
Points of interest

Contents1

Use-cases . 22

General points of interest . 23

TPEG . 34

Specific points of interest . 45

Weather . 46

Security and privacy considerations . 47

Access to location information . 48

Attack surface . 49

Other requirements . 510

Open questions . 611

Recommendations . 612

TPEG . 613

General POI providers . 814

Specific POI providers . 1015

Weather . 1016

Dealing with multiple categories 1017

Use-cases18

General points of interest19

Third-party applications (the “provider”) might be aware of general “points of in-20

terest”for mapping. For example, an accommodation booking app-bundle might21

be aware of the locations of hotels, either from a particular chain if the app-22

bundle is for that chain, or for all hotels if the app-bundle is for a general23

service like Trip Advisor.24

• It must be possible for a third-party app-bundle to provide these “points25

of interest”to a navigation app.26

• It must be possible for the third-party app-bundle to contain a non-GUI27

service (an “agent”) which will act as the POI provider.28

• The navigation app should not be flooded with irrelevant points of inter-29

est, for example a hotel in Cambridge while driving from Hannover to30

Hildesheim31

• For privacy, if an application bundle advertises that it is a points-of-32

interest provider but its manifest indicates that it is not intended to have33

access to location data, the navigation app must not reveal the current34

location to it.35

• If the POI provider is implemented in terms of an Internet service that36

can provide a filter/search-based stream of points of interest, it must be37

possible for the POI provider to avoid being flooded with irrelevant points38

of interest by the remote server.39

• This pattern could potentially be generalized to replace the navigation40

app with any other consumer.41

2

• We will assume that there is no particular preferred encoding that will be42

used by a majority of applications, so re-encoding into a common format43

will usually be necessary.44

TPEG45

One specific instance of General points of interest is receiving TPEG1 broad-46

casts. These are typically carried on digital radio (DAB) and can encode time-47

and location-bound events such as traffic congestion, road closures and weather.48

They can also be transferred via the Internet.49

When TPEG is broadcast over DAB, this is done with a “carousel2”approach50

in which the transmitter repeatedly cycles through a list of currently-valid mes-51

sages. It is not currently clear to us whether TPEG feeds over the Internet52

follow the same “carousel”design.53

It is not currently clear to us whether TPEG feeds over the Internet filter for54

relevant events at the client- or server-side.55

• It must be possible for an app-bundle to contain an agent that receives56

TPEG broadcasts and provides events to a navigation app.57

• The navigation app should not be flooded with irrelevant points of interest,58

for example traffic congestion that is not close to either the current location59

or the projected route.60

– If filtering is performed at the server side, the TPEG provider agent61

should be able to give the server a suitable filter.62

– If filtering is performed at the client side, it could take place in the63

agent rather than the navigation app, to minimize IPC traffic between64

them.65

– If filtering is performed in the navigation app itself, the channel be-66

tween the TPEG provider agent and the navigation app must be one67

that is suitable for high-throughput events, and should be able to68

feed back that events are being transferred faster than the naviga-69

tion app can read them, so that the TPEG provider agent can “back70

off”by omitting some events.71

• More than one TPEG provider can be installed at the same time. If they72

are, they are all used in parallel.73

• A brochure from the Institut für Rundfunktechnik3 uses 64 kbit/s = 5674

messages/s as an indicative figure for TPEG over DAB. This implies that75

an average binary message should be in the range 100-200 bytes.76

• The European Broadcasting Union’s document “TPEG - What is it all77

about?”4 suggests that TPEG-over-Internet clients are expected to poll78

servers, using a model in which the client downloads a comparatively large79

1http://tisa.org/technologies/tpeg/
2https://en.wikipedia.org/wiki/Data_and_object_carousel
3https://www.easyway-its.eu/sites/default/files/EW-Highlight_Bavaria_Multimodal_T

PEG.pdf
4https://tech.ebu.ch/docs/other/TPEG-what-is-it.pdf

3

http://tisa.org/technologies/tpeg/
https://en.wikipedia.org/wiki/Data_and_object_carousel
https://www.easyway-its.eu/sites/default/files/EW-Highlight_Bavaria_Multimodal_TPEG.pdf
https://tech.ebu.ch/docs/other/TPEG-what-is-it.pdf
https://tech.ebu.ch/docs/other/TPEG-what-is-it.pdf
https://tech.ebu.ch/docs/other/TPEG-what-is-it.pdf
http://tisa.org/technologies/tpeg/
https://en.wikipedia.org/wiki/Data_and_object_carousel
https://www.easyway-its.eu/sites/default/files/EW-Highlight_Bavaria_Multimodal_TPEG.pdf
https://www.easyway-its.eu/sites/default/files/EW-Highlight_Bavaria_Multimodal_TPEG.pdf
https://tech.ebu.ch/docs/other/TPEG-what-is-it.pdf

“initial state”at startup, and subsequently receives “deltas”from that initial80

state.81

Specific points of interest82

Third-party applications (the “provider”) might be aware of “points of interest”83

that are relevant to the user with a high probability. For example, an accommo-84

dation or travel booking app-bundle might be aware that the user has booked85

a stay at a particular hotel, or a flight from a particular airport; or a PIM ap-86

plication might be aware of the location of the user’s home or normal place of87

work, or an upcoming appointment.88

• It must be possible for a third-party app-bundle to provide these “points89

of interest”to a navigation app.90

• Unlike General points of interest, being flooded with irrelevant points of91

interest is unlikely to be a problem here, because the “provider”application92

knows that these points of interest are highly likely to be relevant.93

• Time-based filtering could be useful here: appointments beyond a defined94

date range might not be considered relevant.95

• This pattern could potentially be generalized to replace the navigation96

app with a non-specific “sink”.97

Weather98

Weather information might be queried from an Internet service or decoded from99

TPEG broadcasts by an agent in a built-in, preinstalled or third-party app-100

bundle.101

• The requirements closely resemble General points of interest: we require102

the weather at one or a few weather stations closest to our location or103

projected route, and we are not interested in distant weather reports.104

• Date-based queries (e.g. projected weather for the next week while plan-105

ning a long drive) might also be useful here.106

• We anticipate that the data rate here will be considerably lower than for107

TPEG in general.108

Security and privacy considerations109

Access to location information110

As noted above, if an application bundle advertises that it is a points-of-interest111

provider but its manifest indicates that it is not intended to have access to112

location data, the navigation app must not reveal the current location to it.113

Attack surface114

TPEG messages come from DAB broadcasts or the Internet.115

4

Regardless of how well we might mitigate attacks, if an attacker is able to send116

crafted TPEG messages to the Apertis system in a way that is indistinguishable117

from legitimate data, then that attacker can cause the navigation app to display118

points-of-interest of their choice. This is unavoidable, and is mentioned here only119

for completeness.120

Beyond that, if attacker can cause the Apertis system to receive crafted TPEG121

messages, they might be able to exploit implementation errors in a TPEG parser.122

We consider three threat-models here:123

• assume that the parser is robust and will not crash or misbehave with124

malicious input;125

• alternatively, assume that the parser has a denial-of-service vulnerability126

which causes it to crash or otherwise cease to process information, but127

does not allow arbitrary code execution;128

• alternatively, assume that the parser has an arbitrary code execution vul-129

nerability which causes it to execute attacker-chosen code130

The second and third threat models should be considered to be vulnerabilities131

(security-sensitive bugs) in the TPEG-parsing component; and can be made less132

likely by using techniques such as fuzz testing5 to verify the robustness of the133

parser. However, it might be considered valuable to mitigate any vulnerabilties134

in those classes that remain and are discovered by an attacker.135

Similarly, a non-TPEG-based points-of-interest or weather information provider136

is likely to receive data in some non-TPEG format from the Internet, and equiv-137

alent security considerations apply to that data. We recommend that crypto-138

graphically protected channels such as HTTPS are used where possible.139

Other requirements140

It is undesirable to increase coupling between consumers and providers by hav-141

ing consumers provide any location/route information to providers. Instead,142

providers should retrieve that information from the platform.143

Similarly, it would be possible for the consumer to give the provider an indication144

of what is required (in terms of level of detail, search radius around the location145

and so on). This would allow the provider to optimize its trade-off between146

resource consumption and information provided, by providing what is needed147

but no more. However, this causes relatively tight coupling between consumers148

and providers, which is undesired in an app-centric model. This should not149

be implemented; instead, the provider should be responsible for determining a150

reasonable policy.151

5https://en.wikipedia.org/wiki/Fuzz_testing

5

https://en.wikipedia.org/wiki/Fuzz_testing
https://en.wikipedia.org/wiki/Fuzz_testing

Open questions152

• Does TPEG already have a defined encoding for points-of-interest similar153

to those discussed in General points of interest and Specific points of154

interest, or does it only have encodings for traffic, weather information,155

and a few specific classes of point-of-interest such as parking?156

• Are the data rates discussed above (64 kbit/sec, 56 messages/sec) repre-157

sentative?158

• How frequently do we anticipate that a consumer would wish to consume159

some families of location-sensitive data (“applications”in TPEG jargon -160

traffic information, weather, points of interest) but not others?161

• Do we expect weather information to come from TPEG, or from a162

query/lookup-based web service with requests like “tell me the weather in163

Hildesheim tomorrow”, or a combination of the two?164

Recommendations165

See Data sharing6 for background information on various possible communica-166

tion between apps. The consumer here is the navigation app, and the providers167

are the POI, TPEG and weather providers.168

We anticipate that the navigation app (or other consumer) might either be a169

HMI that is started via user action or a platform component that is started170

automatically on boot, whereas the various providers will be agents provided171

by platform components and/or store applications, started either on boot or on-172

demand. Because the consumer might be a HMI, we recommend that it should173

act as the initiator as described in Data sharing7.174

We recommend that the navigation app should locate suitable POI, weather175

and/or TPEG providers by performing interface discovery8.176

To bypass concerns about Access to location information and ensure that con-177

sumers and providers remain “loosely coupled”, we recommend that the con-178

sumer does not inform providers about the current location or route. Instead,179

each provider that requires this information should retrieve it from a platform180

service via a D-Bus API, following the conventional publish/subscribe model.181

The platform should only allow this access for providers whose app-bundle man-182

ifests authorize it.183

TPEG184

For TPEG, there is a choice between several solutions. The answers to the Open185

questions above influence the choice between these options.186

6https://www.apertis.org/architecture/application/data_sharing/
7https://www.apertis.org/architecture/application/data_sharing/
8https://www.apertis.org/concepts/archive/application_framework/interface_discovery/

6

https://www.apertis.org/architecture/application/data_sharing/
https://www.apertis.org/architecture/application/data_sharing/
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
https://www.apertis.org/architecture/application/data_sharing/
https://www.apertis.org/architecture/application/data_sharing/
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/

Our provisional recommendation is to take the TPEG stream design, and mini-187

mize exploitable bugs in TPEG parsing by subjecting the parser to fuzz testing188

and code auditing.189

Where TPEG is received with a carousel9 model, we recommend that the TPEG190

provider is responsible for keeping a cache of items received during previous191

sessions, forgetting those items when they are no longer valid or relevant, and192

replaying them when each new consumer connects.193

TPEG stream One option is to use data sharing#Consumer-initiated push194

via a stream10. In this model, the method that is called by the provider would195

start a stream of TPEG messages, in either the binary or XML encoding, with196

a suitable framing protocol (which will need to be specified) if one is required.197

This solution has the advantage that it allows a TPEG provider to treat TPEG198

as opaque: for example, a DAB radio receiver that is primarily designed to play199

audio, but receives TPEG via DAB as a side-effect, could pass TPEG messages200

through to navigation software without parsing or understanding them. This201

avoids requiring TPEG parsing in DAB applications or agents, leading to high202

throughput and low resource consumption by these processes (but potentially203

a correspondingly higher resource consumption for the consumer, which does204

need to parse the TPEG).205

The disadvantage of this solution is that if a provider takes this TPEG pass-206

through approach, the consumer is directly exposed to potentially malicious data207

received from the network; for example, a malformed TPEG message might be208

designed to exploit bugs in the consumer’s parser.209

Stream of some other format Another option is to use data sharing#Consumer-210

initiated push via a stream11, but require the messages carried by the stream211

to be in some other format instead of TPEG, for example KML12. This would212

force the provider to parse TPEG and re-encode it in the other format, which213

comes with an efficiency cost. It also requires the choice and implementation214

of the other format; if a new format is designed, requirements-gathering and215

design will be needed, which could be viewed as a waste of effort that could be216

avoided by reusing an existing format.217

All the usual trade-offs between data formats - size efficiency, time efficiency,218

expressiveness, scope for debugging, and so on - apply to the choice of the other219

format. GVariant, JSON or XML might make a reasonable basis for a data220

format, but each of those would require a suitable data representation (schema)221

to be designed and specified, similar to the way KML is layered above XML.222

9https://en.wikipedia.org/wiki/Data_and_object_carousel
10https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-

push-via-a-stream
11https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-

push-via-a-stream
12https://en.wikipedia.org/wiki/Keyhole_Markup_Language

7

https://en.wikipedia.org/wiki/Data_and_object_carousel
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://en.wikipedia.org/wiki/Keyhole_Markup_Language
https://en.wikipedia.org/wiki/Data_and_object_carousel
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://en.wikipedia.org/wiki/Keyhole_Markup_Language

If the TPEG parser is assumed to be robust, this approach has no advantage223

over the TPEG stream. The advantage of this option over a TPEG stream is224

that if the TPEG parser is not considered to be robust, this option somewhat225

reduces the attack surface available to potentially-malicious TPEG messages.226

If the attacker is only assumed to be able to cause a crash via a malformed227

message, this is entirely mitigated by performing TPEG parsing in the provider:228

the consumer would stop receiving messages from that provider, but continue229

to run. Optionally, it could detect the unexpected end-of-stream and re-initiate230

communication with a new instance of the provider.231

However, if the attacker is assumed to be able to cause arbitrary code execu-232

tion in the TPEG parser, this design does not necessarily provide any mitiga-233

tion: having subverted the TPEG provider, the attacker could send arbitrary234

messages to the consumer in the other format, potentially triggering denial-235

of-service or code-execution vulnerabilities in the parser for that other format.236

This could be mitigated by requiring that the parser for the other format has a237

robust and well-understood implementation provided by the platform.238

Publish/subscribe via D-Bus TPEG providers could use a pub-239

lish/subscribe approach via D-Bus13, with each D-Bus message either240

carrying a binary or XML TPEG message, or a message translated into a241

non-TPEG encoding using D-Bus data structures. However, our current242

understanding of the expected message rate is that it is at the high end of the243

rates for which D-Bus was designed, so we do not recommend this.244

In addition, if the TPEG provider does not cache currently-valid TPEG mes-245

sages in memory but merely passes them through as they are received, then246

this would be a poor fit for conventional D-Bus design patterns, since a GetCur-247

rentState() method call would not make sense (the provider would not have any248

current state to get).249

General POI providers250

For POI providers that are implemented in terms of access to a web service,251

either the POI provider can perform a series of search operations on the remote252

server and get relevant POIs in response (a “pull”model), or the remote server253

can send a stream of POIs to the POI provider while periodically polling the254

current locations of interest (a “push”model).255

For the transport between the POI provider and the POI consumer, multiple256

approaches are possible, depending on the answers to the Open questions.257

Our provisional recommendation is that points of interest are encoded as TPEG258

and transferred to consumers via the same mechanisms we would use for a TPEG259

stream.260

13https://www.apertis.org/architecture/application/data_sharing/#publish.2fsubscribe-
via-d-bus

8

https://www.apertis.org/architecture/application/data_sharing/#publish.2fsubscribe-via-d-bus
https://www.apertis.org/architecture/application/data_sharing/#publish.2fsubscribe-via-d-bus
https://www.apertis.org/architecture/application/data_sharing/#publish.2fsubscribe-via-d-bus
https://www.apertis.org/architecture/application/data_sharing/#publish.2fsubscribe-via-d-bus
https://www.apertis.org/architecture/application/data_sharing/#publish.2fsubscribe-via-d-bus

TPEG stream If TPEG has an encoding for points of interest, then the261

same approach can be taken as for TPEG: data sharing#Consumer-initiated262

push via a stream14, with a stream of binary or XML TPEG messages. This263

has the advantage that we do not need to define our own encoding for points of264

interest.265

Another advantage of this approach (assuming that TPEG providers also pro-266

vide a TPEG stream) is that the consumer only needs to consume TPEG, rather267

than consuming both TPEG (from DAB broadcasts) and some other format268

(from general POI providers). If TPEG does not already have an encoding for269

points of interest, but it is feasible to add one, it might still be worthwhile to270

do so in order to receive the second advantage.271

The disadvantage is that each provider needs to encode whatever information it272

provides into TPEG format. This could introduce a loss of information if TPEG273

is not sufficiently expressive to describe everything the provider requires.274

If the corresponding solution is not chosen for TPEG providers, this approach275

should not be chosen either.276

Stream of some other format As with TPEG, we could define a non-TPEG277

encoding for points of interest and stream them to the consumer using Data278

sharing#Consumer-initiated push via a stream15. Similar considerations apply279

to the design of the new format: we could select an existing format such as280

KML16, or design a new one, perhaps using GVariant or JSON as a base.281

If the non-TPEG encoding is chosen well, it should be possible to encode all282

aspects of a point of interest without information loss. However, if the non-283

TPEG encoding is not sufficiently expressive, information might still be lost in284

translation.285

Publish/subscribe via D-Bus As with TPEG, POI providers could use a286

publish/subscribe approach via D-Bus17, with each D-Bus message carrying one287

or more points of interest, either described using D-Bus data structures or as288

an opaque byte-array in some known format. We anticipate that POI providers289

would normally have rather lower message rates than TPEG, so they might be290

within the range for which D-Bus is designed, even if TPEG is not.291

14https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-
push-via-a-stream

15https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-
push-via-a-stream

16https://en.wikipedia.org/wiki/Keyhole_Markup_Language
17https://www.apertis.org/architecture/application/data_sharing/#publish.2fsubscribe-

via-d-bus

9

https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://en.wikipedia.org/wiki/Keyhole_Markup_Language
https://www.apertis.org/architecture/application/data_sharing/#publish.2fsubscribe-via-d-bus
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://www.apertis.org/architecture/application/data_sharing/#consumer-initiated-push-via-a-stream
https://en.wikipedia.org/wiki/Keyhole_Markup_Language
https://www.apertis.org/architecture/application/data_sharing/#publish.2fsubscribe-via-d-bus
https://www.apertis.org/architecture/application/data_sharing/#publish.2fsubscribe-via-d-bus

Specific POI providers292

The implementation options for specific POI providers are essentially the same293

as general POI providers, although their requirements are less stringent: the294

message rate is anticipated to be lower, and location information is not neces-295

sarily needed.296

We recommend that the same interface as for general points of interest is used:297

we do not see any reason why we need to distinguish between the two.298

Weather299

One possible implementation is to use the same TPEG-stream-based design as300

the other use cases. This is appropriate if we anticipate that the majority of301

providers of weather information will be implemented using TPEG or similar,302

but it is a poor fit for a more query-based provider such as one that accesses303

a web service: the provider would have to perform speculative queries covering304

the area around the location and/or route, and emit their results at intervals as305

TPEG or TPEG-like messages.306

Another possible implementation is to use Data_sharing#Query-based access307

via D-Bus18, which is a good fit for implementations that query a web service,308

but a poor fit for implementations that receive weather from TPEG (which309

would have to cache all available weather information, and use their cache to be310

able to answer queries). This could be mitigated by treating weather queries as311

a platform service, so that the cache is maintained by the platform.312

A third possibility is to have two separate weather APIs - one stream-based de-313

sign for “ambient weather information”, and one query-based design for “current314

and forecasted weather queries”- and require consumers to choose whether to315

use one or both depending on their particular requirements. This design has the316

advantage that each of those APIs represents the underlying weather service in317

the most natural way, but has the disadvantage that consumers are expected318

to use two parallel APIs.319

We do not currently have a specific recommendation here, and would appreciate320

feedback on the relative priorities of those designs’ strengths and weaknesses.321

Dealing with multiple categories322

This recommendation is conditional on the answers to the Open questions,323

above.324

We recommend using a name such as “categories”, “types”or “classes”for TPEG’s325

jargon term “applications”, to avoid confusion with the already overloaded term326

“application”. Documentation could mention the TPEG jargon for clarification,327

for example:328

18https://www.apertis.org/architecture/application/data_sharing/#query-based-access-
via-d-bus

10

https://www.apertis.org/architecture/application/data_sharing/#query-based-access-via-d-bus
https://www.apertis.org/architecture/application/data_sharing/#query-based-access-via-d-bus
https://www.apertis.org/architecture/application/data_sharing/#query-based-access-via-d-bus
https://www.apertis.org/architecture/application/data_sharing/#query-based-access-via-d-bus
https://www.apertis.org/architecture/application/data_sharing/#query-based-access-via-d-bus

/** * ... * Return a list of categories of location information that are sup-329

ported * by this provider. These categories are the same concept as * "applica-330

tions" in TPEG terminology. * ... */ gchar **..._list_categories (... *self);331

If we anticipate that all categories of data will typically all have the same con-332

sumers, we recommend having a single shared interface for interface discovery19,333

perhaps org.apertis.LocationInfoProvider or org.apertis.TPEGProvider. Clients334

not requiring all of the available data for that interface could receive and discard335

it.336

If we anticipate that categories will often have different consumers, we will need337

a list of categories, and an interface for interface discovery20 per category, for338

example PointsOfInterestProvider, TrafficProvider and WeatherProvider.339

One approach to these categories would be to define a separate D-Bus interface340

per interface-discovery interface, with intentionally similar D-Bus APIs to set341

up a stream. Each provider that could provide more than one category would342

be required to demultiplex the messages that it receives and write them into343

the appropriate streams.344

Another approach to these categories would be to define a separate D-Bus in-345

terface per interface-discovery interface, with intentionally similar D-Bus APIs346

to set up a stream. Each provider that could provide more than one category347

would be required to demultiplex the messages that it receives and write them348

into the appropriate streams.349

19https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
20https://www.apertis.org/concepts/archive/application_framework/interface_discovery/

11

https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/

	Use-cases
	General points of interest
	TPEG
	Specific points of interest
	Weather

	Security and privacy considerations
	Access to location information
	Attack surface

	Other requirements
	Open questions
	Recommendations
	TPEG
	General POI providers
	Specific POI providers
	Weather
	Dealing with multiple categories

