
Preferences and persistence

Contents1

Introduction 42

Terminology and concepts 43

System Settings . 44

User settings . 45

App settings . 46

Preferences . 57

User services . 58

Persistent data . 59

Main storage . 510

GSettings . 611

AppArmor . 612

Requirements 613

Access permissions . 614

Writability . 715

Rollback . 716

System and app bundle upgrades . 717

Factory reset . 718

Abstraction level . 819

Minimising I/O bandwidth . 820

Atomic updates . 821

Transactional updates . 822

Performance tradeoffs . 823

Data size tradeoffs . 924

Concurrency control . 925

Vendor overrides . 926

Vendor lockdown . 927

User interface . 928

Control over user interface . 1029

Rearrangeable preferences . 1030

Searchable preferences . 1031

Storage of user secrets and passwords 1032

Preferences hard key . 1033

Existing preferences systems 1034

GNOME Linux desktop . 1035

Preferences . 1036

Persistent data . 1137

Secrets and passwords . 1238

Android . 1239

Preferences . 1240

Persistent data . 1341

Secrets and passwords . 1442

2

iOS . 1443

Preferences . 1444

Persistent data . 1545

Secrets and passwords . 1646

GENIVI . 1647

Preferences and persistent data 1648

Secrets and passwords . 1749

Approach 1750

Preferences approach 1851

Overall architecture . 1852

Requirements . 2053

Proxied dconf backend . 2054

Requirements . 2155

Development backend . 2256

Requirements . 2257

Key-file backend . 2358

Requirements . 2459

Security policy . 2460

Application access to system settings 2461

User interface . 2562

System preferences application 2563

Per-application preferences windows 2664

Generating a preferences window from a GSettings schema file . 2765

Support for custom preferences windows 2866

Searchability of preferences . 2967

Reorganising preferences . 2968

Preferences list widget . 2969

Vendor lockdown . 3070

Discussion of automatically generated versus manually coded71

preferences UIs . 3072

Preferences hard key . 3173

Existing preferences schemas . 3274

Persistent data approach 3375

Overall architecture . 3376

Well-known state directories . 3377

Recommended serialisation APIs . 3478

GKeyFile . 3479

GVDB . 3580

SQLite . 3581

GNOME-DB . 3682

When to save persistent data . 3683

Recently used and favourite items . 3684

3

Summary of recommendations 3785

Introduction86

This documents how system services and apps in Apertis may store preferences87

and persistent data. It considers the security architecture for storage and access88

to these data; separation of schemas, default values and user-provided values;89

and guidelines for how to present preferences in the UI.90

The Applications Design, and Global Search Design documents are relevant91

reading. The Applications Design1 and the Global Search Design2 reference92

the need for storage of persistent data for apps. See Overall architecture for a93

design covering this.94

The Robustness Design3 document gives more detail on the requirements for95

robustness of main storage in the face of power loss.96

Terminology and concepts97

System Settings98

A system setting is one which does not vary by user, and applies to the entire99

system. For example, networking settings. This document considers system100

settings which must be readable by multiple components —settings which are101

solely for the use of a single system service are out of scope, and may be stored102

in whichever way that service wishes (typically as a configuration file in /etc).103

This is particularly important for sensitive settings, for example the shadow user104

database in /etc/shadow, which must not be readable by anything except the105

system authentication service (PAM).106

User settings107

A user setting is one which does vary by user, but not by app. User settings108

apply to the whole of a user’s session. For example, the language or theme.109

App settings110

An app setting is one which varies by user and also by an app bundle4. App111

settings apply only to a specific app bundle, and would not make sense outside112

the context of that app. For example, whether to enable shuffling tracks in the113

media player; whether to open hyperlinks in a new tab by default in the web114

browser; or the details for accessing a user’s e-mail account.115

1https://www.apertis.org/concepts/archive/application/applications/
2https://www.apertis.org/concepts/archive/application/global-search/
3https://www.apertis.org/concepts/archive/application_security/robustness/
4https://www.apertis.org/concepts/archive/application/applications/#bundle

4

https://www.apertis.org/concepts/archive/application/applications/
https://www.apertis.org/concepts/archive/application/global-search/
https://www.apertis.org/concepts/archive/application_security/robustness/
https://www.apertis.org/concepts/archive/application/applications/#bundle
https://www.apertis.org/concepts/archive/application/applications/
https://www.apertis.org/concepts/archive/application/global-search/
https://www.apertis.org/concepts/archive/application_security/robustness/
https://www.apertis.org/concepts/archive/application/applications/#bundle

Preferences116

‘Preferences’is the general term for system, user and app settings. The terms117

‘preference’and ‘setting’will be used interchangeably throughout this document.118

User services119

A user service is as defined in the Multiuser Design document —a service that120

runs on behalf of a particular user. Throughout this document, this is addition-121

ally assumed to mean a platform user service, which is not tied to a particular122

app-bundle. Services inside of app bundles have the same access to settings as123

the app’s UI.124

Persistent data125

Persistent data is app state which persists across multiple user sessions. For ex-126

ample, documents which the user has written, or the state of the user’s pending127

downloads.128

One distinguishing factor between preferences and persistent data is that ven-129

dors may override the default values for preferences (see Vendor overrides), but130

not for persistent data. For example, a vendor would not want to override in-131

formation about in-progress downloads; but they might want to override the132

default background image filename for a user.133

The persistent data for an app may be the same as the data it shares between134

user sessions, or may differ. The difference between persistent data and data135

for sharing between apps is discussed in the Multiuser Design document.136

Persistent data is stored on main storage, whereas shared data is expected to137

be passed in memory —so while the sets of data are the same, the mechanisms138

used to handle them are different. Persistent data is always private to an app,139

and cannot be read by another app or user.140

Persistent data might cover all state in an application —such that restoring its141

persistent data when starting the application is sufficient to make it appear as142

if it had been suspended, rather than exited. Or persistent data might cover143

some subset of this. The decision is up to the application authors.144

Main storage145

A flash disk, hard disk, or other persistent data storage medium which can be146

used by the system. This term has been chosen rather than the more common147

persistent storage to avoid confusion with persistent data.148

5

GSettings149

GSettings5 is an interface provided by GLib for accessing settings. As an in-150

terface, it can be backed by different storage backends —the most common is151

dconf, but a key file backend is available for storage in simple key files.152

GSettings uses a concept of ‘schemas’, which define available settings, their data153

types, and their default values. Each setting is strictly typed and must have a154

default value. A schema has an ID, and is ‘instantiated’at one or more schema155

paths. Typically, a schema will be instantiated at a single path, but may be156

instantiated at multiple paths to support storing the same settings for multiple157

objects. For example, a schema for an e-mail account could require a server158

name, username and protocol, and be instantiated at multiple paths6, one path159

for each configured e-mail account.160

AppArmor161

AppArmor7 is an access control framework used by Apertis to enforce fine-162

grained permissions across the entire system, restricting which files each process163

can open.164

Requirements165

Access permissions166

Access controls must be enforceable on preferences. Read and write permissions167

must be available. It is assumed that if a component has read permission for168

a preference, it may also be notified of any changes to that preference’s value.169

It is assumed that if a component has write permission for a preference, it may170

also reset that preference.171

A suggested security policy for preferences implements a downwards flow for172

reads:173

• Apps may read their own app settings, user settings for the current user,174

and all system settings.175

• User services may read the user’s application settings, user settings for176

the current user, and all system settings.177

• System services may read their own app settings, and all system set-178

tings.179

Writes are generally only allowed at the same level:180

• Apps may write their own app settings.181

5https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description
6https://developer.gnome.org/gio/stable/GSettings.html#gsettings-relocatable
7http://apparmor.net/

6

https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description
https://developer.gnome.org/gio/stable/GSettings.html#gsettings-relocatable
http://apparmor.net/
https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description
https://developer.gnome.org/gio/stable/GSettings.html#gsettings-relocatable
http://apparmor.net/

• User services may write user settings for the current user.182

• System services may write system settings for all users, user settings for183

any user, and app settings for any app for any user.184

Note that apps must not be able to read or write each others’settings. Similarly185

for user services and system services.186

Persistent data is always private to a (user, app) pair, though it can be accessed187

by user services and system services.188

Writability189

As well as the value of a preference, components must be able to find out whether190

the preference is writable. A preference may be read-only if the component191

doesn’t have write permission for it (Access permissions) or if it is locked down192

by the vendor vendor lockdown).193

This does not apply to persistent data, which is always read–write by the (user,194

app) pair which owns it.195

Rollback196

As discussed in the Applications Design document8, applications may be rolled197

back to a previously installed version, but it is the application’s responsibility198

to handle any preference changes that occurred in a future version.199

System and app bundle upgrades200

As per the Applications Design9 and the System Update and Rollback design10,201

applications must also support upgrading preferences and persistent data from202

previous application versions to the current version.203

Factory reset204

The system must provide some means for the user to reset the state of all apps205

to a factory default for a particular user, or for all users. This is necessary206

for supporting removing user accounts, refreshing the car for transfer to a new207

owner, or clearing the state of a temporary guest account (see the Multiuser208

Design document). Similarly, it must support clearing the state of a single209

(user, app) pair.210

The factory reset must support resetting preferences, persistent data, or both.211

8https://www.apertis.org/concepts/archive/application/applications/#roll-back
9https://www.apertis.org/concepts/archive/application/applications/

10https://www.apertis.org/concepts/platform/system-updates-and-rollback/

7

https://www.apertis.org/concepts/archive/application/applications/#roll-back
https://www.apertis.org/concepts/archive/application/applications/
https://www.apertis.org/concepts/platform/system-updates-and-rollback/
https://www.apertis.org/concepts/archive/application/applications/#roll-back
https://www.apertis.org/concepts/archive/application/applications/
https://www.apertis.org/concepts/platform/system-updates-and-rollback/

Abstraction level212

The preferences and persistent data APIs may want to abstract the underlying213

storage backend, for example to support uniform access to preferences stored in214

multiple locations. If so, details of the underlying storage backend must not be215

present in the abstraction (a ’leaky abstraction’) —for example, SQL fragments216

must not be used in the interface, as they tie the implementation to an SQL-217

based backend and a specific schema.218

Conversely, any more than one layer of abstraction is an unnecessary complica-219

tion.220

Minimising I/O bandwidth221

As with all components which use main storage, the preferences and persistent222

data stores should minimise the I/O load they impose on main storage. This223

is a particular concern at system startup, where typically a lot of data must be224

loaded from main storage, and hence I/O read efficiency is important.225

Atomic updates226

The system must make atomic writes to main storage, so that preferences or227

persistent data are not corrupted or lost if power is lost part-way through saving228

changes.229

An atomic write is one where the stored state is either the old state, or the new230

state, but never an intermediate between the two, and never missing entirely.231

In other words, if power is lost while updating a preference, upon rebooting232

either the old value of the preference must be loadable, or the new value must233

be loadable.234

See the Robustness Design document, §3.1.1 for more details on general robust-235

ness requirements.236

Transactional updates237

The system must allow updates to preferences to be wrapped in transactions,238

such that either all of the preferences within a transaction are updated, or none239

of them are. Transactions must be revertable before being applied permanently.240

Performance tradeoffs241

Preferences are typically written infrequently and read frequently; access pat-242

terns for persistent data depend on the app. The implementation should play to243

those access patterns, for example by using locking which favours readers over244

writers.245

8

Data size tradeoffs246

It is not expected that preference values will be large —a few tens of kilobytes at247

most. Conversely, persistent data may range in size from a few bytes to many248

megabytes. The implementation should use a storage format suitable to the249

expected data size.250

Concurrency control251

As system preferences may affect security policy, reading them should be race252

free, particularly from time-of-check-to-time-of-use11 race conditions. For exam-253

ple, if a preference is changed by process C while process R is reading it, process254

R must either see the new value of the preference, or see the old value of the255

preference and subsequently be notified that it has changed.256

Similarly for persistent data.257

Vendor overrides258

It may be desirable to support vendor overrides, where a vendor shipping Apertis259

can change the default values of the (app, user or system) preferences before260

shipping to the end user. For example, they may change the default background261

image shown to the user.262

If these are supported, resetting a preference to its default value (for example,263

if doing a Factory reset) must restore it to the vendor-supplied default, rather264

than the Apertis default. There is no need to be able to access the Apertis265

default at any time.266

This does not apply to persistent data.267

Vendor lockdown268

It may also be desirable to support vendor lockdowns, where a vendor shipping269

Apertis can lock a preference so that end users or non-privileged applications270

may not change it. For example, they may wish to lock the URI which is checked271

for system updates.272

This does not apply to persistent data.273

User interface274

There must be some user interface (UI) for setting preferences. This may be275

provided by a system preferences application, as a separate window in each appli-276

cation, or as individual widgets embedded throughout an application’s interface;277

or a combination of these options.278

This does not apply to persistent data.279

11http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

9

http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use
http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

Control over user interface280

It must be possible for the vendor to have complete control over the way pref-281

erences are presented if all applications’preferences are presented in a system282

preferences application.283

This does not apply to persistent data.284

Rearrangeable preferences285

It must be possible for a vendor to rearrange the preferences from applications286

if they are presented in a system preferences application, so that (for example)287

all ‘privacy’preferences are presented in a page together.288

Searchable preferences289

It must be possible for a system preferences application provided by the vendor290

to allow the user to search all preferences from all applications.291

Storage of user secrets and passwords292

There must be a secure way to store user secrets and passwords, which preserves293

confidentiality of these data. This may be separate from the main preferences294

or persistent data stores.295

Preferences hard key296

There must be support for a preferences hard key (a physical button in the vehi-297

cle) which when pressed causes the currently active application’s settings to be298

displayed. If no applications are active, it could display the system preferences.299

Some vehicles may not have such a hard key, in which case the functionality300

should be ignored.301

Existing preferences systems302

This chapter describes the conceptual model, user experience and design ele-303

ments used in various non-Apertis operating systems’support for preferences and304

persistent data, because it might be useful input for decision-making. Where305

available, it also provides some details of the implementations of features that306

seem particularly interesting or relevant.307

GNOME Linux desktop308

Preferences309

On a modern GNOME desktop, from which Apertis uses a lot of components,310

settings are stored in multiple places.311

10

• System settings: Stored in /etc by each system service, typically in a312

text file with a service-specific format. A lot of them have a system-wide313

default value, and may be overridden per user (for example, each user can314

set their own timezone and locale, with a system-wide default).315

• User settings: Defined by shared GSettings schemas (such as316

org.gnome.system.locale), or schemas specific to individual user services317

(such as org.freedesktop.Tracker). The values are stored in dconf (see318

below).319

• App settings: Defined by app-specific GSettings schemas. The values320

are stored in dconf (see below).321

dconf12 supports multiple layered databases, each stored separately. For each322

settings key, a value set for it in one layer overrides any values set in the lay-323

ers below. The bottom (read-only) layer is always the set of default values324

which are provided by the schema file. This layered approach allows the system325

administrator to change settings system-wide in a system database, but also326

allows users to override those settings in their per-user database. It allows a327

user to reset all their settings by deleting their per-user database —at which328

point, the values from the next layer down (typically either a system database329

or the defaults from schema files) will be used for all settings keys.330

Lockdown13 is supported in dconf in the opposite direction: keys may be locked331

down at a particular level, and may not be set at levels above that one (but332

may be set at levels below it, as defaults).333

Architecturally, dconf allows direct read-only access to all databases —each app334

reads settings values directly from the database. Writes to the databases are335

arbitrated through a per-user dconf daemon which then forces each app to336

refresh its read-only view of the settings. This allows for fast concurrent reads337

of settings, at the cost of making writes expensive.338

dconf does not support access controls, and does not support storing different339

schemas in different databases at the same layer. Hence a user either has write340

access to the whole of a system database, or write access to none of it. As the341

dconf daemon runs per user, any app accessing the daemon may write to any342

settings key, either its own app settings, another app’s settings, or the user’s343

settings.344

Persistent data345

Persistent data is stored in application-defined formats, in application-defined346

locations, although many follow the XDG Base Directory Specification14, which347

puts cache data in XDG_CACHE_HOME (typically ~/.cache) and non-cache348

12https://developer.gnome.org/dconf/unstable/dconf-overview.html
13https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7
14http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

11

https://developer.gnome.org/dconf/unstable/dconf-overview.html
https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://developer.gnome.org/dconf/unstable/dconf-overview.html
https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

data in XDG_DATA_HOME (typically ~/.local/share). Below these two direc-349

tories, applications create their own directories or files as they see fit. There is350

no security separation between applications, but the normal UNIX permissions351

restrict access to only the current user.352

There are no APIs available in GNOME for automatically persisting an entire353

application’s state —if an application wishes to do this, it must implement its354

own serialisation and deserialisation functions and save to a file, as above.355

Secrets and passwords356

On a GNOME or KDE desktop, all user secrets, passwords and credentials are357

stored using the Secret Service15 API. In GNOME, this API is implemented by358

GNOME Keyring; in KDE, by KWallet.359

The API allows storage of byte array ‘secrets’(such as passwords), along with360

non-secret attributes used to look them up, in an encrypted storage file which361

must be unlocked by the user before it can be accessed by applications. Unlock-362

ing it may be automatic if the user does not set a password on the file (or if the363

password is identical to the user’s login password). Secrets are stored in ‘collec-364

tions’, which may group them for different purposes, and which are encrypted365

separately.366

An application must open a session with the secret service in order to access367

secrets. The session may be used to encrypt secrets while they are in tran-368

sit between the service and application, and allows for encryption algorithm369

negotiation for this purpose.370

For certain actions, the secret service may need to interact directly with the user371

in order to establish a trusted path to the user, and avoid (for example) requiring372

the user to enter their password into a potentially untrusted application for that373

application to forward it to the service.374

Android375

Preferences376

Apps can use the SharedPreferences class16 to read and write preferences from377

named preferences files, with apps typically using a single preferences file with378

a default name. These files are stored per-app, and are private to that app by379

default, but may be shared with other apps, either read-only or read–write.380

Preferences are strongly typed, and default values are provided by the app at381

runtime. There is no concept of layering or of schemas —all definition of the382

preferences files is handled at runtime.383

Preferences are saved to disk immediately.384

15https://specifications.freedesktop.org/secret-service/latest/index.html
16http://developer.android.com/guide/topics/data/data-storage.html#pref

12

https://specifications.freedesktop.org/secret-service/latest/index.html
http://developer.android.com/guide/topics/data/data-storage.html#pref
https://specifications.freedesktop.org/secret-service/latest/index.html
http://developer.android.com/guide/topics/data/data-storage.html#pref

Android uses a custom XML format17 to allow apps to define preference UIs385

(known as ‘activities’in Android terminology). This format can define simple lists386

of preferences, through to complex UIs with grouped preferences, subscreens,387

lists of subscreens, and custom preference widgets. Implementing features such388

as making one preference conditional on another is possible, but requires com-389

plex XML.390

A PreferenceFragment18 can be used to automatically build a screen in an ap-391

plication to display preferences, loading them from the XML file. It will load392

the current values of the preferences from the SharedPreferences store, and will393

write new values back to the store as the preferences are modified in the UI.394

In order for the system to display the preferences for a particular application,395

it must execute one or more of the PreferencesFragment classes from that ap-396

plication.397

Persistent data398

Android offers several options for persistent data19:399

• Internal storage: Files in a per-(user, app) directory, which may option-400

ally be made world-readable or writable to allow access to other apps or401

users (though this is strongly discouraged).402

• External storage: Files in a world-readable storage area which is403

accessible to the user, such as an SD card. Accessible to all other404

apps and users which hold the READ_EXTERNAL_STORAGE or405

WRITE_EXTERNAL_STORAGE permissions.406

• SQLite database: Arbitrary app-defined tables in a per-(user, app)407

SQLite database. This cannot be shared with other apps or users.408

• Network connection: Using the normal networking APIs, Android sug-409

gests that data can be stored on servers controlled by the app developers.410

It provides no special API for this.411

For saving an application’s state, Android offers a persistence API on the Ac-412

tivity class20. This automatically saves the state of all UI elements (such as413

the text in an entry widget, and the position of a list), but cannot automati-414

cally save application-specific internal state (member variables). For this, the415

application must override two toolkit methods (onSaveInstanceState() and on-416

RestoreInstanceState()) and implement its own serialisation and deserialisation417

of state to a set of key–value pairs which are then stored by Android.418

17http://developer.android.com/guide/topics/ui/settings.html#DefiningPrefs
18http://developer.android.com/guide/topics/ui/settings.html#Fragment
19http://developer.android.com/guide/topics/data/data-storage.html
20http://developer.android.com/training/basics/activity-lifecycle/recreating.html

13

http://developer.android.com/guide/topics/ui/settings.html#DefiningPrefs
http://developer.android.com/guide/topics/ui/settings.html#Fragment
http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/training/basics/activity-lifecycle/recreating.html
http://developer.android.com/training/basics/activity-lifecycle/recreating.html
http://developer.android.com/training/basics/activity-lifecycle/recreating.html
http://developer.android.com/guide/topics/ui/settings.html#DefiningPrefs
http://developer.android.com/guide/topics/ui/settings.html#Fragment
http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/training/basics/activity-lifecycle/recreating.html

Secrets and passwords419

Android recommends storing secrets and passwords in two ways. For authen-420

tication credentials for online services, it provides an AccountManager API21421

which abstracts authentication for known online services (which are supported422

by pluggable backends, potentially provided by application bundles) and stores423

the credentials in an OS-wide store. The service handles authenticating and424

re-authenticating when the login session ends.425

For secrets which are not for online accounts, or otherwise do not fit the Account-426

Manager pattern, Android recommends22 using the normal preferences API (427

Preferences), as while preferences are not encrypted in storage, they are only428

accessible to the application which owns them, so cannot be stolen by other429

applications. However, if the sandboxing system is compromised (potentially430

by an attacker with physical access to the device), the stored secrets will be431

accessible in plaintext.432

iOS433

Preferences434

iOS stores preferences as key–value pairs23, which are separated into domains435

by user, application and machine. The same preference may be set in multiple436

domains24, and they are searched in a defined priority order to determine which437

value to use. This means that an application may, for example, choose to share438

a given preference between all users of that application on a given machine.439

Application IDs use the standard reverse domain name syntax to ensure unique-440

ness.441

Preference values may be any type supported by Core Foundation property442

lists25, including strings, integers and arrays. Default values must be coded into443

the application.444

Preference keys may be generated at runtime by the application, and do not have445

to be defined in a schema in advance. However, it is typical to use pre-defined446

property lists.447

Preferences are synchronised with the on-disk store manually, so the application448

chooses when they are written to disk.449

21http://developer.android.com/reference/android/accounts/AccountManager.html
22http://stackoverflow.com/questions/785973/what-is-the-most-appropriate-way-to-store-

user-settings-in-android-application/786588#786588
23https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/

CFPreferences/CFPreferences.html#//apple_ref/doc/uid/10000129-SW1
24https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/

CFPreferences/Concepts/PreferenceDomains.html
25https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/

CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i

14

http://developer.android.com/reference/android/accounts/AccountManager.html
http://stackoverflow.com/questions/785973/what-is-the-most-appropriate-way-to-store-user-settings-in-android-application/786588#786588
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/CFPreferences.html#//apple_ref/doc/uid/10000129-SW1
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/PreferenceDomains.html
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/PreferenceDomains.html
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/PreferenceDomains.html
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i
http://developer.android.com/reference/android/accounts/AccountManager.html
http://stackoverflow.com/questions/785973/what-is-the-most-appropriate-way-to-store-user-settings-in-android-application/786588#786588
http://stackoverflow.com/questions/785973/what-is-the-most-appropriate-way-to-store-user-settings-in-android-application/786588#786588
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/CFPreferences.html#//apple_ref/doc/uid/10000129-SW1
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/CFPreferences.html#//apple_ref/doc/uid/10000129-SW1
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/PreferenceDomains.html
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/PreferenceDomains.html
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFPropertyLists.html#//apple_ref/doc/uid/10000130i

On certain Apple operating systems, preferences may be ‘managed’by the ad-450

ministrator26, setting an override value which overrides any value set by the451

user for a given preference key.452

Application preferences can either be presented as part of the application, using453

normal UI widgets, and accessing the NSUserDefaults class27 for the preference454

values. Or they can be presented as part of the system-wide settings applica-455

tion28, which builds the UI for each application’s preferences dynamically from456

that application’s property list file for preferences. An application may provide457

multiple property list files to build a hierarchy of preferences pages. The system-458

wide settings application accesses NSUserDefaults on behalf of the application459

to update the stored preferences.460

Persistent data461

iOS offers several options for persistent data:462

• Filesystem: Arbitrary files may be written to the filesystem in various463

app-specific locations29.464

• Core Data API: This is an object-graph management API30, which465

allows versioned control of instances of objects created from a schema.466

Instead of being used by an application to persist data, this API is designed467

to form the core of the application’s data model. It supports editing and468

discarding edits, undo, redo, versioning of the object schema, and large469

data sets.470

• Property List API: A property list is a hierarchical, structured piece471

of data, consisting of primitive data types, arrays and dictionaries which472

may be nested arbitrarily31. Property lists can therefore be used to store473

arbitrary application data. There is an API to serialise them to the file474

system.475

• SQLite: The standard SQLite API may be used, backed by a file, to store476

relational data in a database.477

26https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/
CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191

27https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation
/Classes/NSUserDefaults_Class/index.html#//apple_ref/occ/cl/NSUserDefaults

28https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefault
s/Preferences/Preferences.html#//apple_ref/doc/uid/10000059i-CH6-SW6

29https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/
FileSystemProgrammingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.h
tml#//apple_ref/doc/uid/TP40010672-CH3-SW11

30https://developer.apple.com/library/prerelease/ios/documentation/DataManagement/
Devpedia-CoreData/coreDataOverview.html#//apple_ref/doc/uid/TP40010398-CH28

31https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyL
ists/AboutPropertyLists/AboutPropertyLists.html

15

https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSUserDefaults_Class/index.html#//apple_ref/occ/cl/NSUserDefaults
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/Preferences/Preferences.html#//apple_ref/doc/uid/10000059i-CH6-SW6
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/Preferences/Preferences.html#//apple_ref/doc/uid/10000059i-CH6-SW6
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/Preferences/Preferences.html#//apple_ref/doc/uid/10000059i-CH6-SW6
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.html#//apple_ref/doc/uid/TP40010672-CH3-SW11
https://developer.apple.com/library/prerelease/ios/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html#//apple_ref/doc/uid/TP40010398-CH28
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/AboutPropertyLists/AboutPropertyLists.html
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191
https://developer.apple.com/library/ios/documentation/CoreFoundation/Conceptual/CFPreferences/Concepts/BestPractices.html#//apple_ref/doc/uid/TP30001219-118191
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSUserDefaults_Class/index.html#//apple_ref/occ/cl/NSUserDefaults
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSUserDefaults_Class/index.html#//apple_ref/occ/cl/NSUserDefaults
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/Preferences/Preferences.html#//apple_ref/doc/uid/10000059i-CH6-SW6
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/Preferences/Preferences.html#//apple_ref/doc/uid/10000059i-CH6-SW6
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.html#//apple_ref/doc/uid/TP40010672-CH3-SW11
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.html#//apple_ref/doc/uid/TP40010672-CH3-SW11
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/AccessingFilesandDirectories/AccessingFilesandDirectories.html#//apple_ref/doc/uid/TP40010672-CH3-SW11
https://developer.apple.com/library/prerelease/ios/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html#//apple_ref/doc/uid/TP40010398-CH28
https://developer.apple.com/library/prerelease/ios/documentation/DataManagement/Devpedia-CoreData/coreDataOverview.html#//apple_ref/doc/uid/TP40010398-CH28
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/AboutPropertyLists/AboutPropertyLists.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/AboutPropertyLists/AboutPropertyLists.html

For persisting an entire application’s state, iOS provides a solution32 simi-478

lar to [Android][Persistent data]. The developer must annotate each UI view479

class which needs to be saved and restored, and the UI toolkit will automati-480

cally persist the state of the widgets in that view when the application is sus-481

pended. As with Android, the developer must implement two methods for482

serialising and deserialising application-specific state from member variables:483

encodeRestorableStateWithCoder and decodeRestorableStateWithCoder.484

Secrets and passwords485

iOS uses the same keychain API33 as OS X. This provides a system service for486

storing secrets, passwords and certificates. They are encrypted in storage, using487

an encryption key which is derived from the iOS application’s ID and the user’488

s password.489

The keychain is encrypted in backups, and stored without its encryption key, so490

an attacker cannot extract secrets from backups.491

An iOS application can access the secrets it has stored in the keychain, but492

cannot access secrets from other applications. There is no way to (for example)493

share login details for a given website between all applications which access that494

website —they must all query the user for the details and store them separately.495

This differs from OS X, where all applications can access any stored secrets,496

subject to the user approving the access (trusting the application).497

GENIVI498

Preferences and persistent data499

GENIVI does not differentiate between preferences and persistent data, and500

provides one low-level API for saving and loading persistent data. It does not501

support automatically persisting an entire application’s state.502

The GENIVI Persistence Management system34 handles all data read and writ-503

ten during the lifetime of an IVI system. It aims to provide a standard API504

for all GENIVI platforms to use, which reliably stores data in the face of power505

disturbances, and the limited write-cycle lifetime of some non-volatile storage506

devices (flash memory).507

It is split into four components:508

• Client library: API for writing key–value or arbitrary data to a file, which509

32https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS
/PreservingandRestoringState.html

33https://developer.apple.com/library/ios/documentation/Security/Conceptual/keychain
ServConcepts/01introduction/introduction.html#//appl_ref/doc/uid/TP30000897-CH203-
TP1

34http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_Architecture
Manual.pdf

16

https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/PreservingandRestoringState.html
https://developer.apple.com/library/ios/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//appl_ref/doc/uid/TP30000897-CH203-TP1
http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ArchitectureManual.pdf
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/PreservingandRestoringState.html
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/PreservingandRestoringState.html
https://developer.apple.com/library/ios/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//appl_ref/doc/uid/TP30000897-CH203-TP1
https://developer.apple.com/library/ios/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//appl_ref/doc/uid/TP30000897-CH203-TP1
https://developer.apple.com/library/ios/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html#//appl_ref/doc/uid/TP30000897-CH203-TP1
http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ArchitectureManual.pdf
http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ArchitectureManual.pdf

may be used by only the current application, or shared between all appli-510

cations.511

• Administration service: system for installing default values and configura-512

tion for the data storage for each application; backing up and restoring513

stored data; and implementing factory reset of data.514

• Common object: used by the other components to access key–value515

databases through a caching layer.516

• Health monitor: system under development to implement data recovery517

in the case of corruption or loss, using existing backups.518

The GENIVI Persistence Management system only supports storage of data519

as byte arrays —applications must serialise and deserialise their data formats520

themselves. Similarly, it does not implement versioning of stored data.521

The data storage code is implemented as a set of plugins for the client library,522

implementing different methods for storing data. There are various types of plu-523

gins implementing layers of functionality such as hardware information querying,524

encryption, early loading of data, and the default storage backend.525

Key–value data is limited to 16KB per key. Keys are stored per-application,526

namespaced by an application-chosen arbitrary identifier. As persistent data is527

stored in a separate file per application, Unix users and groups may be used to528

enforce access control on the persisted data.529

GENIVI has investigated providing an SQLite API for relational data storage,530

and has provided recommendations for it35, but has not shipped a version with531

SQLite support (as of version 0.3.0 of this document).532

To persist an application’s state, the developer must manually implement seri-533

alisation and deserialisation of all UI and internal state of the application using534

the Persistence client library.535

Secrets and passwords536

Similarly, GENIVI has no specialised API for storing secrets and passwords537

—applications must use the persistence management system. The system does538

allow for encrypted storage of persistent data using a plugin —but that encrypts539

all stored data, including preferences and application state.540

Approach541

Preferences and persistent data have largely separate requirements: preferences542

are small amounts of data; need to be accessed by multiple components; will543

typically be read much more frequently than they are written; and need to544

35http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ClientLibrar
y_UserGuide.pdf

17

http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ClientLibrary_UserGuide.pdf
http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ClientLibrary_UserGuide.pdf
http://docs.projects.genivi.org/persistence-client-library/1.0/Persistence_ClientLibrary_UserGuide.pdf

support features like Vendor overrides andvendor lockdown. Persistent data may545

vary from small to large amounts of data; will be read and written frequently;546

in app-specific formats; and do not need to be accessed by other components.547

The expected amount of data to be stored, and the relative frequency of reads548

and writes of that data, is an important factor in the choice of storage format549

to use. Preferences should be stored in a format which is optimised for reads;550

persistent data should be stored in a format which is optimised for frequent551

reads and writes, since apps should update it frequently as they may be killed552

at any time.553

For these reasons, we suggest preferences and persistent data are handled en-554

tirely separately. The following sections (6 and 7) will cover them separately,555

giving our recommended approach and justifications which refer back to the556

requirements (section 3).557

User secrets and passwords (Storage of user secrets and passwords) have differ-558

ent requirements again:559

• Confidentiality in storage (encryption).560

• Sharing secrets and passwords for a given resource (such as website) be-561

tween all applications using that website (i.e. secrets and passwords are562

not necessarily specific to an application, while preferences typically are).563

• No fixed schema: the credentials required to access a given service (such564

as website) may change over time as that service changes.565

As the system explicitly does not support full-disk encryption (for performance566

reasons), user secrets and passwords should be stored via the freedesktop.org567

Secrets D-Bus API36, rather than the preferences or persistence APIs. The568

Secrets D-Bus API explicitly handles encryption of the secret store, whereas a569

general design for a preferences system should have no need for encryption, and570

hence adding it to the API would be an unnecessary complication for 90% of the571

use cases. Accordingly, confidential data will not be considered in the approach572

below.573

For further discussion and designs on the topic of secrets and passwords, see the574

Security design document37.575

Preferences approach576

Overall architecture577

Access to app, user and system settings should be through the GSettings API,578

through the dconf backend for system / user schemas and the key-file backend579

36http://standards.freedesktop.org/secret-service/
37https://www.apertis.org/concepts/archive/application_security/security/

18

http://standards.freedesktop.org/secret-service/
https://www.apertis.org/concepts/archive/application_security/security/
http://standards.freedesktop.org/secret-service/
https://www.apertis.org/concepts/archive/application_security/security/

for app schemas, the latter being chosen due to the integrated support for sand-580

boxed settings in Flatpak. (Refer to GNOME Linux desktop for an overview581

of the way GSettings and dconf fit together.) As system settings are defined as582

those settings which are accessed by multiple components, settings which are583

solely for the use of a single system service may be stored in other ways, and584

are beyond the scope of this document.585

Each component should have its own GSettings schema:586

• App schemas: In the form net.example.MyApplication.SchemaName.587

Each app may have zero or more schemas, but all must be prefixed by588

the app ID (in this case, net.example.MyApplication; see the Applications589

Design document for details on the application ID scheme) to provide a590

level of namespacing.591

• User schemas: These may have any form, and will typically re-use exist-592

ing cross-desktop schemas, such as org.gnome.system.locale, as these are593

supported by many existing software components used by Apertis.594

• System schemas: These may have any form, similarly.595

Schema files for apps should be packaged with their app. For user services,596

they could be packaged with the most relevant service, or in a general purpose597

gsettings-desktop-schemas package (adapted from Debian) and an accompany-598

ing apertis-schemas package for Apertis-specific schemas.599

All reads and writes of all settings should go through the normal GSettings600

interface —leaving access controls and policy to be implemented in the backend.601

App code therefore does not need to treat reads and writes differently, or treat602

app, user and system settings differently.603

The use of GSettings also means that a single schema may be instantiated at604

multiple schema paths. Typically, a schema will only be instantiated at the path605

matching its ID; but a relocatable schema may be instantiated at other paths.606

This can be used to store settings for multiple accounts, for example.607

It is expected that each app will handle any upgrades to its preference schemas,608

for example from one major version of the app to the next (System and app609

bundle upgrades). Apertis will not provide any special APIs for this. As this610

is highly dependent on the structure of the preference keys an app is storing,611

Apertis can provide no recommendations here. Note, however, that GSettings612

is designed with upgradability in mind: new preference keys take their value613

from the schema-provided defaults until the user sets them; the values for old614

preferences which are no longer in the schema are ignored. It is recommended615

that the type or semantics of a given GSettings key is not changed between616

versions of an app bundle —if it needs to be changed, stop using the old key,617

migrate its stored value to a new key, and use the new key in newer versions of618

the app bundle.619

19

Requirements620

Through the use of the GSettings API, the following requirements are automat-621

ically fulfilled:622

• Writability —using g_settings_is_writable()623

• System and app bundle upgrades —old keys are either kept, or superseded624

by new keys with migrated values if their type or semantics change625

• Factory reset —for individual keys, using g_settings_reset(); support for626

resetting entire schemas needs to be supported by the designs below627

• Abstraction level —GSettings serves as the abstraction layer, with the628

individual backends below adding no further abstractions629

• Transactional updates —GSettings provides g_settings_delay(),630

g_settings_apply() and g_settings_revert() to implement in-memory631

transactions which are serialised in the backend on calling apply632

• Concurrency control —g_settings_get() automatically returns the default633

value if no user-set value exists; there is no atomic API for setting settings634

• User interface —g_settings_bind() can be used to bind a GSettings key635

to a particular UI widget, allowing interface UIs to be built easily (not-636

ing the argument in User interface that preferences UIs should not be637

automatically generated)638

Other requirements are fulfilled separately:639

• Control over user interface—by generating preferences windows from GSet-640

tings schemas in the system preferences application (Searchable prefer-641

ences)642

• Rearrangeable preferences —by hard-coding more behaviour in the system643

preferences application (User interface)644

• Searchable preferences —searching over summaries and descriptions in645

GSettings schemas (Security policy)646

• Storage of user secrets and passwords —using the freedesktop.org Secrets647

D-Bus API as in the Security design (section 5)648

• preferences hard key —implemented according to the Hard Keys design649

preferences hard key1)650

Proxied dconf backend651

In its current state (May 2015, detailed in GNOME Linux desktop), dconf does652

not support the necessary fine-grained access controls for multiple components653

accessing the user and system schemas. However, a design is being implemented654

upstream to proxy access to dconf through a separate service which imposes655

access controls based on AppArmor (mostly implemented as of January 2016).656

20

On the assumption that this work can be completed and integrated into Apertis657

on an appropriate timescale (see Summary of recommendations), this leads to658

a design where the dconf daemon runs as a system service, storing all settings659

in one database file per default layer:660

• User database: ~/.config/dconf/user661

• System database: /etc/dconf/db/local662

This would be implemented as the dconf profile:663

user-db:user664

system-db:local665

All accesses to dconf would go through GSettings, and then through the proxy666

service which applies AppArmor rules to restrict access to specific settings, im-667

plementing the chosen security policy (Access permissions). The rules may, for668

example, match against settings path and the AppArmor label of the calling669

process.670

The proxy service would therefore implement a system preferences service.671

Vendor lockdown is supported already by dconf38 through the use of lockdown672

files, which specify particular keys or settings sub-trees which may not be mod-673

ified.674

Resetting all system settings would be a matter of deleting the appropriate675

databases —the keys in that database will revert to the default values provided676

by the schema files. As this is a simple operation, it does not have to be imple-677

mented centrally by a preferences service. Resetting the value of an individual678

key is supported by the g_settings_reset() API, which is already implemented679

as part of GSettings.680

The existing Apertis system puts681

include <abstractions/gsettings>682

in several of the AppArmor profiles, which gives unrestricted access to the user683

dconf database. This must change with the new system, only allowing the dconf684

daemon access to the database.685

Requirements686

This design fulfills the following requirements:687

• Access permissions —through use of the proxy service and AppArmor rules688

• Factory reset —by deleting the user’s database or the user’s per-app689

database690

• Minimising io bandwidth —dconf’s database design is optimised for this691

38https://developer.gnome.org/dconf/unstable/dconf-overview.html

21

https://developer.gnome.org/dconf/unstable/dconf-overview.html
https://developer.gnome.org/dconf/unstable/dconf-overview.html

• Atomic updates —dconf performs atomic overwrites of the database692

• Performance tradeoffs —dconf is heavily optimised for reads rather than693

writes694

• Data size tradeoffs —dconf uses GVDB for storage, so can handle small to695

large amounts of data696

• Vendor overrides —dconf supports vendor overrides inherently697

• vendor lockdown —dconf supports vendor lockdown inherently698

Development backend699

In the interim, we recommend that the standard dconf backend be used to store700

all system, user and app settings. This will not allow for access controls to be701

applied to the settings (Access permissions), but will allow for development of702

OS components against the final GSettings interface.703

Once the proxied dconf backend is ready, it can be packaged and the system704

configuration changed —no changes should be necessary in user services to make705

use of the changed backend.706

This development backend would support vendor lockdown as normal.707

Requirements708

This design fails the following requirements:709

• Access permissions —unsupported by the current version of dconf710

It supports the following requirements:711

• Factory reset —partially supported by deleting the user’s database; re-712

setting a (user, app) pair is not supported as all settings are stored in the713

same dconf database file714

• Minimising io bandwidth —dconf’s database design is optimised for this715

• Atomic updates —dconf performs atomic overwrites of the database716

• Performance tradeoffs —dconf is heavily optimised for reads rather than717

writes718

• Data size tradeoffs —dconf uses GVDB for storage, so can handle small to719

large amounts of data720

• Vendor overrides —dconf supports vendor overrides inherently721

• vendor lockdown —dconf supports vendor lockdown inherently722

22

Key-file backend723

For Flatpaks, the GSettings key-file backend is used. (This could also be used724

as an alternative to the development backend before the proxied dconf backend725

is ready.) This allows the use of Flatpak’s native filesystem sandboxing for726

security, but it creates a unique set of trade-offs that make it less suitable for727

the other use cases:728

• lower read performance due to not being optimised for reads (or in general);729

this may be less of an issue for applications, which may not have as many730

settings in a single file731

• requiring code changes in user services to switch from the key-file backend732

to the proxied dconf backend once it’s ready; applications will stay using733

the key-file backend, so no migration is necessary734

• requiring settings values to be migrated from the key-file store to dconf735

at the time of switch over; as before, the backend will stay being used by736

applications, so no migration is necessary737

• not supporting vendor lockdown or vendor overrides; these are primarily738

intended for system settings, not application settings739

Due to the need for code changes to switch away from this backend to a more740

suitable long-term solution such as the proxied dconf backend, we do not rec-741

ommend this approach for system components.742

In detail, the approach would be to use a separate key file for each schema743

instance. Flatpak applications handle this automatically, but for user and sys-744

tem schemas, this would require using g_settings_key_file_backend_new() and745

g_settings_new_with_backend_and_path() to manually construct the GSettings in-746

stance for each schema.747

Access control for each schema instance would be enforced using AppArmor rules748

and Flatpak sandboxing which restrict access to each key file as appropriate. For749

example, apps would be given read–write access to the key file for their own app750

settings, but any key files or dconf databases used by user and system services751

would be unreadable or read-only.752

For apps, they will be unable to directly access any non-key-file settings, thus753

vendor lockdown for those components is inherent in the design (see Application754

access to system settings). However, vendor lockdown for application settings755

is not supported.756

For the system and user services themselves, vendor lockdown would be sup-757

ported by vendors patching the AppArmor files to limit write access to specific758

schema instances. It would not support per-key lockdown at the granularity759

supported by dconf.760

This code for creating the GSettings object could be abstracted away by a helper761

library, but the API for that library would have to be stable and supported762

23

indefinitely, even after changing the backend.763

Requirements764

This design fails the following requirements:765

• Performance tradeoffs —GKeyFile is equally non-optimised for reads766

and writes767

• Vendor overrides —unsupported by GKeyFile768

• vendor lockdown —unsupported by GKeyFile769

It supports the following requirements:770

• Access permissions —supported by AppArmor rules and Flatpak permis-771

sions on the per-schema key files772

• Factory reset —by deleting the appropriate key files773

• Minimising io bandwidth —GKeyFile’s I/O bandwidth is proportional to774

the number of times each key file is loaded and saved775

• Atomic updates —GKeyFile performs atomic overwrites of the database776

• Data size tradeoffs —GKeyFile’s load and save performance is proportional777

to the amount of data stored in the file, so it is suitable for small amounts778

of data779

Security policy780

The key-file backend enforces security policy for apps through Flatpak’s filesys-781

tem sandboxing, and the proxied dconf backend enforces security policy for user782

and system schemas through AppArmor rules. (The Development backend does783

not support implementing security policy at all.)784

It is beyond the scope of this document to define how AppArmor rules and785

Flatpak manifests are configured.786

Application access to system settings787

Flatpak applications should not be able to see the full host dconf database.788

Therefore, access to that is not granted by default, rather allowing access to789

select settings by the use of the XDG Settings portal39. In order for this to790

function, a custom portal backend service40 must be created that exposes the791

settings to applications. The use of the portals to access system and user settings792

does not place any restrictions on the actual storage of the settings, which may793

still be stored in dconf.794

39https://flatpak.github.io/xdg-desktop-portal/#gdbus-org.freedesktop.portal.Settings
40https://flatpak.github.io/xdg-desktop-portal/#gdbus-org.freedesktop.impl.portal.Settin

gs

24

https://flatpak.github.io/xdg-desktop-portal/#gdbus-org.freedesktop.portal.Settings
https://flatpak.github.io/xdg-desktop-portal/#gdbus-org.freedesktop.impl.portal.Settings
https://flatpak.github.io/xdg-desktop-portal/#gdbus-org.freedesktop.portal.Settings
https://flatpak.github.io/xdg-desktop-portal/#gdbus-org.freedesktop.impl.portal.Settings
https://flatpak.github.io/xdg-desktop-portal/#gdbus-org.freedesktop.impl.portal.Settings

User interface795

Different options for building preferences user interfaces need to be supported796

by the system (Control over user interface):797

• Individual preferences embedded at different points in the application UI.798

• A preferences window implemented within the application.799

• A system preferences application which controls displaying the preferences800

for all installed applications, plus system preferences.801

In all cases, we recommend that preferences are defined using GSettings schemas,802

as discussed in Overall architecture, and that settings are read and written803

through the GSettings41 API. This ensures that access control is enforced, and804

separates the structure of the preferences (including types and default values)805

from their presentation.806

The choice of how preferences are presented ultimately lies with the vendor. In807

certain cases, an application may choose to display a preference embedded into808

its UI (for example, as a satellite/hybrid/standard view selector overlaid on a809

map view), if it makes sense for that preference to be displayed in-context as810

opposed to in a preferences window. This user experience is something which811

should be checked as part of app validation.812

The majority of preferences should be displayed in a separate preferences win-813

dow. In order to allow this window to be embedded into a system preferences814

application if the vendor desires it, the preferences window must be automati-815

cally generated. This is because:816

• arbitrary code from arbitrary applications must not be run in the context817

of the system preferences application; and818

• the system preferences application cannot be shipped with manually-coded819

preferences windows for all applications which could ever be installed.820

However, automatically generated UIs generally give a bad user experience, due821

to the limited flexibility a designer has on them, so are suitable only for basic822

preferences (such as toggle switches; see Discussion of automatically generated823

versus manually coded preferences UIs). There may be cases where an appli-824

cation has a particular preference which Apertis provides no widgets suitable825

for editing it. In these infrequent cases, it must be possible for the system826

preferences application to execute a stand-alone preferences window from the827

application to set that particular preference.828

System preferences application829

If an application has preferences, it must give the path to the GSettings schema830

file which defines them in its application manifest.831

41https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description

25

https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description
https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description

The system preferences application should display a list of applications as its832

initial screen, including entries for system preferences which it implements itself.833

The applications listed should be the ones whose manifests specify GSettings834

schema files, and the application name and icon should also be retrieved from835

the application manifest and displayed.836

If the user selects an application, a preferences window should be displayed837

which shows all the preferences in the application’s GSettings schema file. See838

Generating a preferences window from a GSettings schema file for details of how839

this is done. Note that if the schema file defines multiple levels of schema, they840

should be presented as a hierarchy of pages, with preferences only being shown841

on leaf pages.842

As a system application, the system preferences application would have permis-843

sion to read and write any application settings via GSettings, so forms part of844

the trusted computing base (TCB) for preferences.845

The vendor may choose the security policy for which users may edit system846

preferences (such as the language or background) —they could either allow all847

users to edit these, or only allow administrative users (such as the vehicle owner)848

to edit them. If so, we recommend showing the entries for these preferences849

anyway, but making the widgets insensitive and presenting an authentication850

dialogue for the administrator to authenticate with before allowing the settings851

to be edited, see the Multi-User Transactional Switching document42.852

Per-application preferences windows853

If the vendor wishes to implement a user experience where each application854

shows its own preferences window, this should be implemented using the system855

preferences application in a different mode. A settings button or menu entry in856

the application should launch the system preferences application.857

It should support being launched with the name of a GSettings schema to show,858

and it would render a preferences window from that schema (see Generating859

a preferences window from a GSettings schema file). If the schema file defines860

multiple levels of schema, they should be presented as a hierarchy of pages, with861

preferences only being shown on leaf pages. It is up to the vendor whether the862

user can navigate ‘up’from the top level of the schema to a list of all applications.863

As the system preferences application is part of the TCB for preferences, it must864

not allow an application to launch it with the name of a GSettings schema file865

which does not belong to that application. For example, that would allow one866

application to trick the user into editing their preferences for another applica-867

tion.868

42https://www.apertis.org/concepts/archive/application_security/multiuser-transactional-
switching/

26

https://www.apertis.org/concepts/archive/application_security/multiuser-transactional-switching/
https://www.apertis.org/concepts/archive/application_security/multiuser-transactional-switching/
https://www.apertis.org/concepts/archive/application_security/multiuser-transactional-switching/

Generating a preferences window from a GSettings schema file869

A GSettings schema file43 can be turned into a UI using the following rules:870

• A <schema> element is turned into a preference page. If it has an ex-871

tends attribute, the widgets from the schema it extends are added to the872

preferences page first.873

• The first non-relocatable <schema> element in a <schemalist> will be874

taken as providing the preferences page for the application. Subsequent875

<schema> elements will be ignored unless pulled in as preferences sub-876

pages using a <child> element.877

• A <child> element is turned into an entry to show a preferences sub-page878

for the corresponding sub-schema. The label for this entry should come879

from a new (non-standard) label attribute on the <child> element.880

• Relocatable <schema> elements (those without a path attribute) are ig-881

nored unless pulled in as a preferences sub-page using a <child> element.882

• A <key> element is turned into a widget with its label set from the <sum-883

mary> element and its description set from the <description> element.884

The type of widget is set by the type attribute, which specifies a GVariant885

type44:886

– b (boolean): Switch or checkbox widget.887

– y, n, q, i, u, x, t (integers): Integer spin button. Its range is set to888

the smaller of the bounds of the integer type or the values of the889

<range> element (if present).890

– h (handle): Not supported.891

– d (double): Floating point spin button. Its range is set to the smaller892

of the bounds of the double type or the values of the <range> element893

(if present).894

– s (string): Text entry widget. If a <choices> element is present, a895

drop-down box should be used instead, displaying the options from896

the <choice> elements.897

– o (object path): Not supported.898

– g (type string): Not supported.899

– ? (basic type): Not supported.900

– v (variant): Not supported.901

– a (array): Not supported in any form.902

– m (maybe): Not supported in any form.903

43https://gitlab.gnome.org/GNOME/glib/-/blob/main/gio/gschema.dtd
44https://developer.gnome.org/glib/stable/glib-GVariantType.html#id-1.6.18.6.9

27

https://gitlab.gnome.org/GNOME/glib/-/blob/main/gio/gschema.dtd
https://developer.gnome.org/glib/stable/glib-GVariantType.html#id-1.6.18.6.9
https://developer.gnome.org/glib/stable/glib-GVariantType.html#id-1.6.18.6.9
https://developer.gnome.org/glib/stable/glib-GVariantType.html#id-1.6.18.6.9
https://gitlab.gnome.org/GNOME/glib/-/blob/main/gio/gschema.dtd
https://developer.gnome.org/glib/stable/glib-GVariantType.html#id-1.6.18.6.9

– (), r (tuple): Not supported in any form.904

– {} (dictionary): Not supported in any form.905

– * (any): Not supported in any form.906

• If a <key> element contains an enum attribute and no type attribute,907

a drop-down box should be used, displaying the options from the nick908

attributes of the <value> elements in the corresponding <enum> element.909

• If a <key> element contains a flags attribute and no type attribute, a910

checkbox list should be used, displaying a checkbox for each each of the911

nick attributes of the <value> elements in the corresponding <flags>912

element.913

• If a key’s name attribute matches a mapping to a wizard application914

(see Support for custom preferences windows) in the application’s man-915

ifest, that key should be displayed as a menu entry which, when selected,916

launches the wizard application as a new window.917

Support for custom preferences windows918

If an application has a particularly esoteric preference or set of preferences which919

are not supported by the generated preferences UI (see Generating a preferences920

window from a GSettings schema file), it may provide a ‘wizard’application921

as part of its application bundle which allows setting those preferences (and922

only those preferences). For example, this could be used to show a ‘wizard’for923

configuring an e-mail account; or a map widget for selecting a location.924

A wizard application presents a single window of preferences, and its widgets925

cannot be integrated into a preferences window generated by the system prefer-926

ences application —it must be launched using a menu entry from there.927

The wizard application must be listed in the application’s manifest as part of a928

dictionary which maps GSettings schemas or keys to commands to run.929

For example, a particular manifest could map the key /org/foo/MyApp/complex-930

setting to the command my-app –show-complex-setting. Or a manifest could931

map the schema /org/foo/MyApp/EmailAccount to the command my-app –932

configure-email-account.933

Application bundles which contain keys for this in their manifest should be934

subjected to extra app store validation checks, to establish that the wizard935

application’s UI is consistent with other preferences UIs, and that it does not936

implement preferences which should be handled by a generated UI.937

The wizard application must set the relevant preferences itself before exiting,938

and runs with the same privileges as the rest of the application bundle (so will939

only have access to that application’s preferences, as per Security policy).940

28

It may be necessary for the window manager to treat windows from wizard941

applications specially, so that they appear more like a window which is part of942

the system preferences application than a window from a separate application.943

This can be solved by adding appropriate metadata to the wizard application944

windows so the window manager treats them differently.945

Searchability of preferences946

To allow the system preferences application to search over all applications’pref-947

erences (Searchable preferences), it must load all the GSettings schemas from948

applications whose manifests specify a schema. Searching must be performed949

over the user-visible parts of the schema (the <summary> and <description>950

elements), and results should be returned as a link to the relevant application951

preferences window. System preferences should be included in the search results952

too.953

Reorganising preferences954

Implementing arbitrary reorganisation of preferences (Rearrangeable prefer-955

ences) is difficult, as that requires an OEM to know the semantics of all prefer-956

ences for all possibly installable applications.957

We recommend that if an OEM wants to present a new group of a certain set958

of preferences, they must choose specific preferences from known applications,959

and implement a custom window in the system preferences application which960

displays those preferences. Each preference should only be shown if the relevant961

application is installed.962

An alternative implementation which is more flexible, but which devolves more963

control to application developers, is to tag each preference in the GSettings964

schemas with well-defined tags which summarise the preference’s semantics. For965

example, an application’s preference for whether to submit usage data to the966

application data could be tagged as ‘privacy’; or a preference determining the967

colour scheme to use in an application could be tagged as ‘appearance’. The968

OEM could then implement a custom preferences window which queries all969

installed GSettings schemas for a specific tag and displays the resulting prefer-970

ences. We do not recommend this option, as even with app store validation of971

the chosen tags, this would allow application developers too much control over972

the appearance of a system preferences window.973

Preferences list widget974

In order to help make all preferences UIs consistent (including those imple-975

mented by the vendor, System preferences application; and those implemented976

by application developers as wizard applications, Per-application preferences977

windows), Apertis should provide a standard widget which implements the con-978

version from GSettings schemas to UI as described in Generating a preferences979

window from a GSettings schema file.980

29

This widget should accept a list of GSettings schema paths to display, and may981

optionally accept a list of keys within those schemas to display (ignoring the982

others), or to ignore (displaying the others); and should display all those keys983

as preferences. It should implement reading and writing the keys’values using984

the GSettings API, and must assume that the application has permission to do985

so (see Security policy). It must check for writability of preferences and make986

them insensitive if they are read-only (seevendor lockdown1). It cannot give the987

application more permissions than it already has.988

If application developers use this widget, the vendor can ensure that preferences989

UIs are consistent between applications and the system preferences application990

through the theming of the widget.991

Vendor lockdown992

If the vendor locks down a key in a GSettings schema for an application (or993

system preference) vendor lockdown —supported by Proxied dconf backend and994

Development backend, but not Key-file backend), that is enforced by the under-995

lying settings service (most likely dconf), and cannot be overridden or worked996

around by applications.997

However, it is up to applications to reflect whether a preference is read-only998

(due to being locked down) in their UIs. This is typically achieved by hid-999

ing a preference or making its widget insensitive. Applications can use the1000

g_settings_is_writable45 method to determine whether a preference is read-1001

only. Any preferences widgets provided by Apertis (Preferences list widget)1002

must implement this already.1003

If an application developer uses a custom widget to display a preference, and1004

forgets to check whether that preference is read-only, their application might1005

enter an inconsistent state (which is their fault), but the system will not let1006

that preference be written. Convenience APIs like g_settings_bind_writable461007

can reduce the risk of this happening.1008

Discussion of automatically generated versus manually coded prefer-1009

ences UIs1010

In an ideal world, our recommendation would be that: while automatically1011

generating preference UIs can rapidly produce rough drafts, in our experience1012

it can never result in a high-quality finished UI with:1013

• logically grouped options;1014

• correctly aligned controls;1015

• a concept of which preferences are most important, which ones are ‘ad-1016

vanced’, and which ones should be hidden;1017

45https://developer.gnome.org/gio/unstable/GSettings.html#g-settings-is-writable
46https://developer.gnome.org/gio/stable/GSettings.html#g-settings-bind-writable

30

https://developer.gnome.org/gio/unstable/GSettings.html#g-settings-is-writable
https://developer.gnome.org/gio/stable/GSettings.html#g-settings-bind-writable
https://developer.gnome.org/gio/unstable/GSettings.html#g-settings-is-writable
https://developer.gnome.org/gio/stable/GSettings.html#g-settings-bind-writable

• conditional defaults (for example, when you set up IMAP e-mail, the1018

default port should be 143, except if you have selected old-style SSL in1019

which case it should be 993); and1020

• the ability to hide or disable preferences that do not apply because of1021

the value of another preference (for example, if you switch off Bluetooth1022

completely, then the widget to change the name that is broadcast over1023

Bluetooth should be hidden or disabled).1024

If the uniform appearance of preferences UIs is a concern, we believe this should1025

be addressed through: convention; the default appearance of widgets in the UI1026

toolkit; and the use of a set of human interface guidelines such as the GNOME1027

HIG47. Specifically, we recommend that preferences are:1028

• integrated into the main application UI if there are only a small number1029

of them;1030

• instant-apply48 unless doing so would be dangerous, in which case they1031

should be explicit-apply for all preferences in the dialogue (for example,1032

changing monitor resolutions is dangerous, and hence is explicit-apply);1033

and1034

• grouped logically in the UI.1035

If, after the preferences UIs of several applications have been implemented, some1036

common widget patterns have been identified, we suggest that they could be1037

abstracted out into new widgets in the UI toolkit. The goal of this would be to1038

increase consistency between preferences UIs, without implementing essentially1039

a separate UI toolkit for them, which would be the result of any template- or1040

auto-generation-based approach.1041

An alternative way of thinking about this is that preferences are subject to a1042

model–view split (the model is GSettings schema files; the view is the prefer-1043

ences UI), and it is typically inadvisable to generate a view from a model when1044

following that pattern.1045

However, we realise that the goal of having a unified system preferences ap-1046

plication with a consistent appearance (which is enforced) conflicts with these1047

recommendations, and hence these recommendations are not part of our overall1048

suggested approach.1049

Preferences hard key1050

A preferences hard key must be supported as detailed in the Hard Keys de-1051

sign. In a configuration where a system preferences application is used, it must1052

launch that application, already open on the preferences window for the active1053

application. If no application is active, or if the currently active application has1054

47https://developer.gnome.org/hig/stable/dialogs.html.en
48https://developer.gnome.org/hig/stable/dialogs.html.en#instant-and-explicit-apply

31

https://developer.gnome.org/hig/stable/dialogs.html.en
https://developer.gnome.org/hig/stable/dialogs.html.en
https://developer.gnome.org/hig/stable/dialogs.html.en
https://developer.gnome.org/hig/stable/dialogs.html.en#instant-and-explicit-apply
https://developer.gnome.org/hig/stable/dialogs.html.en
https://developer.gnome.org/hig/stable/dialogs.html.en#instant-and-explicit-apply

no GSettings schemas listed in its manifest file, the main page of the system1055

preferences application should be shown.1056

In a configuration where applications implement their own preferences windows,1057

the active application must be sent a ‘hard key pressed’signal for the preferences1058

hard key, which the application can handle how it wishes (i.e. by showing its1059

preferences window). If there is no active application, the system preferences1060

application (which in this configuration only contains system preferences) should1061

be shown.1062

The policy for exactly what happens in each situation and configuration is under1063

the control of the hard keys service, which is provided by the vendor. It should1064

have access to the manifest for the active application so it can find information1065

about GSettings schemas.1066

Existing preferences schemas1067

As GSettings is used widely within the open source software components used1068

by Apertis, particularly GNOME, there are many standard GSettings schemas1069

for common user settings. We recommend that Apertis re-use these schemas as1070

much as possible, as support for them has already been implemented in various1071

components. If that is not possible, they could be studied to ensure we learn1072

from their design successes or failures.1073

• org.gnome.system.locale1074

• org.gnome.system.proxy1075

• org.gnome.desktop.default-applications1076

• org.gnome.desktop.media-handling1077

• org.gnome.desktop.interface1078

• org.gnome.desktop.lockdown1079

• org.gnome.desktop.background1080

• org.gnome.desktop.notifications1081

• org.gnome.crypto1082

• org.gnome.desktop.privacy1083

• org.gnome.system.dns_sd1084

• org.gnome.desktop.sound1085

• org.gnome.desktop.datetime1086

• org.gnome.system.location1087

• org.gnome.desktop.thumbnailers1088

• org.gnome.desktop.thumbnail-cache1089

32

• org.gnome.desktop.file-sharing1090

Various Apertis dependencies (for example, Mutter, Tracker, libfolks, IBus, Geo-1091

clue, Telepathy) use their own GSettings schemas already —as these are not1092

shared, they are not listed.1093

Alternative model: If the locale is a system setting, rather than a user setting,1094

systemd’s localed49 should be used. This would require the locale to be changed1095

via the localed D-Bus API, rather than GSettings, which would affect the im-1096

plementation of the system preferences app.1097

Persistent data approach1098

Overall architecture1099

As discussed in sections 5.3.1 and 7 of the Applications Design, and the Mul-1100

tiuser Design, there is a difference between state which an app needs to persist1101

(for example, if it is being terminated to switch users), and state which an app1102

explicitly needs to share (for example, if a transactional user switch is taking1103

place to execute an action as a different user). The Multiuser Design encourages1104

app authors to think explicitly about these two sets of state, and the differences1105

between them. It is the app which chooses the state to persist, rather than1106

the operating system —storage space is too limited to persist the entire address1107

space of an app, effectively suspending it.1108

The state each app chooses to persist will differ, and cannot be predicted by1109

Apertis. There could be a lot of state, or very little. It could be representable as1110

a simple key–value dictionary, or might have a complex hierarchical structure.1111

Well-known state directories1112

As mentioned in the Applications Design document (sections 5.3.1 and 7), we1113

recommend that Apertis provides a per-(user, app) directory for storage of per-1114

sisted data, and a public API the app can call to find out that directory. The1115

API should follow Flatpak conventions, differentiating between cache and non-1116

cache state, with cache state going in $HOME/.var/net.example.MyApp/cache1117

and non-cache state going in $HOME/.var/net.example.MyApp/data. This ful-1118

fils the factory reset requirement (Factory reset).1119

The former is effectively equivalent to a per-(user, app) XDG_CACHE_HOME1120

directory, and the latter to a XDG_DATA_HOME, as defined by the XDG Base1121

Directory Specification50.1122

Flatpak permissions, by default, grant an app write access exclusively to its1123

cache and data directories, and not to other apps’state directories, with AppAr-1124

mor profiles potentially providing further defense-in-depth. This is the extent1125

49http://www.freedesktop.org/wiki/Software/systemd/localed/
50http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

33

http://www.freedesktop.org/wiki/Software/systemd/localed/
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://www.freedesktop.org/wiki/Software/systemd/localed/
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

of the security needed, as state storage is simply an interaction between an app1126

and the filesystem.1127

As with preferences, app bundles must be in charge of upgrading their own per-1128

sistent data when the system is upgraded (or the app is upgraded) (System and1129

app bundle upgrades). Recommendations are given in the subsections below.1130

Recommended serialisation APIs1131

As each app’s state storage requirements are different, we suggest that Apertis1132

provide several recommended serialisation APIs, and allow apps to choose the1133

most appropriate one —or something completely different if that fulfils their1134

requirements better.1135

Alongside, Apertis should provide guidelines to app developers to allow them1136

to choose an appropriate serialisation API, and avoid common problems in se-1137

rialisation:1138

• minimise writes to main storage (Minimising io bandwidth);1139

• ensure all updates to stored state are atomic (requirement Atomic up-1140

dates); and1141

• ensure transactions are used for groups of updates where appropriate (1142

Transactional updates).1143

Atomic in the sense that either the old or new states are stored in1144

entirety, rather than some intermediate state, if power is lost part-1145

way through an update.1146

Depending on the requirements it is believed that apps will have, some or all of1147

the following APIs could be recommended for serialising state to main storage.1148

For comparison, Android only provides a generic file storage API, and an SQLite1149

API, with no implemented key–value store APIs51. Apps must implement those1150

themselves.1151

GKeyFile1152

https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html1153

Suitable for small amounts of key–value state with simple types. Suitable for1154

small amounts of data.1155

All updates to a GKeyFile are atomic, as it uses the atomic-overwrite technique:1156

the new file contents are written to a temporary file, which is then atomically1157

renamed over the top of the old file. Transactional updates can be implemented1158

by saving the key file to apply the transaction, and discarding the in-memory1159

GKeyFile object to revert it.1160

51http://developer.android.com/guide/topics/data/data-storage.html

34

http://developer.android.com/guide/topics/data/data-storage.html
https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html
http://developer.android.com/guide/topics/data/data-storage.html

The amount of I/O with a GKeyFile is small, as the amount of data which1161

should be stored in a GKeyFile is small, and the file is only written out when1162

explicitly requested by the app.1163

System upgrades have to be handled manually by app bundles—if the persistence1164

data format has to change, the app must migrate data from the old format to1165

the new format the first time it is run after an upgrade. In this case, it is1166

recommended that all GKeyFiles used for persistent data contain a ‘Version’key1167

specifying the data format version in use.1168

GVDB1169

https://git.gnome.org/browse/gvdb1170

Memory-mapped hash table with GVariant52-style types, suitable for small to1171

large amounts of data which are read much more frequently than they are writ-1172

ten. This is what dconf uses for storage.1173

All updates to a GVDB file are atomic, as it uses the same atomic-overwrite1174

technique as GKeyFile. Transactions are supported similarly —by writing out1175

the updated database or discarding it.1176

The amount of I/O for reads from a GVDB file is small, as it memory-maps1177

the database, so only pages in the data it actually reads (plus some metadata).1178

Writes require the entire file to be updated, but are only done when explicitly1179

requested by the app.1180

GVDB supports per-file versioning (though this is not currently exposed in the1181

public API). This can be used for handling system upgrades (System and app1182

bundle upgrades) —the database must be explicitly migrated from an old version1183

to a new version when an upgraded app is first started.1184

SQLite1185

http://sqlite.org/1186

https://wiki.gnome.org/Projects/Gom1187

Full SQL database implementation, supporting simple SQL types and more1188

complex relational types if implemented manually by the app. Suitable for1189

medium to large amounts of data which are read and written frequently. It1190

supports SQL transactions.1191

SQLite is not a panacea. It is designed for the specific use pattern of SQL1192

databases with indexes and relational tables, with frequent reads and writes,1193

and infrequent deletions of data. Apps will only get the best performance from1194

SQLite by defining their own table structure, indices and relations; imposing a1195

common key–value-style API on top of SQLite would give lower performance.1196

52https://developer.gnome.org/glib/stable/glib-GVariant.html

35

https://git.gnome.org/browse/gvdb
https://developer.gnome.org/glib/stable/glib-GVariant.html
http://sqlite.org/
https://wiki.gnome.org/Projects/Gom
https://developer.gnome.org/glib/stable/glib-GVariant.html

SQLite has limited support for SQL schema upgrades with its ALTER TABLE531197

statement, which supports renaming tables and adding new columns to tables.1198

Apps must implement their own data migration from old to new versions of1199

their database schema; documenting this is beyond the scope of this design.1200

Apps should only use SQLite if they have considered issues like their vacuuming1201

policy —how frequently to vacuum the database after deleting data from it. See:1202

• https://blogs.gnome.org/jnelson/2015/01/06/sqlite-vacuum-and-auto_vacuum/1203

• https://wiki.mozilla.org/Performance/Avoid_SQLite_In_Your_Next_Firefox_Feature1204

If using GObjects to represent entries in an SQLite database, the GOM54 wrap-1205

per around SQLite may be useful to simplify code.1206

GNOME-DB1207

http://www.gnome-db.org/1208

This is not recommended. It is an abstraction layer over multiple SQL database1209

implementations, allowing apps to access remote SQL databases. In almost all1210

cases, directly using Sqlite is a more appropriate choice.1211

When to save persistent data1212

As specified in the Applications Design (section 5.3.1), state is saved to main1213

storage at times chosen by both the operating system and the app. The oper-1214

ating system knows when the logged in user is about to change, or when the1215

system is about to be shut down; the app knows when it has changed some of1216

its persistent state in memory, and hence needs to write it out to main storage.1217

An action could be implemented in each app which is triggered by the Acti-1218

vateAction method of the org.freedesktop.Application D-Bus interface55 if, for1219

example, that interface is implemented by apps. When triggered, this action1220

would cause the app to store its persistent state.1221

Recently used and favourite items1222

Section 6.3 of the Global Search Design specifies that an API for apps to store1223

their favourite and recently used items in will be provided. As this is data shared1224

from an app to the operating system, and is typically append-only rather than1225

strongly read–write, we recommend that it be designed separately from the1226

persistent data API covered in this document, following the recommendations1227

given in the Global Search Design document.1228

53https://www.sqlite.org/lang_altertable.html
54https://wiki.gnome.org/Projects/Gom
55http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#

dbus

36

https://www.sqlite.org/lang_altertable.html
https://blogs.gnome.org/jnelson/2015/01/06/sqlite-vacuum-and-auto_vacuum/
https://wiki.mozilla.org/Performance/Avoid_SQLite_In_Your_Next_Firefox_Feature
https://wiki.gnome.org/Projects/Gom
http://www.gnome-db.org/
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus
https://www.sqlite.org/lang_altertable.html
https://wiki.gnome.org/Projects/Gom
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus

Summary of recommendations1229

As discussed in the above sections, we recommend:1230

• Splitting preferences, persistent data storage and confidential data storage1231

(Approach).1232

• Providing one API for preferences: GSettings (Overall architecture).1233

• Apps provide a GSettings schema file for their preferences, named after1234

the app (Overall architecture).1235

• Existing GSettings schemas are re-used where possible for user and system1236

settings (Existing preferences schemas).1237

• Using the normal GSettings approach for handling app upgrades (Overall1238

architecture).1239

• Developing against the normal dconf backend for GSettings storage for1240

user and systems schemas (section Development backend.1241

• Switching to the proxied dconf backend once it’s ready, to support access1242

control (Proxied dconf backend).1243

• Use the key-file backend for only applications; we do not recommend using1244

it as an alternative to the dconf backends for system and user schemas. (1245

Key-file backend).1246

• Permissions to modify user or system settings are controlled by the app’s1247

manifest (Security policy).1248

• User interfaces for preferences are provided by the vendor, automatically1249

generated from GSettings schemas; or provided by applications (User1250

interface).1251

• Apertis provides a standard widget to present GSettings schemas as a1252

preferences UI (Preferences list widget).1253

• Preferences hard key support is added according to the Hard Keys design1254

preferences hard key).1255

• Providing API to get a persistent data storage location (Well known state1256

directories).1257

• Persistent data is private to each (user, app) pair (Well known state1258

directories).1259

• Recommending various different data storage APIs to suit different apps’1260

use cases (Recommended serialisation APIs).1261

• Apps explicitly define which data will persist, and are responsible for sav-1262

ing it and migrating it from older to newer versions (Overall architecture).1263

37

• Apps can be instructed to save their persistent state by the operating1264

system via a D-Bus interface (When to save persistent data).1265

• User secrets and passwords are stored using the freedesktop.org Secrets1266

D-Bus API, not the Apertis preferences or persistence APIs (Approach).1267

38

	Introduction
	Terminology and concepts
	System Settings
	User settings
	App settings
	Preferences
	User services
	Persistent data
	Main storage
	GSettings
	AppArmor

	Requirements
	Access permissions
	Writability
	Rollback
	System and app bundle upgrades
	Factory reset
	Abstraction level
	Minimising I/O bandwidth
	Atomic updates
	Transactional updates
	Performance tradeoffs
	Data size tradeoffs
	Concurrency control
	Vendor overrides
	Vendor lockdown
	User interface
	Control over user interface
	Rearrangeable preferences
	Searchable preferences
	Storage of user secrets and passwords
	Preferences hard key

	Existing preferences systems
	GNOME Linux desktop
	Preferences
	Persistent data
	Secrets and passwords

	Android
	Preferences
	Persistent data
	Secrets and passwords

	iOS
	Preferences
	Persistent data
	Secrets and passwords

	GENIVI
	Preferences and persistent data
	Secrets and passwords

	Approach
	Preferences approach
	Overall architecture
	Requirements

	Proxied dconf backend
	Requirements

	Development backend
	Requirements

	Key-file backend
	Requirements

	Security policy
	Application access to system settings
	User interface
	System preferences application
	Per-application preferences windows
	Generating a preferences window from a GSettings schema file
	Support for custom preferences windows
	Searchability of preferences
	Reorganising preferences
	Preferences list widget
	Vendor lockdown
	Discussion of automatically generated versus manually coded preferences UIs

	Preferences hard key
	Existing preferences schemas

	Persistent data approach
	Overall architecture
	Well-known state directories
	Recommended serialisation APIs
	GKeyFile
	GVDB
	SQLite
	GNOME-DB

	When to save persistent data
	Recently used and favourite items

	Summary of recommendations

