
Supported API

Contents1

New releases and API stability 22

API and ABI stability strategies 33

The Android approach . 44

The iOS approach . 45

The Apertis/OpenSource approach . 56

The role of limiting the supported API surface 67

How would incompatible changes impact the product and how to han-8

dle them? . 79

The GTK+ upgrade . 710

When a core library breaks . 711

When a “leaf”library breaks ABI 812

ABI is not just library symbols 813

The move to Wayland . 914

API Support levels 915

Custom APIs . 1016

Enabling APIs . 1017

OS APIs . 1118

Internal APIs . 1119

External APIs . 1120

Differing stability levels . 1121

Maintaining API stability . 1222

Components 1223

Conclusion 1424

The goal of this document is to explain the relevant issues around API (Applica-25

tion Programming Interface) and ABI (Application Binary Interface) stability26

and to make explicit the APIs and ABIs that can be and will be guaranteed to27

be available in the platform for application development.28

It will be explained as well how we are going to deal with situations where29

certain components break their API/ABI.30

New releases and API stability31

Software systems are typically composed of several components with some de-32

pending on others. Components need to make assumptions about how their33

dependencies behave, in order to use them. These assumptions are categorized34

in API and ABI depending on whether they are resolved at build time or at run-35

time, respectively. As components evolve over time and their behavior changes,36

so may their API and ABI.37

2

In systems composed of thousands of components, each time a component38

changes, potentially hundreds of other components could break. Fixing each39

of those components could cause other breaks in turn. Without a way to man-40

age those changes, assembling and maintaining non-trivial systems wouldn’t be41

a practical enterprise.42

To manage this complexity, components which are to be depended upon by43

others set an API/ABI stability policy. This policy states under which circum-44

stances new releases can be expected to break API or ABI. This allows the45

system integrator to update to newer releases of components with some assur-46

ance that other components won’t break as a result. These guarantees also allow47

new releases of components to simply depend upon the last “known-good”release48

of each of their dependencies instead of requiring them to be constantly tested49

against newer dependencies.50

Most components will keep stable branches in which API - and often ABI -51

are not allowed to break, and normally only bug fixes and minor features will52

be merged into these branches. It is generally recommended that components53

(particularly, stable ones) depend only on stable branches of their dependencies.54

Releases in a stable branch are referred to as “backwards compatible”because55

components that depend upon a given release will continue to work with later56

releases in that same branch.57

By libraries keeping API stability in stable branches and by libraries and appli-58

cations depending on stable versions of libraries, breaks are greatly reduced to59

manageable levels.60

An API can consist of multiple parts: for a typical C library, the API will61

be the C function and type declarations, plus the gobject-introspection (GIR)62

description of the API. Similarly, an ABI can consist of multiple parts: the C63

function and type declarations, plus the D-Bus API for a system service, for64

example.65

The GIR API is especially relevant for further development of Apertis, as it is66

planned to allow apps to be written in non-C languages such as JavaScript. In67

this situation, API stability requires both the C declarations to be stable, plus68

the conversion of those declarations to a GIR file to be stable —so it is affected69

by changes in the implementation of the GIR scanner (the g-ir-scanner utility70

provided by gobject-introspection). This is covered further in ABI is not just71

library symbols.72

API and ABI stability strategies73

There is a tension between keeping the development environment stable and74

keeping up with novelties. Following is an investigation about how various mo-75

bile platforms have tackled this issue that hopefully provides enough information76

for a practical strategic decision on how to handle that tension.77

3

The Android approach78

Android makes a promise of forward-compatibility for the main Android APIs.79

Although Android has been built on top of Linux and using a Java virtual80

machine, no APIs of these platforms are considered to be part of the Android81

platform.82

Instead of reusing existing components and libraries Google decided to write83

almost everything from scratch, including a C library, a graphics subsystem,84

audio, web and multimedia subsystems and APIs.85

This approach has the big disadvantage of not reusing and sharing much of the86

work done by the open source community in similar projects, which means a87

significant investment and hundreds of thousands of hours of engineering time88

spent building and maintaining everything. On the plus side, those APIs and89

the underlying components they are built upon are fully controlled by Google,90

and submit to whatever requirements the Android platform has, giving Google91

full control regarding tilting the balance in favour of stability or break-through92

as it sees fit.93

Although Google has been very successful in keeping its API/ABI stability94

promises, it has made incompatible changes in almost every release. From API95

level 13 to 14 (in other words, from Android 3.2 to 4.0) alone there were a few96

dozen API deprecations and removals1, including methods, class and interface97

fields, and so on. Each new version brings in its release notes a report of API98

differences compared to the last version. In addition to these, underlying compo-99

nent changes have caused applications to misbehave and crash when assuming100

a certain behaviour that got changed.101

The iOS approach102

Apple has been known for wanting to control every bit of the products they103

make. From hardware all the way to third-party application design, Apple tends104

to influence or enforce its own rules. The iOS is no exception: instead of reusing105

existing open source APIs, Apple designed and built their own components and106

APIs from the ground up. The same disadvantages Android’s approach has are107

also present here: instead of sharing the cost of building all of the basic tools108

with lots of developers world wide, Apple decided to build everything itself,109

making a significant investment in terms of money and engineering time.110

The main difference between Android and iOS, though, are that Apple did not111

have to start from scratch: they had Mac OS X already, and were able to112

reuse some of the work they have done previously, although that itself brings113

a disadvantage: the need to balance the needs of the desktop use case and114

the mobile use case in a single code base. The advantages, though, are the115

same: Apple is fully in control of the system from the ground up, and can make116

decisions on tilting the balance between stability and break-through.117

1http://developer.android.com/sdk/api_diff/14/changes/alldiffs_index_removals.html

4

http://developer.android.com/sdk/api_diff/14/changes/alldiffs_index_removals.html
http://developer.android.com/sdk/api_diff/14/changes/alldiffs_index_removals.html

Apple, like Google, has also been successful keeping compatibility, but has had118

its set of incompatible changes in every release. The API changes between iOS119

4.3 to 52, for instance, has a couple tens of removed or renamed classes, fields120

and methods.121

The Apertis/OpenSource approach122

Open source projects like GNOME have been very successful at providing bal-123

ance to the tension by having API/ABI stability promises, but as the need124

for technology overhauls appeared, keeping backwards compatibility has often125

proven very costly, and a choice to break compatibility and refresh the platform126

has been made.127

That was the case, for instance, with the release of GNOME3. The GNOME128

project had to some extent maintained compatibility with applications that were129

written all the way back in 2002, and had accumulated a considerable amount130

of deprecated functionality and APIs that burdened the project, slowing down131

progress and requiring a lot of maintenance work. Those had to be left behind132

the project in order to bring it up-to-date with the expectations of the current133

decade.134

The big advantage of using open source components is most of the hard work of135

building all of the pieces of infrastructure and even some applications has been136

made, leaving hardware integration, application development, customization,137

specific features and QA as the main required work before going to market,138

instead of having a much larger team that would build everything from scratch,139

or licensing a proprietary components.140

The main disadvantage to this approach is that the decision on how to tilt141

the balance between stability and freshness is not under the full control of the142

company building the product: some decisions will be made by the projects that143

build the various components that make up the solution that can increase the144

cost of keeping stability while still maintaining freshness.145

For instance: Google has full control of Android’s underlying graphics stack,146

Surface Flinger, and is able to ensure its compatibility moving forward; it is147

also able to make APIs deal transparently with changes in this underlying layer.148

The same goes for Apple and its iOS. When it comes to the open source graph-149

ics stack, a move from the current Xorg infrastructure to the next-generation150

Wayland will break some of the underlying assumptions made by applications.151

Some of the core libraries that are parts of the graphics stack are also likely to152

change, taking advantage of the API stability break imposed by the move to153

a new graphics infrastructure to also perform some changes to their core and154

APIs. Some projects may also decide to break their stability promises from time155

to time for technology overhauls, like GNOME did with GNOME 3. We will156

2https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.h
tml

5

https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.html
https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.html
https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.html
https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.html
https://developer.apple.com/library/ios/#releasenotes/General/iOS50APIDiff/index.html

investigate some theoretical and real world cases in order to get a more concrete157

example of how these overhauls may present themselves, and how they can be158

handled.159

There are several options when dealing with backwards-incompatible novelties:160

delaying the integration of a new release, for instance, is the best way to guar-161

antee stability, but that will only delay the impact of the changes. Building a162

set of APIs that abstract some of the platform can also be sensible: applications163

using high level widgets can be shielded from changes done at the lower levels.164

To conclude: taking advantage of open source code takes away some of the165

control over the platform’s future. While Google and Apple are able to decide166

exactly what happens to the components that make up Android and iOS in the167

future, someone basing their product on an open source platform doesn’t. It’s168

important to notice that that is also the case for companies building products169

based on Android, and maybe even more so: when Google decided that Android170

Honeycomb would not be released, many companies were left without the latest171

version of Android to base their products on.172

Also, like GNOME, Windows and Mac OS have started afresh at some point in173

time, to be able to bring their products to the next level, it is very likely there174

will come a time in which iOS and Android will go through a similar major175

change on their foundations, and companies basing their products on Android176

will have to decide how to handle the upgrade, when it happens.177

The role of limiting the supported API surface178

While the API and ABI promises made by Android and iOS have been largely179

successful, it is important to note that they do not cover everything an appli-180

cation may need. Core services like graphics and networking are covered, but181

more specific functionality is not. One example is JSON processing. JSON182

is one of the most widely used formats for exchanging data between apps and183

servers.184

There are no APIs at all for this format in iOS. Applications that need to use185

JSON need to either roll their own implementation or embed a JSON processing186

library into their application. The same goes for APIs to access Youtube and187

other Google services through its GData protocol.188

See < http://www.appdevmag.com/10-ios-libraries-to-make-your-189

life-easier/%3E3 for more examples of missing APIs and replace-190

ments that can be embedded191

Android has similar limitations. Android devices are not guaranteed to have192

APIs for Google services, and although add-ons exist to bolt on those APIs,193

they cannot be redistributed, in some cases. For services that use GData, there194

3http://www.appdevmag.com/10-ios-libraries-to-make-your-life-easier/%3E

6

http://www.appdevmag.com/10-ios-libraries-to-make-your-life-easier/%3E
http://www.appdevmag.com/10-ios-libraries-to-make-your-life-easier/%3E
http://www.appdevmag.com/10-ios-libraries-to-make-your-life-easier/%3E
http://www.appdevmag.com/10-ios-libraries-to-make-your-life-easier/%3E

is also an add-on library that can be embedded in the application, but there are195

no API/ABI guarantees.196

Imposing those limits on which APIs are guaranteed to not change (or change197

as little as possible in reality) makes it possible for Android and iOS to lower198

the maintenance costs for the platform, while making it possible to embed li-199

braries into applications allows applications to not be completely limited by the200

available standard APIs. Note also that embedded libraries can only be used201

by the application embedding it, avoiding inter-application dependencies.202

How would incompatible changes impact the product and203

how to handle them?204

This section aims at investigating some cases where a line was drawn and old205

APIs were left behind, and how products based on or simply shipping those206

APIs handled it. The arrival of GNOME 3 in early 2011 drew the line and207

allowed for the clean up of APIs that were almost 10 years old, with few or208

no forward compatibility breakages through that period. It provides a lot of209

insights at how to handle that kind of structural overhaul.210

The GTK+ upgrade211

GTK+ is the main toolkit used by the GNOME system. The upgrade to GTK+212

3.0 was very smooth, for such a big upgrade. Applications required changes, but213

not all applications needed to be ported at once, since everything that made214

up the library changed name, making it installable in parallel with GTK+ 2.215

This means simple applications written using the toolkit still work, even if you216

have GTK+ 3-based applications installed and working. So that is exactly how217

distributors handled the situation: both libraries are installed as long as there218

are applications that need the old one.219

There are several facilities to make this possible available in the debian pack-220

aging tools used by the base distribution Apertis is built on, and also in the221

development tools used by those libraries. Provided they are used correctly this222

specific case should not prove too difficult. Most distributions that handled this223

kind of breakage spent a lot of time tuning dependencies and other package224

relationships, and making sure no interfaces other than the binary ones were in225

disagreement, though.226

When a core library breaks227

New versions of core libraries might implement functionality in a different way,228

which might create issues in some scenarios. A good example of this are browser229

plugins which rely on the browser being written for a specific version of libraries,230

such as GTK+. The problem appears if the browser uses or switches to a231

different version of the library, since as soon as the plugin is loaded there will be232

symbols from both versions of the library, GTK+ 2 and GTK+ 3 for instance,233

7

in the symbol resolution table, and that will lead to subtle and hard to debug234

bugs and crashes. That is one of the reasons why Firefox has delayed the move235

to GTK+ 3.236

The same happens with GStreamer plugins. If a library is used by both a237

GStreamer plugin and an application, and that library changes the same prob-238

lem described for browser plugins would happen.239

Plugins are not the only case in which such problems happen. If a core library240

like glib breaks compatibility similar issues will appear for all of the platform.241

Almost every application links to glib and so do many libraries, including core242

ones like Clutter. If a new version of glib is released which breaks ABI, all of243

these would have to be migrated to the new library at once, otherwise symbol244

clashes like the ones described above would happen. In GNOME 3 glib has245

not broken compatibility, but it is expected to break it at some point in the246

(medium term) future.247

As discussed in the previous section, ensuring forward compatibility after such248

a break in the ABI of glib would only be possible with a very significant effort,249

and might prove to not be viable. Apertis would recommend that turning points250

like this be treated as major upgrades to the platform, requiring applications to251

be reworked. Such upgrades can be delayed by a few releases to allow enough252

time for the applications to be updated, though.253

When a “leaf”library breaks ABI254

When a core library such as glib breaks, the impact will be felt throughout the255

platform, but when a library that is used only by a few components breaks there256

is more room for adjustment. It’s unlikely that both libraries and applications257

would link to libstartup-notification, for instance. In such cases the new version258

of the library can be shipped along with the old one, and the old one can be259

maintained for as long as necessary.260

ABI is not just library symbols261

A leaf library may end up causing more issues, though, if it breaks. GNOME262

3 has provided us with an example of that: the GNOME keyring is GNOME’s263

password storage. It’s made up of a daemon (that among other things provides264

a D-Bus service), and a client library for applications to use. GNOME keyring265

has undergone a change in the protocol, and both the library and the daemon266

were updated. The library was parallel installable with the old one, but the new267

daemon completely replaced the old one.268

But the old client library and the new daemon did not know how to talk to each269

other, so even though applications would not crash because of a missing library270

or missing symbols, they were not able to store or obtain passwords from the271

keyring. That is also what would happen in case a D-Bus service changes its272

interface.273

8

In case something like this happens it is possible to work around the issue by274

adding code to the daemon to keep supporting the old protocol/interface, but275

this increases the maintenance burden and the cost/benefits ratio needs to be276

properly assessed, since it may be significant.277

Similarly, the GIR interface for a library forms part of its public API. The GIR278

interface is a high-level, language-agnostic API which maps directly to the C279

API, and can be used by multiple language bindings to automatically allow the280

library to be used from those languages. Its stability depends on the stability of281

the underlying C library, plus the stability of the GIR generation, implemented282

by g-ir-scanner.283

The move to Wayland284

Moving to Wayland was a big change, but the impact on application compati-285

bility may not be that big. Since most applications are built using frameworks286

such as GTK-3, which hide the different compositor approaches, they just work.287

Only applications that make use of specific APIs for X need to be ported.288

That is a good reason for making those APIs part of the unsupported set, and289

if necessary provide APIs as part of the higher level toolkit to accommodate290

application needs.291

API Support levels292

A number of API support levels has been indicated recognizing that some bits293

of the platform are more prone to change than others, and given the strategy294

of building higher level custom APIs. The custom and enabling APIs make up295

what is often called the SDK APIs. They are the ones with better promises,296

and for which Apertis will try to provide smooth upgrade paths when changes297

come about, while the APIs on the lower levels will not get as much work, and298

application developers will be made aware that using them means the app might299

need to be updated for a platform upgrade.300

The overall strategy being considered right now to assign APIs to each of these301

support levels is to start with the minimum set of libraries required to run the302

Apertis system being part of the image with all libraries assigned to the Internal303

APIs support level, and gradually promote them as development progresses and304

decisions are made. The following sections describe the support levels.305

9

306

Custom APIs307

The Custom APIs are high level APIs built on top of the middleware provided by308

Apertis. These APIs do not expose objects, types or data from the underlying309

libraries, thus providing easier and abstract ways of working with the system.310

Examples of such APIs are the share functionality, and a number of UI compo-311

nents that have been designed and built for the platform. Apertis has had only312

limited information about these components, so an assessment of how effectively313

they shield store applications from lower support level libraries is currently not314

possible.315

For these components to deliver on their promise of abstracting the lower level316

APIs it is imperative that they expose no objects, data types, functions and so317

on from other libraries to the application developer.318

Enabling APIs319

These APIs are not guaranteed to be stable between platform upgrades, but320

work may be done on a case-by-case basis to provide a smooth migration path,321

with old versions coexisting with newer ones when possible. Most existing open322

source APIs related to core functionality fall in this support level.323

As discussed in The GTK upgrade, there are ways to deal with ABI/API break-324

age in these libraries. Keeping both versions installed for a while is one of325

them.326

10

OS APIs327

The OS APIs include low level libraries such as glib and its siblings gio, gdbus,328

as well as system services such as PulseAudio, glibc and the kernel. Applications329

reaching down to these components would, as is the case for enabling APIs, not330

necessarily work without changes after a platform upgrade.331

Internal APIs332

These are APIs used to build the Apertis system itself but not exposed to store333

applications. A library might get assigned to this support level if it is required334

to implement system features, but its API is too unstable to expose to from-335

store applications. Some libraries that fit this support level might also be in the336

External APIs one.337

External APIs338

Some libraries are not core enough that they warrant being shipped along with339

the main system or are not very stable API-wise. One such example is poppler,340

which changes API and ABI fairly often and is not really required for most341

applications –it will certainly be used on the main PDF viewing application,342

and most other applications will simply yield to the system viewer when faced343

with a PDF file.344

That means poppler is a good candidate for bundling with the applications that345

need it instead of being part of the core supported APIs.346

Differing stability levels347

While the Enabling, Custom, External, Internal and OS categories separate348

APIs based on the level of control and direct involvement we have over them,349

a separate dimension is needed to track the stability of APIs, with four levels:350

private, unstable, stable, and deprecated. An API starts as private, and can351

transition to any of the other levels. Transitions between stable and deprecated352

are possible, but an API can never change or go back to being unstable or353

private once it is stable —this is one of the stability guarantees.354

It may be possible to move a library from the unstable level to the stable level355

piecewise, for example by initially exposing a limited set of core functions as356

stable, while marking the rest of the API as ‘currently unstable’. Old API could357

later be marked as deprecated. Further, it may be desirable to expose the same358

API at different levels for different languages. For example, a library might be359

stable for the C language, but unstable when used from JavaScript, pending360

further testing and documentation work to mark it as stable.361

This approach allows a phased introduction of stable APIs, giving sufficient362

time for them to be thoroughly reviewed and tested before committing to their363

stability.364

11

This could be implemented in the GIR files for an API, with annotations ex-365

tracted from the gtk-doc comments of the API’s C source code —gtk-doc cur-366

rently supports a ‘Stability’annotation. As an XML format, GIR is extensible,367

and custom attributes could be used to annotate each function and type in an368

API with its stability, extracted from the gtk-doc comments. Separate docu-369

mentation manuals could then be generated for the different stability levels, by370

making small modifications to the documentation generation utilities in gtk-doc.371

Restricting less stable or deprecated parts of an API from being used by an372

app written in C is technically complex, and would likely involve compiling two373

versions of each library. It is suggested that less stable functions and types are374

always exposed, with the understanding that app developers use them at their375

own risk of having to keep up with API-incompatible changes between Apertis376

versions. Their existence would not be obvious, as they would not be included377

in the documentation for the stable API.378

By contrast, restricting the use of such APIs from high-level languages is simpler:379

as all language bindings use GIR, only the GIR files and the infrastructure380

which handles them needs modifying to support varying the visibility of APIs381

according to their stability level. The bindings infrastructure already supports382

‘skipping’specific APIs, but this is not currently hooked up to their advertised383

stability. A small amount of work would be needed to enable that.384

Maintaining API stability385

It is easy to accidentally break API or ABI stability between releases of a library,386

and once a release has been made with an API break, that break cannot be387

undone.388

The Debian project has some tooling to detect API and ABI changes between389

releases of a library, though this is invoked at packaging time, which is after the390

library has been officially released and hence after the damage is done.391

This tooling could be leveraged to perform the ABI checks before making a392

library release.393

While such tools exist for C APIs, no equivalents exist for GIR and D-Bus394

APIs; the stability of these must currently be checked manually for each release.395

As both APIs are described using XML formats, developing tools for checking396

stability of such APIs would not be difficult, and may be a prudent investment.397

Components398

The following table has a list of libraries that are likely to be on Apertis images399

or fit into one of the supported levels discussed before. The table has links400

to documentation and comments on API/ABI stability promises made by each401

project for reference. As discussed before, fitting components into one of the402

12

supported levels will be an iterative process throughout development, so this403

table should not be seen as a canonical list of supported APIs.404

This list shows components available in Apertis in general, some of them might405

have been deprecated in the latest release but are still available on older ones.406

Name Version API reference Notes API/ABI Stability Guarantees
GLibc 2.14 http://www.gnu.org/software/libc/manual/html_node/index.html Ubuntu uses EGLIBC Aims to provide backwards compatibility
OpenGL ES 2.0 http://www.khronos.org/opengles/sdk/docs/man/ Provided by Freescale The standard is stable and the implementation should be as well
EGL 1.4 http://www.khronos.org/registry/egl/specs/eglspec.1.4.20110406.pdf Provided by Freescale The standard is stable and the implementation should be as well
GLib 2.32 https://docs.gtk.org/glib/ Gnome Platform API/ABI Rules
Cairo 1.10 http://cairographics.org/documentation/ Tutorial, Example code Stability guaranteed in stable series
Pango 1.29 https://docs.gtk.org/Pango/ Gnome Platform API/ABI Rules
Cogl 1.10 https://mutter.gnome.org/cogl/ Latest documentation currently; Gnome Platform API/ABI Rules
Clutter 1.10 https://mutter.gnome.org/clutter/ Latest documentation currently; Gnome Platform API/ABI Rules
Mx 1.4 http://docs.clutter-project.org/docs/mx/stable/ See warning below Stability guaranteed in stable series
GStreamer 1.0 http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/ Development manual, Plugin writer’s guide Stability guaranteed in stable series
Clutter-GStreamer 1.6 http://docs.clutter-project.org/docs/clutter-gst/stable/ Stability guaranteed in stable series
GeoClue 0.12 https://gitlab.freedesktop.org/geoclue/geoclue/-/wikis/home No guarantees
LibXML2 2.7 https://gnome.pages.gitlab.gnome.org/libxml2/devhelp/general.html Tutorial (includes some example code) Gnome Platform API/ABI Rules
libsoup 2.4 https://libsoup.org/ Stability guaranteed in stable series
librest 0.7 https://gnome.pages.gitlab.gnome.org/librest/ Stability guaranteed in stable series
libchamplain 0.14.x https://gnome.pages.gitlab.gnome.org/libchamplain/champlain/ Follows Clutter version numbering and API/ABI stability plan
Mutter 3.3 Inlined documentation No ABI compatibility guarantees. Still need to find about the API
ConnMan 0.78 http://git.kernel.org/?p=network/connman/connman.git;a=tree;f=doc;hb=HEAD No guarantees
Telepathy-GLib 0.18 http://telepathy.freedesktop.org/doc/telepathy-glib/ Stability guaranteed in stable series
Telepathy-Logger 0.2 http://telepathy.freedesktop.org/doc/telepathy-glib/ Stability guaranteed in stable series
Folks 0.6 http://telepathy.freedesktop.org/doc/folks/c/ Stable in the stable series for a fixed set of gobject-introspection and Vala releases
PulseAudio 1.1 http://freedesktop.org/software/pulseaudio/doxygen/ http://pulseaudio.org/wiki/WritingVolumeControlUIs The API/ABI hasn’t been broken in years, but might break at some point for cleaning up
Bluez 4.98 http://git.kernel.org/?p=bluetooth/bluez.git;a=tree;f=doc Stability guaranteed in stable series
libstartup-notification 0.12 See Notes Inlined documentation No guarantees
libecal 3.3 http://developer.gnome.org/libecal/3.3/ Stability guaranteed in stable series
SyncEvolution 1.2 http://api.syncevolution.org/ No guarantees
GUPnP 0.18 http://gupnp.org/docs No guarantees
libGData 0.11 http://developer.gnome.org/gdata/unstable/ Stability guaranteed in stable series
Poppler 0.18 There is minimal inline API documentation No guarantees
libsocialweb 0.26 GLib-based API has no documentation No guarantees
Grilo 0.1 API docs in sources 0.1 is intended to be stable, 0.2 will start soon and will be unstable for a while
Ofono 1.0 http://git.kernel.org/?p=network/ofono/ofono.git;a=tree;f=doc No guarantees at present, but has gotten more stable recently
WebKit-Clutter 1.8.0 No stable releases yet
libexif 0.6.20 http://libexif.sourceforge.net/api/ No formal guarantees, but it’s very stable
TagLib 1.7 https://taglib.org/api/index.html

13

http://www.gnu.org/software/libc/manual/html_node/index.html
http://www.khronos.org/opengles/sdk/docs/man/
http://www.khronos.org/registry/egl/specs/eglspec.1.4.20110406.pdf
https://docs.gtk.org/glib/
http://cairographics.org/documentation/
https://docs.gtk.org/Pango/
https://mutter.gnome.org/cogl/
https://mutter.gnome.org/clutter/
http://docs.clutter-project.org/docs/mx/stable/
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/
http://docs.clutter-project.org/docs/clutter-gst/stable/
https://gitlab.freedesktop.org/geoclue/geoclue/-/wikis/home
https://gnome.pages.gitlab.gnome.org/libxml2/devhelp/general.html
https://libsoup.org/
https://gnome.pages.gitlab.gnome.org/librest/
https://gnome.pages.gitlab.gnome.org/libchamplain/champlain/
http://git.kernel.org/?p=network/connman/connman.git;a=tree;f=doc;hb=HEAD
http://telepathy.freedesktop.org/doc/telepathy-glib/
http://telepathy.freedesktop.org/doc/telepathy-glib/
http://telepathy.freedesktop.org/doc/folks/c/
http://freedesktop.org/software/pulseaudio/doxygen/
http://pulseaudio.org/wiki/WritingVolumeControlUIs
http://git.kernel.org/?p=bluetooth/bluez.git;a=tree;f=doc
http://developer.gnome.org/libecal/3.3/
http://api.syncevolution.org/
http://gupnp.org/docs
http://developer.gnome.org/gdata/unstable/
http://git.kernel.org/?p=network/ofono/ofono.git;a=tree;f=doc
http://libexif.sourceforge.net/api/
https://taglib.org/api/index.html

Conclusion407

Open Source has been chosen in order to be able to reuse code that is freely408

available and for its customization potential. It is also desired to keep the plat-409

form up-to-date with fresh new open source releases as they come about. While410

choosing to leverage Open Source software does lower cost and the required411

investment significantly, it does bring with it some challenges when compared412

to building everything and controlling the whole platform, especially when it413

comes to the tension between stability and novelty.414

Those challenges will have to be met and worked upon on a case-by-case basis,415

and trade-offs will have to be made. Like other distributors of open source416

software have done over the years, delaying adoption of a particular technology417

or newer versions of a core package goes a long way in ensuring platform stability418

and providing safe and manageable upgrade paths, so it is certainly an option419

that must be considered. Other solutions should of course be considered and420

planned for, including shipping more versions of the same library in parallel.421

Limiting the API that is considered supported and requiring that some libraries422

be statically linked or be shipped along with the program are also tools that423

should be used where necessary.424

14

	New releases and API stability
	API and ABI stability strategies
	The Android approach
	The iOS approach
	The Apertis/OpenSource approach
	The role of limiting the supported API surface
	How would incompatible changes impact the product and how to handle them?
	The GTK+ upgrade
	When a core library breaks
	When a “leaf” library breaks ABI
	ABI is not just library symbols
	The move to Wayland

	API Support levels
	Custom APIs
	Enabling APIs
	OS APIs
	Internal APIs
	External APIs
	Differing stability levels
	Maintaining API stability

	Components
	Conclusion

