complex application like Goodvibes, ensure that the audio435

15

playback is working.436

4. Test more complex applications requiring GL rendering (for instance,437

OpenArena), ensure that the open-source graphical rendering stack works.438

Testing the proprietary graphical stack is out of scope as it does not439

provide same levels of functionality and support when compared to the440

open source stack.441

5. Taking the needs of the product teams into consideration, go through the442

list of official portals and ensure that they are functional.443

The Apertis Flatpak application runtime444

The goals here are to create a reference Flatpak runtime for Apertis applications445

and move all the applications to Flatpak.446

To avoid bottlenecks, the Flatpak bundles produced in the steps described here447

can be tested on any non-Apertis platform supporting Flatpak.448

1. Setup Flatdeb18 to automate the creation of Flatpak runtimes and Flatpak449

applications from .deb packages using the GitLab Continuous Integration450

pipelines.451

2. Create a basic Apertis reference runtime aimed at headless agents and452

without legacy component like Mildehall, built with Flatdeb19, similar to453

the FreeDesktop.org SDK.454

3. Create a guide for product teams to create their own applications and455

runtimes using the Apertis tools.456

4. Create a basic Flatpak runtime to run Mildenhall applications457

5. Convert the sample-apps to Flatpak using the Mildenhall runtime, starting458

from the simplest ones to the ones requiring the most interaction with the459

system. Ensure that each porting process is documented.460

6. Coalesce the documentation in a comprehensive guide to convert legacy461

applications.462

7. Convert more complex Mildenhall legacy applications like Frampton.463

8. Create a legacy-free Apertis reference runtime for GUI applications.464

9. Investigate more modern alternatives to the Mildenhall legacy demo ap-465

plications and base them on the legacy-free Apertis reference runtimes.466

Implement a new reference graphical shell/compositor467

This section is about deploying a new graphical shell based on modern compo-468

nents and avoiding deprecated libraries like Clutter.469

1. Begin with a new minimal shell based on the Weston Wayland compositor470

and make it available on the reference images, to be enabled optionally.471

2. Ensure that legacy Mildenhall applications work properly under the new472

compositor.473

18https://gitlab.collabora.com/smcv/flatdeb
19https://gitlab.collabora.com/smcv/flatdeb

16

https://gitlab.collabora.com/smcv/flatdeb
https://gitlab.collabora.com/smcv/flatdeb
https://gitlab.collabora.com/smcv/flatdeb
https://gitlab.collabora.com/smcv/flatdeb

3. Progressively add features like notifications and an application drawer to474

discover and launch applications.475

4. Switch the default compositor from the legacy Mildenhall-Compositor to476

the new one.477

5. Iteratively improve the look and feel of the shell.478

6. Document how the shell can be customized or replaced by product teams479

while fully re-using the Weston core compositor implementation.480

Switch to PipeWire for audio management481

The steps described here are about making audio management more secure and482

flexible on Apertis.483

1. Update the Apertis audio management20 design document to describe the484

different approach using PipeWire21 instead of PulseAudio.485

2. Start the work using a basic policy with WirePlumber22 from AGL.486

3. Ensure that audio capture is functional using a simple audio player appli-487

cation.488

4. Ensure that video capture is functional using a simple camera viewer ap-489

plication.490

5. Ensure that audio playback is functional without PulseAudio, but still491

default to PulseAudio for audio playback.492

6. Ensure compatibility with applications using the PulseAudio client li-493

braries to provide a smooth migration.494

7. Switch the default for audio playback to PipeWire.495

8. Progressively refine policies and introduce stream priority handling.496

9. Provide a guide for product teams about customizing the audio manage-497

ment policies.498

AppArmor support499

This section focuses on using AppArmor as an additional level of security to500

constrain applications.501

1. Add a basic AppArmor profile setup to Flatpak to ensure each application502

runs with its dedicated profile.503

2. Progressively make the application profile more strict.504

3. Customize the AppArmor profile based on the application permissions505

described in its manifest.506

The app-store507

For the user-driven use-case it is key to demonstrate a full workflow that includes508

an application store.509

20https://www.apertis.org/concepts/platform/audio-management/
21https://pipewire.org
22https://gitlab.freedesktop.org/gkiagia/wireplumber

17

https://www.apertis.org/concepts/platform/audio-management/
https://pipewire.org
https://gitlab.freedesktop.org/gkiagia/wireplumber
https://www.apertis.org/concepts/platform/audio-management/
https://pipewire.org
https://gitlab.freedesktop.org/gkiagia/wireplumber

The store and the deployment management service are kept separate:510

• the store is the front-end for the user and is the commercial layer of the511

system (payments, etc.);512

• the deployment management service manages the actual installation of513

the software on the device based on the state of the store, but also dealing514

with updates that do not go through the store.515

1. Improve the reliability of the Apertis hawkBit instance.516

2. Plug the Apertis hawkBit instance authentication system to the Apertis517

user database.518

3. Extend the application building pipelines to push Apertis apps to hawkBit.519

4. Extend the hawkBit agent to manage Flatpak applications.520

5. Create and deploy a simple front-end store for applications, extending an521

existing e-commerce platform or adopting hawkBit-based solutions like522

the Kuksa Appstore23.523

6. Ensure that the whole app-store workflow is documented and functional524

to handle user-driven installations and updates via hawkBit.525

7. Extend the hawkBit agent and other tools to handle the conditional ac-526

cess24 use cases.527

8. Provide a guide for product teams about deploying their own app-store.528

23https://github.com/eclipse/kuksa.cloud/tree/master/kuksa-appstore
24https://www.apertis.org/concepts/archive/application_security/conditional_access/

18

https://github.com/eclipse/kuksa.cloud/tree/master/kuksa-appstore
https://www.apertis.org/concepts/archive/application_security/conditional_access/
https://www.apertis.org/concepts/archive/application_security/conditional_access/
https://www.apertis.org/concepts/archive/application_security/conditional_access/
https://github.com/eclipse/kuksa.cloud/tree/master/kuksa-appstore
https://www.apertis.org/concepts/archive/application_security/conditional_access/

	Creating a vibrant ecosystem
	The next-generation Apertis application framework
	Application runtime: Flatpak
	Compositor: libweston
	Audio management: PipeWire and WirePlumber
	Session management: systemd
	Software distribution: hawkBit
	Evaluation
	Focus on the development user experience
	Legacy Apertis application framework
	High level implementation plan for the next-generation Apertis application framework
	Flatpak on the Apertis images
	The Apertis Flatpak application runtime
	Implement a new reference graphical shell/compositor
	Switch to PipeWire for audio management
	AppArmor support
	The app-store

