
Inter-domain communication

Contents1

Terminology and concepts . 52

Automotive domain . 53

Consumer-electronics domain . 54

Connectivity domain . 65

Trusted path . 66

Control stream . 67

Data stream . 68

Traffic control . 79

Use cases . 710

Standalone setup . 711

Basic virtualised setup . 712

Linux container setup . 713

Separate CPUs setup . 814

Separate boards setup . 815

Separate boards setup with other devices 916

Multiple CE domains setup . 917

Touchscreen events . 918

Wi-Fi access . 919

Bluetooth access . 1020

Audio transfer . 1121

Video decoding . 1222

Streaming media . 1323

Downloads of firmware updates 1324

Offline and online map data . 1325

Phonebook integration . 1326

Tinkering vehicle owner on the network 1427

Tinkering vehicle owner on the boards 1428

Support multiple AD operating systems 1429

Before-market upgrades . 1430

After-market upgrades . 1531

Testability . 1532

Malicious CE . 1533

Malicious CD . 1534

After-market upgrade of a domain 1535

Power cycle independence of domains (CE down) 1636

Power cycle independence of domains (AD down, single screen) . 1637

Power cycle independence of domains (AD down, multiple screens) 1638

Temporary communications problem 1739

New version of AD software . 1740

New version of AD interfaces . 1741

Unsupported AD interfaces . 1842

Contacts sharing . 1843

Protocol compatibility . 1844

Navigation system . 1945

2

Marshalling resource usage . 1946

Feedback for malicious applications 1947

Compromised CE with delayed fix 1948

Denial of service through flooding 2049

Malicious CE UI . 2050

Plug-and-play CE device . 2051

Connecting an SDK to a development vehicle 2052

Security model . 2153

Attackers . 2154

Security domains . 2255

Security model . 2356

Non-use-cases . 2457

Production CE domain used in multiple configurations 2458

Requirements . 2459

Separated transport layer . 2460

Message integrity and confidentiality in transport layer 2561

Reliability and error checking in transport layer 2562

Mutual authentication between domains 2663

Separate authentication for developer and production mode devices 2664

Individually addressed domains 2665

Traffic control for latency . 2666

Traffic control for bandwidth . 2667

Traffic control for frequency . 2768

Separation of control and data streams 2769

No untrusted access to AD hardware 2770

Trusted path for users to update the CE operating system 2871

Safety limits on AD APIs . 2872

Rate limiting on control messages 2873

Ignore unrecognised messages . 2874

Portable transport layer . 2975

Support push mode and pull mode communications 2976

OEM AD integration API . 2977

Flexibility in OEM AD integration API 2978

Inflexibility in OEM AD integration API 2979

Service discovery . 3080

Stability in inter-domain communications protocol 3081

Testability of protocols . 3082

Testability of protocol parsers and writers 3083

Testability of processes . 3084

CE system services separated from transport layer 3185

No dependency on CE specific hardware 3186

Immediate error response if service on peer is unavailable 3187

Immediate error response if peer is unavailable 3288

Timeout error response if peer does not respond 3289

All inter-domain communications APIs are asynchronous 3290

Reconnect to peer as soon as it is available 3291

3

External domain watchdog . 3392

Reporting system for malicious applications 3393

Ability to disable the consumer–electronics domain 3394

Tamper evidence . 3395

No global keys in vehicles . 3496

Existing inter-domain communication systems 3497

Approach . 3498

Overall architecture . 3499

Security domains . 37100

Protocol design . 38101

Traffic control . 55102

Protocol library and inter-domain services 55103

Non Linux-based domains . 56104

Service discovery . 57105

Automotive domain export layer 59106

Consumer-electronics domain adapter layer 60107

Interaction of the export and adapter layers 60108

Flow for a given SDK API call 61109

Trusted path to the AD . 62110

Developer mode . 62111

Mock SDK implementation . 63112

Debuggability . 64113

External watchdog . 65114

Tamper evidence and hardware encryption 66115

Disabling the CE domain . 66116

Reporting malicious applications 67117

Suggested roadmap . 68118

Requirements . 68119

Open questions . 68120

Summary of recommendations . 69121

Appendix: D-Bus components and licensing 70122

Licensing . 70123

Appendix: D-Bus performance . 71124

Appendix: Software versus hardware encryption 72125

Software encryption (without encryption acceleration instructions) 72126

Software encryption (with encryption acceleration instructions) . 73127

Secure cryptoprocessor . 73128

Hardware security module . 74129

Conclusion . 74130

Appendix: Audio and video streaming standards 75131

Appendix: Multiplexing RTP and RTCP 76132

Appendix: Audio and video decoding 76133

Memory bandwidth usage on the i.MX6 Sabrelite 77134

Security Vulnerabilities in GStreamer 78135

This documents a suggested design for an inter-domain communication sys-136

4

tem, which exports services between different domains. Some domains can be137

trusted such as the automotive domain. Some domains are untrusted such as138

the consumer-electronics domain. Those domains can execute on a variety of139

possible configurations.140

The major considerations with an inter-domain communication system are:141

• Security. The purpose of having separate domains is for security, so that142

untrusted code (application bundles) can be run in one domain while min-143

imizing the attack surface of the safety-critical systems which drive the144

car.145

• Flexibility for different hardware configurations. The domains may be146

running in one of many configurations: virtualised under a hypervisor; on147

separate CPUs on the same board; on separate boards connected by a148

private in-vehicle network; as separate boards connected to a larger in-149

vehicle network with unrelated peers on it; in separate containers.150

• Flexibility for services exposed. The services exposed by the automo-151

tive domain are dependent on the vendor which implemented the automo-152

tive domain. The consumer-electronics domain depends on third-parties.153

Their update and enhancement cycle and security rules may differ.154

• Asynchronism and race conditions. This is a distributed system, and hence155

is subject to all of the challenges1 typical of distributed systems.156

Terminology and concepts157

Automotive domain158

The automotive domain (AD) is a security domain which runs automotive pro-159

cesses, with direct access to hardware such as audio output or the in-vehicle bus160

(for example, a CAN bus or similar).161

In some literature this domain is known as the ‘blue world’. This document will162

consistently use the term automotive domain or AD.163

Consumer-electronics domain164

The consumer-electronics domain (CE domain; CE) is a security domain which165

runs the user’s infotainment processes, including downloaded applications and166

processing of untrusted content such as downloaded media. Apertis is one im-167

plementation of the CE domain.168

In some literature this domain is known as the ‘red world’, ‘infotainment do-169

main’or ‘IVI domain’. This document will consistently use the term consumer-170

electronics domain or CE domain or CE.171

1https://www.cl.cam.ac.uk/teaching/1516/ConcDisSys/materials.html

5

https://www.cl.cam.ac.uk/teaching/1516/ConcDisSys/materials.html
https://www.cl.cam.ac.uk/teaching/1516/ConcDisSys/materials.html

Connectivity domain172

In some setups the AD and CE are not directly exposed to external networks and173

hardware. In those cases a connectivity domain hosts agents which can directly174

access the Internet or plug-and-play hardware devices such as USB keys, SD175

cards or Bluetooth devices and provide their services to applications running in176

the more isolated domains. This domain can be referred to as CD.177

Trusted path178

A trusted path2 is an end-to-end communications channel from the user to a179

specific software component, which the user can be confident has integrity, and180

is addressing the component they expect. This encompasses technical security181

measures, plus unforgeable UI indications of the trusted path.182

An example of a trusted path is the old Windows login screen, which required183

the user to press Ctrl+Alt+Delete to open the login dialogue. If a malicious ap-184

plication was impersonating the login dialogue, pressing Ctrl+Alt+Delete would185

open the task manager instead of the login dialogue, exposing the subversion.186

In the context of Apertis, an example situation calling for a trusted path is187

when the user needs to interact with a UI provided by the AD. They must be188

sure that this UI is not being forged by a malicious application running in the189

CE.190

Control stream191

A control stream is a network connection which transmits low bandwidth, la-192

tency insensitive messages which typically contain metadata about data being193

transferred in a data stream. In networking, it is sometimes known as the control194

plane.195

A control stream for one protocol may be treated as a data stream if it is being196

carried by a higher layer (or wrapper) protocol, as the control data in the stream197

is meaningless to the higher layer protocol.198

If a designer is concerned about whether a particular stream’s performance re-199

quirements make it suitable for running as a control stream, it almost certainly200

is not a control stream, and should be treated as a data stream. A new control201

protocol should be built to carry more limited metadata about it.202

A control stream can operate without a data stream (for example, if there is no203

performance-sensitive data to transmit).204

Data stream205

A data stream is a network connection which transmits the data referred to by206

a control stream. This data may be high bandwidth or latency sensitive, or it207

2https://en.wikipedia.org/wiki/Trusted_path

6

https://en.wikipedia.org/wiki/Trusted_path
https://en.wikipedia.org/wiki/Trusted_path

may be neither. In networking, it is sometimes known as the data plane.208

A data stream cannot operate without an associated control stream (which209

carries its metadata).210

Traffic control211

Traffic control (or bandwidth management3) is the term for a variety of tech-212

niques for measuring and controlling the connections on a network link, to try213

and meet the quality of service requirements for each connection, in terms of214

bandwidth and latency.215

Use cases216

A variety of use cases which must be satisfied by an inter-domain communication217

system are given below. Particularly important discussion points are highlighted218

at the bottom of each use case.219

All of these use cases are relevant to an inter-domain communication system,220

but some of them (for example, Video or audio decoder bugs) may equally well221

be solved by other components in the system.222

Standalone setup223

An app-centric consumer electronics domain (CE) is running in a virtual ma-224

chine on a developer’s laptop, and they are using it to develop an application for225

Apertis. There is no automotive domain (AD) for this CE to run against, but it226

must provide all the same services via its SDK APIs as the CE running in a ve-227

hicle which has an Apertis device. The CE must run without an accompanying228

AD in this configuration.229

Basic virtualised setup230

An embedded automotive domain (AD) and an app-centric consumer electronics231

domain (CE) are running as separate virtualised operating systems under a232

hypervisor, in order to save costs on the bill of materials by only having one233

board and CPU. The AD has access to the underlying physical hardware; the234

CE does not. The two domains have a high bandwidth connection to each other235

(for example, Ethernet, USB, PCI Express or virtio). The two domains need to236

communicate so that the CE can access the hardware controlled by the AD.237

Linux container setup238

Containers are based on Linux kernel containment features, including, but not239

limited to, Linux kernel namespaces, control groups, chroots (pivot_root), ca-240

pabilities.241

3https://en.wikipedia.org/wiki/Bandwidth_management

7

https://en.wikipedia.org/wiki/Bandwidth_management
https://en.wikipedia.org/wiki/Bandwidth_management

Both AD and CE are dedicated Linux containers on a host directly running on242

the hardware or in a virtual machine. AD is allowed to access safety-sensitive243

devices. CE is not allowed any access to safety-sensitive devices but may be able244

to access external devices like smartphones over Bluetooth, USB mass storage245

or security keys.246

Communication is based on the Unix Domain Sockets (UDS) mechanism pro-247

vided by the Linux kernel.248

This setup can be used both for production setups on hardware board and on249

a developer’s system for Apertis application development. It can be possible to250

provide a fake AD container for emulation and testing purposes.251

Isolation between containers is unavoidably limited when compared to the isola-252

tion between virtual machines, just like separate boards provide more isolation253

than VMs. This is due to the fact that a single kernel is shared by all contain-254

ers. However in this document we assume processes are not able to escape from255

the isolated environment or get access to resources on the host system or other256

containers for which they haven’t been explicitly granted access.257

Multiple CE domains are allowed with the above setup. In this setup, a Con-258

nectivity Domain can also coexist with AD and CE. It is responsible for any259

interaction with external networks and provides isolation in the case a network260

stack is compromised when that stack is not implemented in the shared kernel.261

Separate CPUs setup262

The AD is running on one CPU, and the CE is running on another CPU on the263

same board. The two CPUs have separate memory hierarchies. They maybe264

using separate architectures or endianness. The AD has access to all of the265

underlying physical hardware; the CE only has access to a limited number of266

devices, such as its own memory and some kind of high bandwidth connection267

to the AD (for example, Ethernet, USB, or PCI Express). The two domains268

need to communicate so that the CE can access the hardware controlled by the269

AD.270

Separate boards setup271

The AD is running on one mainboard, and the CE is running on another main-272

board, which is physically separate from the first. They may be using separate273

architectures or endianness. The two boards are connected by some kind of274

vehicle network (for example, Ethernet; but other technologies could be used).275

There are no other devices on this network. The vehicle owner (and any other276

attacker) might have physical access to this network. The AD has access to277

various devices which are connected to its board and not to the CE’s board.278

The two domains need to communicate so that the CE can access the hardware279

controlled by the AD.280

8

Separate boards setup with other devices281

The AD is running on one mainboard, and the CE is running on another main-282

board, which is physically separate from the first. They may be using separate283

architectures or endianness. The two boards are connected by some kind of284

vehicle network (for example, Ethernet; but other technologies could be used).285

There are many other devices on this network, which are addressable but whose286

traffic is irrelevant to the CE–AD connection (for example, a telematics modem,287

or a high-end amplifier). The vehicle owner (and any other attacker) might have288

physical access to this network. The AD has access to various devices which289

are connected to its board and not to the CE’s board. The two domains need290

to communicate so that the CE can access the hardware controlled by the AD.291

(Note: This is a much lower priority than other setups, but should still be292

considered as part of the overall design, even if the code for it will be implemented293

as a later phase.)294

Multiple CE domains setup295

The AD is running on one mainboard. Multiple CE domains are running, each296

on a separate mainboard, each physically separate from each other and from the297

AD. The boards are connected by some kind of vehicle network (for example,298

Ethernet; but other technologies could be used). There are many other devices299

on this network, which are addressable but whose traffic is irrelevant to the300

CE–AD connections (for example, a telematics modem, or a high-end amplifier).301

The vehicle owner (and any other attacker) might have physical access to this302

network. The AD has access to various devices which are connected to its board303

and not to the CEs’boards. Each CE domain needs to communicate with the304

AD so that it can access the hardware controlled by the AD.305

(Note: This is a much lower priority than other setups, but should still be306

considered as part of the overall design, even if the code for it will be implemented307

as a later phase.)308

Touchscreen events309

The touchscreen hardware is controlled by the AD, but content from the CE is310

displayed on it. In order to interact with this, touch events which are relevant to311

content from the CE must be forwarded from the AD to the CE. Users expect312

a minimal latency for touch screen event handling. Touchscreen events must313

continue to be delivered reliably and on time even if there is a large amount314

of bandwidth being consumed by other inter-domain communications between315

AD and CE.316

Wi-Fi access317

The Wi-Fi hardware is controlled by the AD or CD. The CE needs to use it318

for internet access, including connecting to a network. The Wi-Fi device can319

9

return data at high bandwidth, but also has a separate control channel. The320

control channel always needs to be available, even if traffic is being dropped due321

to bandwidth limitations in the inter-domain communication channel.322

As the Wi-Fi is used for general internet access, sensitive information might323

be transferred between domains (for example, authentication credentials for a324

website the user is logging in to). Attackers who are snooping the inter-domain325

connection must not be able to extract such sensitive data from the inter-domain326

communications link.327

(Note that they may still be able to extract sensitive data from insecure con-328

nections over the wireless connection itself, or elsewhere in transit outside the329

vehicle; so any solution here is the best mitigation we can manage for the problem330

of a website being insecure.)331

Bluetooth access332

The Bluetooth hardware might be attached to the AD or CD. The CE needs333

to be able to send data bi-directionally to other Bluetooth devices and also334

needs to be able to control the Bluetooth device, controlling pairing and other335

functions of the Bluetooth hardware.336

To support the A2DP and HSP/HFP audio profiles it may be desirable to keep337

the CE in charge of decoding and encoding the audio streams coming from338

and directed to the Bluetooth devices. The AD will be responsible for mixing339

the output streams directed to the car speakers and capturing input streams340

(possibly with noise cancellation) from the car microphones.341

The following diagrams depict the data and control flow when the Bluetooth342

device is attached to the AD.343

Sending audio stream from BT to AD344

BT device AD CE345

| --- attach ---> | |346

| --------- encoded audio ---------> |347

| | <--- decoded audio --- |348

(mixing decoded audio in AD)349

Sending audio stream from AD to BT350

BT device AD CE351

| --- attach ---> | |352

| | ---- LPCM audio ----> |353

| <-------- encoded audio --------- |354

The following diagram depicts the data and control flow when the Bluetooth355

device is directly attached to the CE instead.356

BT device CE AD357

| --------- attach -----------> | |358

10

| <-------- control ---------- | |359

| | |360

| --------- encoded audio ----> | |361

| | ------- LPCM audio ---> |362

| | <------ LPCM audio ---- |363

| <-------- encoded audio ----- |364

The following diagram depicts the data and control flow when the Bluetooth365

device is directly attached to the CD.366

BT device CD CE AD367

| ---- attach -----------> | | |368

| <--- control ---------- | | |369

| | <---- scan ----- | |370

| | ---- result ---> | |371

| | <---- play ----- | |372

| | |373

| ---- encoded audio ----> | |374

| | --------- LPCM audio ------> |375

| | <-------- LPCM audio ------- |376

| <--- encoded audio ----- |377

Multiple variations are possible on this model.378

Audio transfer379

The audio amplifier hardware might be attached to the AD hardware, or might380

be set up as a separate hardware amplifier attached to the in-vehicle network.381

The CE needs to be able to send multiple streams of decoded audio output382

to the AD, to be mixed with audio output from the AD according to some383

prioritisation logic.384

The decoded audio streams should be in LPCM format, but other formats may385

be negotiated by the domains using application specific APIs.386

Metadata can be sent alongside the audio, such as track names or timing infor-387

mation.388

Audio output needs predictable latency output, and for video conferencing it389

needs low latency as well; conversely, some level of packet loss is acceptable for390

audio traffic. However, the latency should not exceed a certain amount of time391

in some specific cases:392

• Voice recognition systems provided through phone integration require that393

the maximum latency of the audio buffer from the time it gets captured394

by the microphone controlled by the AD to the time it gets delivered to395

the phone attached to the CE domain must not exceed 35ms.396

• Text-to-speech systems provided through phone integration require that397

the maximum latency of the audio buffer from the time it is received by398

11

the CE domain from the attached phone to the time it gets played back399

on the speakers attached to the AD must not exceed 35ms.400

• The total round-trip time must not exceed 275ms when the phone is at-401

tached to the CE domain through a wired transports (for instance, USB402

CDC-NCM as used by CarPlay or the Android Open Accessory Protocol)403

and 415ms on wireless transports (WiFi in particular, Bluetooth A2DP is404

not recommended in this case).405

• Bluetooth SCO can be used when there is a latency constraint. It will406

be lower quality, but the transfer time over the air is guaranteed. The407

whole audio chain needs to satisfy the latency condition though. This408

is why in some setup, the Bluetooth audio is routed directly to the AD409

amplifier. When this is the case, an API to enable this link is provided by410

the domain that owns the Bluetooth hardware. It can be the AD, or the411

CD embedding a Bluetooth stack. The API calls would be issued by the412

CE domain.413

Video decoding414

There might be a specific hardware video decoder attached to the AD hardware,415

which the CE operating system wishes to use for offloading decoding of trusted416

or untrusted video content. This is high bandwidth, but means that the output417

from the video decoder could potentially be directed straight onto a surface on418

the screen.419

(See the appendix on Audio and video decoding for a discussion of options for420

video and audio decoding.)421

Video or audio decoder bugs The CE has a software video or audio decoder422

for a particular video or audio codec, and a security critical bug is found in this423

decoder, which could allow malicious video or audio content to gain arbitrary424

code execution privileges when it’s decoded. An update for the Apertis operating425

system is released which fixes this bug, and users need to apply it to their426

vehicles. To reduce the window of opportunity for exploitation, this update has427

to be applied by the vehicle owner, rather than taking the vehicle into a garage428

(which could take weeks).429

For example, like the series of exploitable bugs which affected the ‘secure’media430

decoding library on Android4 in 2015.431

This means we cannot securely support decoding untrusted video or audio con-432

tent in the AD, due to its slow software update cycle, unless we use a hardware433

video decoder which is specifically designed to cope with malicious inputs.434

4https://en.wikipedia.org/wiki/Stagefright_(bug)

12

https://en.wikipedia.org/wiki/Stagefright_(bug)
https://en.wikipedia.org/wiki/Stagefright_(bug)
https://en.wikipedia.org/wiki/Stagefright_(bug)
https://en.wikipedia.org/wiki/Stagefright_(bug)

Streaming media435

The media player backend on the CE accesses local files or internet streams and436

sends the streams to the Media Player HMI running in the AD. The CE might437

be able to perform demuxing, decoding or at least partly verifying the streams.438

The AD might accept fully decoded streams, but the media file or stream is usu-439

ally encoded and multiplexed. In some cases, the multiplexed stream can have440

synchronization sensitive metadata like subtitles. Therefore, if demuxing and441

decoding are performed in different domains, the AD should support multiple442

channels and mix the streams with time synchronization information.443

It is also possible that the AD sends the stream to the CE. For example, in444

the case of Internet phone applications, the CE provides the HMI and needs to445

be able to capture video and audio streams from the AD, before encoding and446

multiplexing them on the CE.447

When handling data streams that don’t need strict synchronization, the bulk448

data transfer mechanism is recommended. For example, sharing still pictures449

does not require real time processing so it is not suited for the streaming media450

mechanism.451

Downloads of firmware updates452

An OTA update agent in the Connectivity domain downloads or retrieves from453

an attached USB stick firmware images as large as 20GB each and needs to454

share them with the Automotive domain where the FOTA backend can flash455

the attached devices.456

Since firmware are very large, storing them twice should be avoided as the457

available space may not be sufficient to do so.458

Offline and online map data459

An offline map agent in the Connectivity domain downloads map data for offline460

usage by the navigation system running in the Automotive domain.461

Conversely, an online map agent in the Connectivity domain handles requests462

from the Automotive domain for map tiles to download.463

Phonebook integration464

A phonebook agent in the Connectivity domain retrieves approximately 500465

256×256px profile pictures, validates and re-encodes them to PNG and makes466

them available to the Automotive domain, possibly using an uncompressed zip467

file instead of sharing 500 files.468

13

Tinkering vehicle owner on the network469

The owner of a vehicle containing an Apertis device likes to tinker with it, and is470

probing and injecting signals on the connection between the AD and CE, or even471

replacing the CE completely with a device under their control. They should not472

be able to make the automotive domain do anything outside its normal operating473

range; for example, uncontrolled acceleration, or causing services in the domain474

to crash or shut down.475

The tampering must be detectable by the vendor when the vehicle is serviced476

or investigated after an accident.477

Tinkering vehicle owner on the boards478

The owner of a vehicle containing an Apertis device likes to tinker with it, and479

has gained access to the bootloaders and storage for both the AD and CE boards.480

They have managed to add some custom software to the CE image, which is481

now sending messages to the AD which it does not expect. Or vice-versa. The482

domain receiving the messages must not crash, must ignore invalid messages,483

and must not cause unsafe vehicle behaviour.484

The tampering must be detectable by the vendor when the vehicle is serviced485

or investigated after an accident.486

Secure bootloading5 itself is a separate topic.487

Support multiple AD operating systems488

The OEM for a vehicle wants to choose the operating system used in the AD489

—for example, it might be GENIVI Linux, or QNX, or something else. There490

is limited opportunity to modify this operating system to implement Apertis-491

specific features. Whichever CE or CD system is installed needs to interface to492

it. Each AD operating system may expose its underlying hardware and services493

with a variety of different non-standardised APIs which use push- and pull-style494

APIs for transferring data. The OEM wishes to be provided with an inter-495

domain communication library to integrate into their choice of AD operating496

system, which will provide all the functionality necessary to communicate with497

Apertis as the CE or CD operating system.498

Before-market upgrades499

The OEM for a vehicle has chosen a specific version of an operating system for500

their AD, and has initially released their vehicle with Apertis 17.09 on another501

domain, such as CE and/or CD. For the latest incremental version of this vehicle,502

they want to upgrade the other domain to use Apertis 18.06. The OS in the503

AD cannot be changed, due to having stricter stability and testing requirements504

than the other domains.505

5https://www.apertis.org/architecture/platform/secure-boot/

14

https://www.apertis.org/architecture/platform/secure-boot/
https://www.apertis.org/architecture/platform/secure-boot/

After-market upgrades506

A user has bought a vehicle which runs Apertis 17.09 in its CE. Apertis 18.06507

is released by their car vendor, and their garage offers it as an upgrade to508

the user as part of their next car service. The garage performs this software509

upgrade to the CE, without having to touch the AD. It verifies that the system510

is operational, and returns the car to the user, who now has access to all the511

new features in Apertis 18.06 which are supported by their vehicle’s hardware.512

Testability513

When developing a new vehicle, an OEM wants to iterate quickly on changes514

to the CE, but also wants to test them thoroughly for compatibility against a515

specific AD version, to ensure that the two domains will work together. They516

want this testing to include a number of valid and invalid conversations between517

the CE and AD, to ensure that the two domains implement error handling (and518

hence a large part of their security) correctly.519

Malicious CE520

Somehow, a third party application installed onto the CE manages to compro-521

mise a system service and gain arbitrary code execution privileges in the CE.522

It uses these privileges to send malicious messages to the AD. From the user’523

s point of view, this could result in a loss of IVI functionality, and unexpected524

behaviour from vehicle actuators, but must not result in loss of control of the525

vehicle.526

Malicious CD527

Recent protocol failures have been discovered that allowed an attacker to take528

control of a device remotely. To mitigate this, the network management stack529

has been moved to a Connectivity Domain. The impact of those attacks must530

be minimised. While the CD functionality can be degraded, it must not result531

in loss of control of the vehicle.532

After-market upgrade of a domain533

A user has bought a vehicle containing a low-end Apertis device. They wish to534

upgrade to a more fully-featured Apertis device, and this hardware upgrade is535

offered by their garage. The garage performs the upgrade, which replaces the536

existing CE hardware with a new separate CE board. If the existing hardware537

combined the AD and CE on a single board or virtualised processor, the entire538

board is replaced with two new, separate boards, one for each domain (though539

as this is a complex operation, some garages or vendors might not offer it). If540

the existing hardware already had separate boards for the two domains, only541

the CE board is upgraded —this may be a service offered by all garages.542

15

Power cycle independence of domains (CE down)543

Due to a bug, the CE crashes. The AD must not crash, and must continue544

to function safely. It may display an error message to the user, and the user545

may lose unsaved data. Once the CE restarts, the AD should reconnect to it546

and reestablish a normal user interface. The CE should reboot quickly and the547

cross-domain state be restored as much as reasonable once restarted.548

Any partially-complete inter-domain communications must error out rather than549

remaining unanswered indefinitely.550

The same situation applies if both domains are booting simultaneously, but the551

CE is slower to boot than the AD, for example —the AD will be up before the552

CE, and hence must deal with not being able to communicate with it. See also553

Plug-and-play CE device.554

Power cycle independence of domains (AD down, single screen)555

On a system where the AD and CE are sharing a single screen, if the AD crashes,556

the CE must not crash, and may gracefully shut down, and only restart once the557

AD has finished rebooting. The AD should reboot quickly and the cross-domain558

state be restored as much as reasonable once restarted559

Any partially-complete inter-domain communications must error out rather than560

remaining unanswered indefinitely.561

The same situation applies if both domains are booting simultaneously, but the562

AD is slower to boot than the CE, for example —the CE will be up before the563

AD, and hence must deal with not being able to communicate with it. See also564

Plug-and-play CE device.565

Power cycle independence of domains (AD down, multiple screens)566

On a system with multiple output screens, if the AD crashes, the CE must not567

crash, and should continue to run on all its screens, as another user may be568

using the CE (without requiring any functionality from the AD) on one of the569

screens. Once the AD restarts, the CE should reconnect to it and reestablish570

a normal user interface on all screens. The AD should reboot quickly and the571

cross-domain state be restored as much as reasonable once restarted.572

Any partially-complete inter-domain communications must error out rather than573

remaining unanswered indefinitely.574

The same situation applies if both domains are booting simultaneously, but the575

AD is slower to boot than the CE, for example —the CE will be up before the576

AD, and hence must deal with not being able to communicate with it. See also577

Plug-and-play CE device.578

16

Temporary communications problem579

There is a temporary communications problem between a service on the AD580

and its counterpart on the CE. Either:581

• The service (on the AD or CE) has crashed.582

• There is a problem with the physical connection between the domains,583

such as dropped packets due to congestion; but both domains are still584

running fine.585

• The entire domain or its inter-domain communications service has crashed.586

The different situations can be detected by the parts of the stack which are still587

working588

If a service has crashed, the inter-domain communication service should return589

an appropriate error code to the other domain, which could propagate the error590

to a calling application, or wait for the other domain to restart that service and591

try again.592

If there is packet loss, the reliability in the inter-domain communication protocol593

should cause the lost packets to be re-sent. Services should wait for that to594

happen. If the communications problem continues longer than a timeout, the595

domains must assume that each other have crashed and behave accordingly.596

If a domain has crashed, the other domain must wait for it to be restarted via597

its watchdog, as in Power cycle independence of domains (CE down).598

In all cases, the domain which is still running must not shut down or enter a599

‘paused’state, as that would allow denial of service attacks.600

New version of AD software601

An OEM has released a vehicle with version A of their AD operating system,602

and version 15.06 of Apertis running in the CE. For the next minor update to603

their vehicle, the OEM has made a number of changes to the underlying AD604

software, but not to its external interfaces. They wish to keep the same version605

of Apertis running in the CE and release the vehicle using this version B of their606

AD operating system, and version 15.06 of Apertis.607

New version of AD interfaces608

An OEM has released a vehicle with version A of their AD operating system,609

and version 15.06 of Apertis running in the CE. For the next minor update to610

their vehicle, the OEM has made a number of changes to the underlying AD611

software, and has changed a few of its external interfaces and exposed a few612

more vehicle-specific features in new interfaces. They want to make appropriate613

modifications to Apertis to align it with these changed interfaces, but do not614

wish to make major modifications to Apertis, and wish to (broadly) stick with615

17

version 15.06. They will release the vehicle using this version B of their AD616

operating system, and a tweaked version 15.06 of Apertis.617

In other words, this scenario applies only when the OEM has updated the AD,618

and wants to make a corresponding update to the CE. For the reverse scenario619

where the CE has been upgraded, it is required that the AD does not need to620

be updated: see Plug-and-play CE device and After market CE upgrades.621

Unsupported AD interfaces622

An OEM uses an AD operating system which exposes a large number of in-623

terfaces to various esoteric automotive components. Only a few of these com-624

ponents are currently supported by Apertis version A, which they are running625

in their CE. Apertis version B supports some more of these components, and626

exposes them in its SDK APIs. The OEM wishes to release a new version of the627

same vehicle, keeping the same version of the AD operating system, but using628

version B of Apertis and exposing the now-supported components in the SDK629

APIs.630

However, some of the other components which are exposed by the AD operating631

system in its inter-domain interface cannot be securely supported by Apertis (for632

example, they may allow unrestricted write access to the in-vehicle network).633

These should not be accessible by the SDK APIs at any time.634

Contacts sharing635

A vehicle maintains an address book in its AD operating system, which stores636

some of the user’s contacts on a removable SD card. The user interface, run by637

the CE, needs to be able to display and modify these contacts in the Apertis638

address book application.639

Protocol compatibility640

An older vehicle, using an old version A of some AD operating system was641

using a corresponding version A of Apertis in its CE. The CE operating system642

is upgraded to a recent version of Apertis, version B, by the garage when the643

vehicle is taken in for a service. This version of Apertis uses a much more recent644

version of the underlying software for the inter-domain communication protocol.645

It needs to continue to work with the old version A of the AD operating system,646

which is running a much older version of the protocol software.647

kdbus protocol compatibility If, for example, the inter-domain commu-648

nication protocol is implemented using dbus-daemon in version A of the AD649

operating system, and in the corresponding version A of Apertis; and version B650

of Apertis uses kdbus instead of dbus-daemon, the two OSs must still commu-651

nicate successfully.652

18

Navigation system653

A proprietary navigation system is running on the AD, with full access to the654

vehicle’s navigation hardware, including inertial sensors and a GPS receiver. A655

tour application on the CE wishes to use location-based services, reading the656

vehicle’s location from the navigation system on the AD, then requesting to the657

navigation service to set its destination to a new location for the next place658

in the tour. It sends a stream of points of interest to the navigation system659

to display on the map while the driver is navigating. This stream is not high660

bandwidth; neither are the location updates from the GPS.661

Marshalling resource usage662

The ‘proxy’software on either side of the inter-domain connection which handles663

the low-level communication link is the first software in a domain to handle664

malicious input. If malicious input is sent to a domain with the intent of causing665

a denial of service in that software, the rest of the software in the domain should666

be unaffected, and should treat the connection as timing out or compromised.667

The behaviour of the proxy software should be confined so that it cannot use668

excess resources in the domain and hence extend the denial of service attack to669

the whole domain.670

Feedback for malicious applications671

If an application uses SDK APIs incorrectly (for example, by providing param-672

eters which are outside valid ranges), it may be reported to the Apertis store as673

a ‘misbehaving application’and scheduled for further investigation and possible674

removal from the Apertis store. Similarly if the inter-domain communication675

APIs are used incorrectly (for example, if the AD returns an error stating that676

input validation checks have failed for an API call).677

This could also result in an application being blacklisted by the CE’s application678

manager, disallowing it from running in future until it is updated from the679

Apertis store.680

Compromised CE with delayed fix681

An attacker has somehow completely compromised the CE operating system,682

and has root access to it. It will take the OEM a few weeks to produce, test683

and distribute a fix for the exploit used by the attacker, but vehicle owners684

would like to continue to use their vehicles, with reduced functionality (no CE685

domain) in the meantime, because the attack has not compromised the AD. The686

OEM has provided them with an authenticated method of informing the AD687

to shut down the CE and keep it shut down until an authenticated update has688

been applied and has fixed the exploit and removed the attacker from the CE689

(probably by overwriting the entire OS with a fresh copy). This update can only690

be applied at a garage, but in order to allow speedy deployment, the user can691

19

switch the AD to this stand-alone mode themselves, using a trusted input path692

to the AD.693

Denial of service through flooding694

A speedometer application bundle constantly requests vehicle speed information695

from the AD. Hundreds of requests are made per second. The AD ensures696

this does not affect overall system performance, potentially at the cost of its697

responsiveness to the speedometer application’s requests.698

(Note: This assumes that the corresponding denial of service rate limiting which699

is implemented in the SDK API used by the speedometer application has some-700

how failed or been bypassed. In reality, all SDK APIs are also responsible for701

implementing their own rate limiting as a first level of protection against denial702

of service attacks.)703

Malicious CE UI704

An attacker has somehow completely compromised the CE operating system,705

and has root access to it. They can display whatever they like on the graphics706

output from the CE, which is shared with that from the AD on a single screen.707

The attacker tries to replicate the AD UI on the CE’s output and trick the user708

into entering personal data or security credentials in this faked UI, believing709

it to be the actual AD UI. There should be a way for the user to determine710

whether they are inputting details via a trusted path to the AD.711

Plug-and-play CE device712

In a particular vehicle, the CE device can be unplugged from the dashboard by713

the user, and passed around the car so that, for example, a rear seat passenger714

could play a game. This disconnects it from the AD, but it should continue715

to function with some features (such as Wi-Fi or Bluetooth) disabled until716

it is reconnected. Once reconnected to the dashboard it should reestablish717

its connections. See also, Power cycle independence of domains (CE down),718

Power cycle independence of domains (AD down, single screen), Power cycle719

independence of domains (AD down, multiple screens)720

(Note: This is a much lower priority than other setups, but should still be721

considered as part of the overall design, even if the code for it will be implemented722

as a later phase.)723

Connecting an SDK to a development vehicle724

A developer is running the SDK as a standalone CE system in a virtual envi-725

ronment on a laptop. They connect the laptop to the AD physically installed726

in a development car using an Ethernet cable, and expect to receive sensor data727

from the car, using the sensors and actuators SDK API, which was previously728

returning mock results from the standalone system.729

20

Connecting an SDK to a production vehicle The developer wonders730

what would happen if they tried connecting their SDK laptop to the AD in a731

production vehicle. They try this, and nothing happens —they cannot get sensor732

data out of the vehicle, nor use any of its other APIs.733

Security model734

See the Security concept design6 for general terminology including the defini-735

tions used for integrity, availability, confidentiality and trust.736

Attackers737

Vehicle’s owner The vehicle’s owner may be an attacker. They have physical738

access to the vehicle, including its in-vehicle network, the physical inter-domain739

communications link, and the board or boards which the automotive domain740

(AD) and consumer-electronics domain (CE) are on. We assume they do not741

have the capabilities to perform invasive attacks on silicon on the boards. Specif-742

ically, this means that in a virtualised setup where the AD and CE are run as743

separate virtual machines on the same CPU, we assume the attacker cannot744

read or modify the inter-domain communications link between them.745

However, we do assume that they can perform semi-invasive or non-invasive746

attacks7 on silicon on the boards. This means that they could (with difficulty)747

extract encryption keys from a secure key store on the board. A secure key748

store may be provided by the Secure Boot design, but may not be present749

due to hardware limitations —if so, the vehicle’s owner will be able to extract750

encryption keys from the device more easily.751

As of February 2016, the Secure Boot design is still forthcoming752

The vehicle’s owner may wish to attack their vehicle in order to get access to753

licenced content which they would otherwise have to pay for.754

See the Conditional Access design8755

We assume they do not want to take control of the vehicle, or to gain arbitrary756

code execution privileges —they can drive the vehicle normally, or develop and757

choose to install their own application bundle for this.758

Passenger The passenger is a special kind of third party attacker (Third759

parties), who additionally has access to the in-vehicle network. This may be760

possible if, for example, the Apertis device in the vehicle is removable so it can761

be passed to a passenger, exposing a connector behind it.762

The passenger may be trying to access confidential information belonging to the763

vehicle owner (if a multi-user system is in use).764

6https://www.apertis.org/concepts/archive/application_security/security/
7http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.html
8https://www.apertis.org/concepts/archive/application_security/conditional_access/

21

https://www.apertis.org/concepts/archive/application_security/security/
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.html
https://www.apertis.org/concepts/archive/application_security/conditional_access/
https://www.apertis.org/concepts/archive/application_security/security/
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.html
https://www.apertis.org/concepts/archive/application_security/conditional_access/

Third parties Any third party may be an attacker. We assume they have765

physical access to the exterior of the vehicle, but not to anything under the766

bonnet, including the in-vehicle network, the physical inter-domain communi-767

cations link, and the board or boards which the domains are on. This means768

that all garage mechanics must be trusted. They do, however, have access to769

all communications into and out of the vehicle, including Bluetooth, 4G, GPS770

and Wi-Fi.771

We assume any third party attacker can develop and deploy applications, and772

convince the owner of a vehicle to install them. These applications are subject773

to the normal sandboxing applied to any application installed on an Apertis sys-774

tem. These applications are also subject to the normal Apertis store validation775

procedures, but we assume that a certain proportion of malicious applications776

may get past these procedures temporarily, before being discovered and removed777

from the store.778

We assume that a third party attacker does not have access to the Apertis store779

servers. This means that all staff who have access to them must be trusted.780

A third party attacker may be trying to:781

• Access confidential information belonging to the vehicle owner.782

• Compromise the integrity of the vehicle’s control system (the automotive783

domain). For example, to trigger unintended acceleration or to change784

the radio channel to spook the driver.785

• Compromise the integrity of the CE domain to, for example, make it part786

of a botnet, or cause it to call premium rate numbers owned by the attacker787

to generate money.788

• Compromise the availability of the vehicle’s control system (the automo-789

tive domain) to bring the vehicle to a halt.790

• Compromise the availability of the vehicle’s infotainment system (the CE791

domain) to cause a nuisance to the driver or passengers.792

• Compromise the confidentiality of the device key (see the Conditional793

Access design9) in order to extract licenced content (for example, music)794

from application bundles.795

Trusted dealer As above, all authorized vehicle dealers, garages or other796

sale/repair locations have to be trusted, as they have more unsupervised ac-797

cess to the vehicle’s hardware, and more capabilities, than the vehicle owner,798

passenger or a third party.799

Security domains800

• Automotive domain801

9https://www.apertis.org/concepts/archive/application_security/conditional_access/

22

https://www.apertis.org/concepts/archive/application_security/conditional_access/
https://www.apertis.org/concepts/archive/application_security/conditional_access/
https://www.apertis.org/concepts/archive/application_security/conditional_access/
https://www.apertis.org/concepts/archive/application_security/conditional_access/

– There may be security sub-domains within the automotive domain,802

but for the purposes of this design it is treated as a black box803

• Consumer-electronics domain:804

– Each application sandbox in the consumer-electronics domain805

– CE domain operating system (this includes all the daemons for the806

SDK APIs—these are technically separate security domains, but since807

they communicate only with sandboxes and the CE domain proxy,808

this makes the model more complex for no analytical advantage)809

– CE domain proxy for the inter-domain communication810

• Connectivity domain:811

– Connectivity domain handles the communication between AD and812

the outer world.813

– Different protocol stacks.814

– CD domain proxy for communicating with AD815

• Other devices on the in-vehicle network, and the outside world816

• Hypervisor (if running as virtualised domains)817

Security model818

• Domains must assume that the inter-domain communication link has no819

confidentiality or integrity, and is controlled by an attacker (a man in the820

middle with the ability to modify traffic)821

– This means they must not trust any traffic from other devices on the822

network823

• The AD, CD and CE operating systems must assume all input from ex-824

ternal sources (Wi-Fi, Bluetooth, GPS, 4G, etc.) is malicious825

• The CE operating system may assume all API calls from the AD (as826

proxied by the CE proxy) are not controlled by an attacker, assuming827

they have come over an authenticated channel which guarantees integrity828

between the AD and CE proxy; in other words, the AD must not deny829

confidentiality or integrity to the CE830

• The AD may deny availability to the CE operating system, by closing the831

inter-domain link in response to the user disabling the CE while waiting832

for a critical security update833

• The AD must assume all API calls from the CE are malicious, in case the834

CE has been compromised835

• The CE must assume that all input and output from third party applica-836

tions in sandboxes is malicious, including all their API calls837

23

• If a hypervisor is present:838

– The AD and CE operating systems may assume all control calls from839

the hypervisor are not controlled by an attacker840

– The hypervisor must assume all input from the CE is malicious841

– The hypervisor may assume that all input from the AD is not mali-842

cious843

∗ Note that, when combined with the fact that the AD cannot be844

updated easily, this makes security bugs in the AD extremely845

critical and extremely hard to fix846

• Tampering with any domain software must be detectable even if it is not847

preventable (tamper evidence)848

• If one vehicle is attacked and compromised, the same effort must be re-849

quired to compromise other vehicles850

Non-use-cases851

Production CE domain used in multiple configurations852

A production CE domain operating system cannot be used in multiple config-853

urations, for example as both an operating system running on one CPU of a854

two-CPU board shared with the automotive domain OS; and then as an im-855

age running on a separate board connected to an in-vehicle network with other856

devices connected.857

This requirement would mean that the inter-domain communications system858

would have to support runtime reconfiguration, which would be a vector for859

protocol-downgrade attacks while bringing no major benefits. An attacker could860

try to trick the CE domain into believing it was in (for example) a virtualised861

configuration when it wasn’t, which could potentially disable its encryption, due862

to the assumption the domain could make about its inter-domain communica-863

tions link having inbuilt confidentiality.864

Requirements865

Separated transport layer866

The transport layer for transmitting inter-domain communications between the867

domains must be separated from the APIs being transported, in order to allow868

for different physical links between the domains, with different security proper-869

ties.870

Transport to SDK APIs Support a configuration where the CE is running871

in a virtual machine with the Apertis SDK, so the peer (which would normally872

be the AD) is a mock AD daemon running against the SDK.873

24

See Standalone setup.874

Transport over virtio Support a configuration where the CE and AD com-875

municate over a virtio link between two virtual machines under a hypervisor.876

See Basic virtualised setup.877

Transport over a private Ethernet link Support a configuration where878

the CE and AD are on separate CPUs and communicate over a point-to-point879

Ethernet link.880

See Separate CPUs setup, Separate boards setup.881

Transport over a private Ethernet link to a development vehicle Sup-882

port a configuration where the CE is running in an SDK on a laptop, and the883

AD is running in a developer-mode Apertis device in a vehicle, and the two884

communicate over a wider shared Ethernet.885

See Connecting an SDK to a development vehicle.886

Transport over a shared Ethernet link Support a configuration where887

the CE and AD are on separate CPUs are are both connected to some wider888

shared Ethernet.889

See Separate boards setup with other devices, Multiple CE domains setup.890

Transport over Unix Domain Socket Support a configuration where AD891

and CE are on the same host running as Linux containers and connected via892

UDS. The same transport can be used on OEM deployments and on SDK envi-893

ronments.894

See Linux container setup, Multiple CE domains setup.895

Message integrity and confidentiality in transport layer896

Some of the possible physical links between domains do not guarantee integrity897

or confidentiality of messages, so these must be implemented in the software898

transport layer.899

See Separate CPUs setup, Separate boards setup, Separate boards setup with900

other devices, Multiple CE domains setup, Wi-Fi access.901

Reliability and error checking in transport layer902

Some of the possible physical links between domains do not guarantee reliable903

or error-free transfer of messages, so these must be implemented in the software904

transport layer.905

25

See Separate boards setup, Separate boards setup with other devices, Multiple906

CE domains setup.907

Mutual authentication between domains908

An attacker may interpose on the inter-domain communications link and at-909

tempt to impersonate the AD to the CE, or the CE to the AD. The domains910

must mutually authenticate before accepting any messages from each other.911

See Tinkering vehicle owner on the network.912

Separate authentication for developer and production mode devices913

A CE running in an SDK must be able to connect to and authenticate with914

an AD running in a vehicle which is in a special ‘developer mode’. If the same915

CE is connected to a production vehicle, it must not be able to connect and916

authenticate.917

See Connecting an SDK to a development vehicle, Connecting an SDK to a918

production vehicle.919

Individually addressed domains920

In order to support multiple CE domains using the same automotive domain,921

each domain (consumer–electronics and automotive) must be individually ad-922

dressable. The system must not assume that there are only two domains in the923

network.924

See Multiple CE domains setup.925

Traffic control for latency926

In order to support delivery of touchscreen events with low latency (so that UI927

responsiveness is not perceptibly slow for the user), the system must guarantee928

a low latency for all communications, or provide a traffic control system to929

allow certain messages (for example, touchscreen messages) to have a guaranteed930

latency.931

See Touchscreen events.932

Traffic control for bandwidth933

In order to prevent some kinds of high bandwidth message from using all the934

bandwidth provided by the physical link, the system must provide a traffic935

control system to ensure all types of message have fair access to bandwidth936

(where ‘fairness’is measured according to some rigorous definition).937

This may be implemented by separating ‘control’and ‘data’streams (see sections938

2.4 and 2.5), or by applying traffic control algorithms.939

26

See Wi-Fi access, Bluetooth access.940

Traffic control for frequency941

In order to prevent denial of service due to a service sending too many messages942

at once (so the communication overheads of those messages start to dominate943

bandwidth usage), the system must guarantee fair access to enqueue messages.944

This is subtly different from fair access to bandwidth: service A sending 100000945

messages of 1KB per second and service B sending 1 message of 100000KB946

per second have the same bandwidth requirements; but if the inter-domain link947

saturates at 100000KB per second, some of the messages from service A must948

be delayed or dropped as the messaging overheads exceed the bandwidth limit.949

See Denial of service through flooding.950

Separation of control and data streams951

Certain APIs will need to provide data and control streams separately, with dif-952

ferent latency and bandwidth requirements for both. The system must support953

multiple streams; this may be via an explicit separation between ‘control’and954

‘data’streams, or by applying traffic control algorithms.955

See Wi-Fi access, Bluetooth access, Audio transfer, Video decoding.956

No untrusted access to AD hardware957

The entire point of an inter-domain communication system is to isolate the CE958

from direct access to sensitive hardware, such as vehicle actuators or hardware959

with direct memory access (DMA) rights to the AD CPU’s memory. This must960

apply equally to decoder hardware —decoders or other hardware handling un-961

trusted data from users must not be trusted by the AD if the CE can send962

untrusted user data to it, unless it is certified as a security boundary, able to963

handle malicious user input without being exploited.964

Specifically, this means that hardware decoders must only access memory which965

is accessible by the AD CPU via an input/output memory management unit966

(IOMMU), which provides memory protection between the two, so that the967

hardware decoder cannot access arbitrary parts of memory and proxy that access968

to a malicious or compromised application in the CE.969

Note that it is not possible to check audio or video content for ‘badness’before970

sending it to a decoder, as that entails doing the full decoding process anyway.971

See Audio transfer, Video decoding, Video or audio decoder bugs, Connecting972

an SDK to a production vehicle.973

27

Trusted path for users to update the CE operating system974

There must exist a trusted path from the user to the system updater in the CE,975

or to a component in the AD which will update the CE. The user must always976

have access to this update system (it must always be available).977

This trusted path may also be used by garages to upgrade the CE when servicing978

a vehicle; or a different path may be used.979

See Video or audio decoder bugs, After market CE upgrades, Malicious CE UI.980

Safety limits on AD APIs981

The automotive domain must apply suitable safety limits to all of its APIs,982

which are enforced within the AD, so that even if a properly authenticated and983

trusted CE makes an API call, it is ignored if the call would make the AD do984

something unsafe.985

In this case, ‘safety’is defined differently for each actuator or combination of986

actuator settings, and will vary between AD implementations. It might not be987

possible to detect all unsafe situations (in the sense of an unsafe situation which988

could lead to an accident).989

See Tinkering vehicle owner on the boards, Malicious CE.990

Rate limiting on control messages991

The inter-domain service in the CE and AD should impose rate limiting on992

control messages coming from the CE, to avoid a compromised service in the CE993

from using a denial of service attack to prevent other messages being transmitted994

successfully.995

This should be in addition to rate limiting implemented in the SDK APIs in the996

CE themselves, which are expected to be the first line of defence against denial997

of service attacks.998

See Denial of service through flooding.999

Ignore unrecognised messages1000

Both the CE and AD must ignore (and log warnings about) inter-domain com-1001

munication messages which they do not recognise. If the message expects a1002

reply, an error reply must be sent. The domains must not, for example, shut1003

down or crash when receiving an unrecognised message, as that would lead to1004

a denial of service vulnerability.1005

See Tinkering vehicle owner on the boards, Malicious CE.1006

28

Portable transport layer1007

The transport layer must be portable to a variety of operating systems and1008

architectures, in order that it may be used on different AD operating systems.1009

This means, for example, that it must not depend on features added to very1010

recent versions of the Linux kernel, or must have fallback implementations for1011

them.1012

See Support multiple AD operating systems.1013

Support push mode and pull mode communications1014

The CE must be able to use pull mode communications with the AD, where1015

it makes a method call and receives a reply; and push mode communications,1016

where the AD emits a signal for an event, and the CE receives this.1017

See Support multiple AD operating systems.1018

OEM AD integration API1019

In order to allow any OEM to connect their AD to the system, there must1020

be a well defined API which they connect their OEM-specific APIs for vehicle1021

functionality to, in order for that functionality to be exposed over the inter-1022

domain communication link.1023

This API must support an implementation which uses the services in the Apertis1024

SDK.1025

See Support multiple AD operating systems, Standalone setup.1026

Flexibility in OEM AD integration API1027

As the functionality exported by different ADs differs, the integration API for1028

connecting it to the inter-domain communication system must be a general one1029

—it must not require certain functionality or data types, and must support func-1030

tionality which was not initially expected, or which is not currently supported1031

by any CE. This functionality should be exposed on the inter-domain commu-1032

nications link, in case future versions of the CE can take advantage of it.1033

See Support multiple AD operating systems, Before market CE upgrades, After1034

market CE upgrades, New version of AD software, New version of AD interfaces.1035

Inflexibility in OEM AD integration API1036

The OEM AD integration API must not allow access to arbitrary services or1037

APIs on the AD. It must only allow access to the services and APIs explicitly1038

exposed by the OEM in their use of the integration API.1039

See Unsupported AD interfaces.1040

29

Service discovery1041

Domains should be able to detect where specific services are hosted in case of1042

multiple CE domains. If a service is moved from one CE domain to another1043

CE domain, other domains should not require any reconfiguration. CE domains1044

should not be able to spoof services that are meant to be provided by the AD.1045

Stability in inter-domain communications protocol1046

As the versions of the AD and CE change at different rates, the inter-domain1047

communications protocol must be well defined and stable —it must not change1048

incompatibly between one version of the CE and the next, for example.1049

If the protocol uses versioning to add new features, both domains must support1050

protocol version negotiation to find a version which is supported if the latest1051

one is not.1052

See Before market CE upgrades, After market CE upgrades, New version of AD1053

software, Unsupported AD interfaces, Protocol compatibility.1054

Testability of protocols1055

All IPC links in the inter-domain communications system must be testable in-1056

dividually, without requiring the other parts of the system to be running. For1057

example, the link between applications and SDK API services must be testable1058

without running an automotive domain; the link between SDK API services and1059

the inter-domain interface at the boundary of the CE domain must be testable1060

without running an automotive domain; etc.1061

See Testability, New version of AD software, Unsupported AD interfaces.1062

Testability of protocol parsers and writers1063

All protocol parsers and writers in the inter-domain communications system1064

must be testable individually, using unit tests and test vectors which cover1065

all facets of the protocol. These tests must include negative tests —checks that1066

invalid input is correctly rejected. For example, if a protocol requires a certificate1067

to authenticate a peer, a test must be included which attempts a connection1068

with different types of invalid certificate.1069

See Testability, New version of AD software, Unsupported AD interfaces.1070

Testability of processes1071

The code implementing all processes in the inter-domain communications system1072

must be testable individually, without having to run each process as a subprocess1073

in a test harness (because this makes testing slower and error prone). This means1074

implementing each process as a library, with a well defined and documented API,1075

30

and then using that library in a trivial wrapper program which hooks it up to1076

input and output streams and accepts command line arguments.1077

See Testability, New version of AD software, Unsupported AD interfaces.1078

CE system services separated from transport layer1079

There must be a trust boundary between each service on the CE which has access1080

to the inter-domain communication link, and the service which provides access1081

to the inter-domain communications link itself. The inter-domain service should1082

validate that messages from a service are related to that service (for example,1083

by having a whitelist of types of message which each service can send).1084

This limits the potential for escalation if service A is exploited —then the at-1085

tacker can only use the inter-domain service to impersonate A, rather than to1086

impersonate all services in the CE. It also allows the resource usage of the inter-1087

domain service to be limited, to limit the impact of a denial of service attack1088

on it.1089

See Malicious CE, Marshalling resource usage.1090

No dependency on CE specific hardware1091

As the CE hardware may be upgraded by a garage at some point, the inter-1092

domain communications should not depend on specific identifiers in this hard-1093

ware, such as an embedded cryptographic key. Such keys may be used, but the1094

AD should accept multiple keys (for example, all keys signed by some overall1095

key provided by Apertis to all OEMs), rather than only accepting the specific1096

key from the hardware it was originally run against.1097

This requirement may also be satisfied by including provisions for updating the1098

copy of a key in the AD if such a dependency on a specific CE key is a sensible1099

implementation choice.1100

See After market upgrade of a domain.1101

Immediate error response if service on peer is unavailable1102

If a service on the peer has crashed or is unresponsive, but the peer itself (includ-1103

ing its inter-domain communications link) is still responsive, that peer should1104

return an error to the other domain, which should propagate it to any caller of1105

SDK APIs which use the failing service. An error response must be returned,1106

otherwise the caller will time out.1107

See Power cycle independence of domains (CE down), Power cycle independence1108

of domains (AD down, single screen), Power cycle independence of domains (AD1109

down, multiple screens), Plug-and-play CE device1110

31

Immediate error response if peer is unavailable1111

If the peer has crashed, or is not currently connected to the physical inter-1112

domain communications link (either because it has been unplugged or due to a1113

fault), the other peer must generate a local error response in the inter-domain1114

service and return that to any caller of SDK APIs which require inter-domain1115

communications. An error response must be returned, otherwise the caller will1116

time out.1117

See Power cycle independence of domains (CE down), Power cycle independence1118

of domains (AD down, single screen), Power cycle independence of domains (AD1119

down, multiple screens), Plug-and-play CE device1120

Timeout error response if peer does not respond1121

If the peer is unresponsive to a particular inter-domain message, the other peer1122

must generate a local error response in the inter-domain service and return that1123

to the caller of the SDK API which required inter-domain communications. An1124

error response must be returned, otherwise the caller will wait for a response1125

indefinitely (or have to implement its own timeout logic, which would be redun-1126

dant).1127

See Power cycle independence of domains (CE down), Power cycle independence1128

of domains (AD down, single screen), Power cycle independence of domains (AD1129

down, multiple screens), Plug-and-play CE device1130

All inter-domain communications APIs are asynchronous1131

As inter-domain communications may have some latency, or may time out after1132

a number of seconds, all SDK APIs which require inter-domain communications1133

must be asynchronous, in the GLib sense10: the call must be started, a handler1134

for its response added to the caller’s main loop, and the caller must continue1135

with other tasks until the response arrives from the other domain.1136

This encourages UIs to be written to not block on SDK API calls which might1137

take multiple seconds to complete, as during that time, the UI would not be1138

redrawn at all, and hence would appear to ‘freeze’.1139

See Temporary communications problem.1140

Reconnect to peer as soon as it is available1141

If a domain has crashed and restarted, or was disconnected from the inter-1142

domain communications link and then reconnected, the domain must reconnect1143

to its peer as soon as the peer can be found on the network. If, for example,1144

both domains had crashed, this may involve waiting for the peer to connect to1145

the network itself.1146

10https://developer.gnome.org/gio/stable/GAsyncResult.html

32

https://developer.gnome.org/gio/stable/GAsyncResult.html
https://developer.gnome.org/gio/stable/GAsyncResult.html

See Plug-and-play CE device.1147

External domain watchdog1148

Both domains must be connected to an external watchdog device which will1149

restart them if they crash and fail to restart themselves.1150

The watchdog must be external, rather than being the other domain, in case1151

both domains crash at the same time.1152

See Power cycle independence of domains (CE down), Power cycle independence1153

of domains (AD down, single screen), Power cycle independence of domains (AD1154

down, multiple screens).1155

Reporting system for malicious applications1156

There should exist a trusted path from the application launcher in the CE to1157

the Apertis store to allow the launcher to provide feedback about applications1158

which are detected to have done ‘malicious’things, such as called an SDK API1159

with parameters which are obviously out of range.1160

If such a path exists, the inter-domain service in the CE must be able to detect1161

error responses from the AD which indicate that malicious behaviour has been1162

detected and rejected, and must be able to forward those notifications to the1163

reporting system.1164

See Feedback for malicious applications.1165

Ability to disable the consumer–electronics domain1166

There must exist a trusted path to a setting in the AD to allow the vehicle1167

owner to disable the CE because it has been compromised, pending taking the1168

vehicle to a trusted dealer to install an update.1169

As well as preventing booting the CE, this must disable all inter-domain com-1170

munications from within the inter-domain service in the AD.1171

See Compromised CE with delayed fix.1172

Tamper evidence1173

If the CE or AD, or communications between them are tampered with by an1174

attacker, it must be possible for an investigator (who is trusted by and has access1175

to tools provided by the OEM) to determine that the software or hardware was1176

modified —although it might not be possible for them to determine how it was1177

modified. This will allow for liability to be attributed in the event of an accident1178

or warranty claim.1179

See Tinkering vehicle owner on the network, Tinkering vehicle owner on the1180

boards.1181

33

No global keys in vehicles1182

The security which protects the inter-domain communication system (including1183

any trusted boot security) must use unique keys for each vehicle, and must not1184

have a global key (one which is the same in all vehicles) as a single point of1185

failure.1186

This means that if an attacker manages to compromise one vehicle, they must1187

not be able to learn anything (any keys) which would allow them to compromise1188

another vehicle with less effort.1189

See Tinkering vehicle owner on the network, Tinkering vehicle owner on the1190

boards.1191

Existing inter-domain communication systems1192

As this is quite a unique problem, we know of no directly comparable systems.1193

More generally, this is an instance of a distributed system, and hence similar1194

in some respects to a number of existing remote procedure call systems or dis-1195

tributed middleware systems.1196

If comparisons with specific systems would be beneficial, they can be included1197

in a future revision of this document.1198

Open question: Are there any relevant existing systems to compare against?1199

Approach1200

Based on the [above research][Existing domain communications system] and1201

Requirements, we recommend the following approach as an initial sketch of an1202

inter-domain communication system.1203

Overall architecture1204

In the following figure, each box represents a process, and hence each connection1205

between them is a trust boundary.1206

34

1207

Apertis IDC architecture. The ‘OEM specific’APIs are also known as1208

‘native OEM APIs’; and the ‘OEM API’is also known as the ‘Apertis1209

automotive API’. For more information on the export and adapter1210

layer, see Automotive domain export layer and Consumer-electronics1211

domain adapter layer.1212

APIs from the automotive domain are exported by an export layer (Automotive1213

domain export layer) as D-Bus objects on the inter-domain communications link.1214

This link runs a known version of the D-Bus protocol (and requires backwards1215

compatibility indefinitely) between an inter-domain service process in each do-1216

main (Protocol library and inter-domain services). The inter-domain service1217

in the CE domain sends and receives D-Bus messages for the objects exported1218

by the automotive domain, and proxies them to a private bus in the CE do-1219

main. SDK services in the CE domain connect to this bus, and an adapter1220

layer Consumer-electronics domain adapter layer in each service converts the1221

APIs from the automotive domain to the SDK APIs used in the version of Aper-1222

tis in use in the CE domain. These SDK APIs are exported onto the normal1223

35

D-Bus session bus, to be used by applications (Flow for a given SDK API call).1224

The export layer and adapter layer provide abstraction of the APIs from the1225

automotive domain: the export layer converts them from C APIs, QNX message1226

passing, or however they are implemented in the automotive OS, to a D-Bus API1227

which is specific to that OEM, but which has stability guarantees through use1228

of API versioning (Interaction of the export and adapter layers). The adapter1229

layer converts from this D-Bus API to the current version of the Apertis SDK1230

APIs. Both layers are OEM-specific.1231

The use of the D-Bus protocol throughout the system means that between the1232

export layer and the adapter layer, message contents to not need to be re-1233

marshalled —messages only need their headers to be changed before they are1234

forwarded. This should eliminate a common cause of poor performance (remar-1235

shalling).1236

High-bandwidth Data connections are provided in parallel with the control con-1237

nection which runs this D-Bus protocol (Control protocol). They use TCP,1238

UDP or Unix sockets, and are opened between the two inter-domain services on1239

request. Applications and services must define their own protocols for commu-1240

nicating over these links, which are appropriate to the data being transferred1241

(for example, audio data or a Bluetooth file transfer).1242

Authentication, confidentiality and integrity of all inter-domain communications1243

(the control connection and data connections) are provided by using IPsec as1244

the bottom layer of the protocol stack (Encryption). The same protocol stack1245

is used for all configurations of the two domains (from a standalone CE domain1246

through to multiple CE domains on a shared network with an automotive do-1247

main), to ensure that the same code path is used for all configurations and hence1248

is widely tested (Configuration designs).1249

Addressing and discovery of domains, before the initial connection between them,1250

is provided by IPv6 neighbour discovery (Traffic control).1251

Traffic control is implemented in the CE domain using standard Linux kernel1252

traffic control mechanisms, with the policy specified by the inter-domain ser-1253

vice (section 8.4). It is applied for the control connection and for each data1254

connection separately, as they are all separate TCP or UDP connections.1255

The only exception from the above is Linux container setup which uses Unix1256

Domain Sockets as a trusted and reliable bottom transport layer instead of IPsec.1257

In this case, there is no need for traffic control. Addressing and discovery of1258

local domains in Linux container setup is based on common directories created1259

and shared outside of the containers by the container manager.1260

36

1261

Responsibilities for areas of code in the IDC architecture1262

Security domains1263

As process boundaries are the only way of enforcing trust boundaries, each1264

of these security domains corresponds to at least one separate process in the1265

system.1266

• Inter-domain service in the automotive domain. We recommend that this1267

remains a separate security domain from the rest of the services and soft-1268

ware running in the AD. This allows it to be isolated from other compo-1269

nents to reduce the attack surface exposed by the AD.1270

• Rest of the automotive domain: as mentioned in Security domains, the1271

automotive domain is essentially a black box.1272

• Each application sandbox in the consumer–electronics domain.1273

• Inter-domain service in the consumer–electronics domain.1274

37

• Each service for an SDK API in the consumer–electronics domain. The1275

trust boundaries between them may not be enforced strongly (as all ser-1276

vices in the consumer–electronics domain are considered as trusted parts1277

of the operating system), but their trust boundaries with the inter-domain1278

service should be enforced, and the inter-domain service should consider1279

them as potentially compromised.1280

• Other devices on the in-vehicle network, and the outside world.1281

• Hypervisor (if running as virtualised domains).1282

Protocol design1283

The protocol for communicating data between the domains has two planes: the1284

control plane, and the data plane. They have different requirements, but both re-1285

quire addressing, routing, mutual authentication of peers, confidentiality of data1286

and integrity of data. In addition, the control plane must have bi-directional,1287

in-order transmission, framing, reliability and error detection. Conversely, the1288

data plane must have multiplexing, and the ability to apply traffic control to1289

each of its connections (Traffic control).1290

The control plane is used for sending control data between the domains —these1291

are the method calls which form the majority of inter-domain communications.1292

They require low latency, and are low bandwidth. The [control protocol][Control1293

protocol] itself provides push and pull method call semantics, and allows for new1294

data connections (Data connections) to be opened. Only one control connection1295

exists between a pair of domains, and it is always connected.1296

The data plane is used for high bandwidth data, such as video or audio streams,1297

or Wi-Fi, 4G or Bluetooth downloads. The latency requirements are variable,1298

but all connections are high bandwidth. The inter-domain communication sys-1299

tem provides a plain stream for each data plane connection, and services must1300

implement their own protocol on top which is appropriate for the specific type of1301

data being transmitted (for example, audio or video streaming; or Wi-Fi down-1302

loads). Data connections are created between two domains on demand, and are1303

closed after use.1304

IPsec versus TLS An important design decision is whether to use IPsec111305

or TLS12 (and DTLS) for providing the security properties of the inter-domain1306

connection.1307

If IPsec is used (following figure), it forms the bottom layer of the protocol hierar-1308

chy, and implements addressing, routing, mutual authentication, confidentiality1309

and integrity for all connections in the control and data planes.1310

11https://en.wikipedia.org/wiki/IPsec
12https://en.wikipedia.org/wiki/Transport_Layer_Security

38

https://en.wikipedia.org/wiki/IPsec
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/IPsec
https://en.wikipedia.org/wiki/Transport_Layer_Security

1311

Protocol stacks for control and data planes if using IPsec.1312

If TLS is used (Following figure), it forms the layer just below the application1313

protocols in the protocol hierarchy —the control plane would use a single TLS1314

over TCP connection; and the data plane would use multiple TLS over TCP1315

or DTLS over UDP connections. TLS (and hence DTLS —they have the same1316

security properties) implements mutual authentication, confidentiality and in-1317

tegrity, but only for a single connection; each new connection needs a new TLS1318

session.1319

The chief advantage of IPsec is its transparency: any protocol can be tunnelled1320

using it, without needing to know about the security properties it has. However,1321

to do this, IPsec needs to be supported by both the AD and CE kernels. Some1322

automotive operating systems may not support IPsec (although, as a data point,1323

QNX seems to).1324

1325

Protocol stacks for control and data planes if using TLS.1326

A 2003 review of the IPsec protocol13 identified a number of problems with it.1327

However, since then, it has been updated by RFC 430114, RFC 604015 and RFC1328

761916. These should be evaluated and the overall protocol security determined.1329

In contrast, the security of TLS has been well studied, especially in recent years1330

after the emergence of various vulnerabilities in it. TLS has the advantage that1331

it is a smaller set of protocols than IPsec, and hence easier to study.1332

13https://www.schneier.com/cryptography/archives/2003/12/a_cryptographic_eval.html
14https://tools.ietf.org/html/rfc4301
15https://tools.ietf.org/html/rfc6040
16https://tools.ietf.org/html/rfc7619

39

https://www.schneier.com/cryptography/archives/2003/12/a_cryptographic_eval.html
https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc6040
https://tools.ietf.org/html/rfc7619
https://tools.ietf.org/html/rfc7619
https://tools.ietf.org/html/rfc7619
https://www.schneier.com/cryptography/archives/2003/12/a_cryptographic_eval.html
https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc6040
https://tools.ietf.org/html/rfc7619

Open question: What is the security of the IPsec protocol in its current (2015)1333

state?1334

Performance-wise, TLS requires a handshake for each new connection, which1335

imposes connection latency of at least one round trip (assuming use of TLS ses-1336

sion resumption17) for each new connection (on top of other latency such as the1337

TCP handshake). It is not possible to use a single TLS session and multiplex1338

connections within it, as this puts the protocol reliability (TCP retransmission)1339

below the multiplexing in the protocol stack, which makes the multiplexed con-1340

nection prone to head of line blocking18, which seriously impacts performance,1341

and allows one connection to perform a denial of service attack on all others it1342

is multiplexed with. IPsec has the advantage of not requiring this handshake1343

for each connection, which significantly reduces the latency of creating new con-1344

nections, but does not affect their overall bandwidth once they have reached a1345

steady state.1346

Open question: What is the performance of TCP and UDP over IPsec, TLS1347

over TCP and DTLS over UDP on the Apertis reference hardware?1348

Overall, we recommend using IPsec if it is expected to be supported by all1349

automotive domain operating systems which will be used with Apertis systems.1350

Otherwise, if an AD OS might not support IPsec, we recommend using TLS1351

over TCP and DTLS over UDP for all configurations. We do not recommend1352

providing a choice for OEMs between IPsec and TLS, as this doubles the possible1353

configurations (and hence testing) of a part of the system which is both complex1354

and security critical.1355

The remainder of this document assumes that IPsec is chosen. Throughout,1356

please read ‘IPsec’as meaning ‘the IPsec protocol stack or the TLS protocol1357

stack’.1358

Configuration designs The physical links available between the domains dif-1359

fer between configurations of the domains, as do their properties. For some con-1360

figurations (Standalone setup, Basic virtualised setup, Linux container setup)1361

confidentiality and integrity of the inter-domain communications protocol are1362

not strictly necessary, as the physical link itself cannot be observed by an at-1363

tacker. However, for the other configurations, these two properties are impor-1364

tant.1365

Since the first two configurations are the ones which are typically used for devel-1366

opment, we suggest implementing confidentiality and integrity for them anyway,1367

regardless of the fact it’s not strictly necessary. This avoids the situation where1368

the code running on production configurations is vastly different from that run-1369

ning on development configurations. Such a situation often leads to inadequate1370

testing of the production code.1371

17https://tools.ietf.org/html/rfc5077
18https://en.wikipedia.org/wiki/Head-of-line_blocking

40

https://tools.ietf.org/html/rfc5077
https://tools.ietf.org/html/rfc5077
https://tools.ietf.org/html/rfc5077
https://en.wikipedia.org/wiki/Head-of-line_blocking
https://tools.ietf.org/html/rfc5077
https://en.wikipedia.org/wiki/Head-of-line_blocking

This should be weighed against the potential performance gains from eliminating1372

encryption from those connections, and the potential gains in debuggability1373

(for the Standalone setup and Linux container setup) by being able to inspect1374

network traffic without needing to extract the encryption key.1375

Open question: What trade-off do we want between performance and testa-1376

bility for the different transport layer configurations?1377

Standalone setup1378

IPsec running on a loopback interface19 to a service running in the SDK which1379

mocks up the inter-domain service running in the AD. The security properties it1380

provides are technically not needed, as the standalone setup is for development1381

and is ignored by the security model.1382

Even though there are only two peers communicating, they will both have and1383

use a full addressing scheme (Addressing and peer discovery).1384

Basic virtualised setup1385

A virtio-net connection must be set up in the CE and AD virtual guests, using1386

a private network containing those two peers. If the AD cannot be modified to1387

enable a virtio-net connection, a normal virtualised Ethernet connection must1388

be used.1389

Virtio-net is the name of the KVM paravirtualised network driver1390

(http://www.linux-kvm.org/page/Virtio). Similar paravirtualised1391

drivers exist for most hypervisors; so an appropriate one for the1392

hypervisor should be used. For simplicity, this document will use1393

‘virtio-net’to refer to them all.1394

In either case, the transport layer will use IPsec between the two. The security1395

properties it provides are technically not needed for a virtualised configuration,1396

as the security model guarantees that the hypervisor maintains confidentiality1397

and integrity of the connection.1398

Even though there are only two peers on the network, they will both have and1399

use a full addressing scheme (Addressing and peer discovery).1400

Separate CPUs setup1401

A normal Ethernet connection must be used to connect the AD and CE on a1402

private network. IPsec will be used over this Ethernet link, providing all the1403

necessary transport layer properties.1404

Even though there are only two peers on the network, they will both have and1405

use a full addressing scheme, described below.1406

Separate boards setup1407

Same as for the separate CPUs setup.1408

19https://en.wikipedia.org/wiki/Loopback#Virtual_loopback_interface

41

https://en.wikipedia.org/wiki/Loopback#Virtual_loopback_interface
http://www.linux-kvm.org/page/Virtio
https://en.wikipedia.org/wiki/Loopback#Virtual_loopback_interface

Separate boards setup with other devices1409

Same as for the separate CPUs setup.1410

Multiple CE domains setup1411

Same as for the separate CPUs setup. Each domain’s address must be unique,1412

and the use of addressing in this configuration becomes important.1413

Linux container setup1414

The communication is based on Unix Domain Sockets (UDS) shared between1415

the counterpart domains; this means that a common directory must be shared1416

for each pair of communicating domains. This directory must be writable by at1417

least one container, such that its gateway layer or adapter layer can create the1418

named unix domain socket file and listen on it, and must be readable on the1419

other container, which will connect to the shared named unix domain socket1420

file. The dedicated shared directory for communication may support space1421

limits for writing and inodes creation, for example: dedicated tmpfs mount or1422

btrfs subvolume quota, to prevent denials of service due to filesystem space1423

exhaustion.1424

The container manager is responsible for the actions below when each container1425

is started or stopped:1426

• a shared storage space (a size-constrained tmpfs mount or btrfs subvol-1427

ume) must be defined for each pair of containers on the host system, for1428

instance ${IDC_HOST_DIR}/automotive-connectivity for the link connecting1429

the automotive and connectivity domains1430

• the shared storage must be mounted by the container manager with1431

read/write permissions on the first domain of the pair, for instance as1432

${IDC_DIR}/connectivity in the automotive domain1433

• the same shared storage must be mounted by the container manager1434

with read permissions on the second domain of the pair, for instance as1435

${IDC_DIR}/automotive in the connectivity domain1436

• when the container is stopped, the shared storage and mounts associated1437

with the container must be unmounted1438

The variables ${IDC_HOST_DIR} and ${IDC_DIR} mentioned above represent the1439

paths where the shared spaces are mapped on the host and containers filesys-1440

tems respectively. By default, both variables ${IDC_HOST_DIR} and ${IDC_DIR}1441

are defined in a common manner as /var/lib/idc/. OEM or developer’s setup1442

may require to redefine these paths for the customised environment.1443

Addressing and peer discovery1444

Network addressing and peer discovery Each domain will be identified1445

by its IPv6 address, and domains will be discovered using the IPv6 protocol’s1446

42

secure neighbour discovery20 protocol. As domains do not need to be human-1447

addressable (indeed, the users of the vehicle need never know that it has multiple1448

domains running in it), there is no need to use DNS or mDNS for addressing.1449

The neighbour discovery protocol includes a feature called neighbour unreach-1450

ability detection, which should be used as one method of determining that one1451

of the domains has crashed. When a domain crashes, the other domain should1452

poll for its existence on the network at a constant frequency (for example, at1453

2Hz) until it reappears at the same address as before. This frequency of polling1454

is a trade-off between not flooding the network with connectivity checks, but1455

also detecting reappearance of the domain rapidly.1456

When reconnecting to a restarted domain, the normal authentication process1457

should be followed, as if both domains were starting up normally. There is no1458

state to restore for the inter-domain link itself but, for example, SDK services1459

may wish to re-query the automotive domain for the current vehicle state after1460

reconnecting. They should do this after receiving an error response from the1461

AD for an inter-domain communication which indicated that the other domain1462

had crashed. Such behaviour is up to the implementers of each SDK service,1463

and is not specified in this design.1464

Container-based addressing and peer discovery Each container must be1465

assigned an unique name on the filesystem to be used as domain identifier for1466

addressing and peer discovery purposes.1467

The ${IDC_DIR} directory in the container contains a directory entry for each1468

associated domain to be connected through the inter-domain communication1469

mechanism. As described in Linux container setup, the container manager is1470

responsible for mounting a dedicated shared space to host the socket for the1471

container pairs.1472

The name of mount point for the shared directory in the container should be the1473

same as the name of counterpart peer. For example, to connect an automotive1474

and a connectivity domain, the shared space must be mounted in the automotive1475

container on the ${IDC_DIR}/connectivity/ path and must be mounted in the1476

connectivity container on the ${IDC_DIR}/automotive/ path.1477

On startup, each container in the pair must try to unlink() any stale file in the1478

shared spaces and then create a Unix Domain Socket named socket there. Since1479

the shared directory is mounted with write permissions only on a single domain,1480

the unlink() and bind() calls on the unix socket file will fail on the other domain,1481

which only has read permissions.1482

Once it has removed any stale file and successfully created the socket, the first1483

container in the pair must then listen() on it: for instance the automotive1484

domain must listen on the ${IDC_DIR}/connectivity/socket unix socket. The1485

second container in the pair must instead wait for the socket file to be available1486

20https://en.wikipedia.org/wiki/Secure_Neighbor_Discovery

43

https://en.wikipedia.org/wiki/Secure_Neighbor_Discovery
https://en.wikipedia.org/wiki/Secure_Neighbor_Discovery

and must connect to it as soon it is created: for instance the connectivity must1487

wait for the ${IDC_DIR}/automotive/socket file to appear and connect to it.1488

Encryption The confidentiality, integrity and authentication of the inter-1489

domain communications link is provided by IPsec in transport mode for net-1490

worked setups, and by kernel-provided Unix Domain Sockets on [container-based1491

setups][Linux container setup].1492

Open question: What more detailed configuration options can we specify for1493

setting up IPsec? For example, disabling various optional features which are1494

not needed, to reduce the attack surface. What IKE service should be used?1495

The system should use an IPsec security policy which drops traffic between1496

the CE and AD unless IPsec is in use. The security policy should not specify1497

behaviour for communications with other peers.1498

Each domain must have an X.509 certificate (essentially, a public and private1499

key pair), which are used for automatic keying for the IPsec connections. The1500

certificates installed in the automotive domain must be signed by a certificate1501

authority (CA) specific to the automotive domain and possibly the OEM. The1502

certificates installed in the CE domain must be signed by a CA specific to the1503

CE domain and possibly the OEM.1504

A domain (automotive or CE) which is in developer mode must use a certificate1505

which is signed by a developer mode CA, not the production mode CA. This1506

allows a production mode domain to prevent connections from a developer mode1507

domain.1508

See Appendix: Software versus hardware encryption for a comparison of soft-1509

ware and hardware encryption.1510

In order to maintain confidentiality of the connection, the keys for the IPsec1511

connection must be kept confidential, which means they must be stored in mem-1512

ory which is not accessible to an attacker who has physical access to the system1513

(see Tamper evidence and hardware encryption); or they must be encrypted1514

under a key which is stored confidentially (a key-encrypting key, KEK). Such a1515

confidential key store should be provided by the Secure Boot design —if avail-1516

able, confidentiality of the inter-domain communications can be guaranteed. If1517

not available, inter-domain communications will not be confidential if an at-1518

tacker can extract the boot keys for the system and use them to extract the1519

inter-domain communications keys.1520

As of February 2016, the Secure Boot design is still forthcoming1521

See section 8.15 for further discussion of the hardware base for confidentiality1522

and integrity of the system.1523

Open question: A lot of business logic for control over OEM licencing can1524

be implemented by the choice of the CA hierarchy used by the inter-domain1525

communication system. What business logic should be possible to implement?1526

44

Open question: Consider key control, revocation, protocol obsolescence, and1527

various extensions for pinning keys and protocols.1528

Open question: What can be done in the automotive domain to reduce the1529

possibility of exploits like Heartbleed21 affecting the inter-domain communica-1530

tions link? This is a trade-off between the stability of AD updates (high; rarely1531

released) and the pace of IPsec and TLS security research and updates and the1532

need for crypto-agility (fast). Heartbleed was a bug in a bad implementation of1533

an optional and not-very-useful TLS extension.1534

Control protocol The control protocol provides push and pull method call1535

semantics and a type system for marshalling method call parameters and return1536

values —but it does not prescribe a specific set of APIs which it will transport.1537

It must be flexible in the set of APIs which it transports.1538

We suggest using D-Bus over TCP as the control protocol, using a private bus1539

between the automotive domain and the consumer–electronics domain. For mul-1540

tiple CE domain configurations, each automotive—consumer–electronics domain1541

pair would have its own private bus.1542

The transport should be implemented using D-Bus’TCP socket transport221543

mechanism. Authentication, confidentiality and integrity are provided by the1544

underlying IPsec connection. D-Bus implements its own datagram framing on1545

top of the TCP stream.1546

On this bus, APIs from the automotive domain would be exposed as services;1547

the CE domain can then call methods on those services, or receive signals from1548

them.1549

D-Bus was chosen as it implements the necessary functionality, reuses a lot of1550

the technologies already in use in Apertis, is stable, and is familiar to Apertis1551

developers. Note that we suggest D-Bus the protocol, not necessarily dbus-1552

daemon the message bus daemon or libdbus the reference protocol library. D-Bus1553

the protocol provides:1554

• Method calls (pull semantics) with exactly one reply, supporting timeouts1555

• Error responses1556

• Signals (push semantics)1557

• Properties1558

• Strong type system1559

• Introspection1560

There are several important points here: introspection means that the D-Bus1561

services on the AD can send their API definitions to the CE at runtime if needed,1562

21https://en.wikipedia.org/wiki/Heartbleed
22http://dbus.freedesktop.org/doc/dbus-specification.html#transports-tcp-sockets

45

https://en.wikipedia.org/wiki/Heartbleed
http://dbus.freedesktop.org/doc/dbus-specification.html#transports-tcp-sockets
https://en.wikipedia.org/wiki/Heartbleed
http://dbus.freedesktop.org/doc/dbus-specification.html#transports-tcp-sockets

so that the CE does not have to have access to header files (or similar) from the1563

AD. It also means the API definition can change without needing to recompile1564

things —for example, an update to the AD could expose new APIs to the CE1565

without needing to update header files on the CE. Finally, method calls support1566

‘in’and ‘out’parameters (multiple return values) which allows for bi-directional1567

communication in the control protocol.1568

Open question: How should the multiple CE configuration (Configuration de-1569

signs interact with D-Bus signals? Can the adapter layer perform the broadcast1570

to all subscribers?1571

The D-Bus protocol is stable, and has maintained backwards compatibility with1572

all previous versions since 200623. If changes to the D-Bus protocol are intro-1573

duced in future, they will be introduced as extensions which are used optionally,1574

if supported by both peers on the bus. Hence backwards compatibility is main-1575

tained.1576

Data connections If a service wishes to send high-bandwidth data between1577

the domains, it must open a new data connection. Data connections are created1578

on demand, and are subject to traffic control, so the AD may, for example, reject1579

a connection request or throttle its bandwidth in order to maintain quality of1580

service for existing connections.1581

The inter-domain communication protocol provides two types of data connec-1582

tion: TCP-like and UDP-like. These are implemented as TCP or UDP connec-1583

tions between the two domains, running over IPsec. IPsec provides the necessary1584

authentication, confidentiality and integrity of the data; TCP or UDP provide1585

the multiplexing between connections (see the IPsec protocol stacks figure in1586

IPSec versus TLS). For Linux container setup a Unix domain socket is used as1587

the IDC link; the local kernel provides the needed authentication, confidential-1588

ity and integrity of the data. Services must implement their own application-1589

specific protocols on top of the TCP or UDP connection they are provided. For1590

example, a video service may use a lossy synchronised audio/video protocol over1591

UDP for sending video data together with synchronised audio; while a down-1592

load service may use HTTP over TCP for sending downloads between domains.1593

(See [here][Appendix: Audio and video decoding] for a discussion of options for1594

implementing video and audio decoding.) Such protocols are not defined as part1595

of this design —they are the responsibility of the services themselves to design1596

and implement.1597

Data connections are opened by sending a request to one of the inter-domain1598

services (Protocol library and inter-domain services), specifying desired charac-1599

teristics for the connection, such as whether it should be TCP-like or UDP-like,1600

its bandwidth and latency requirements, etc. The connection will be opened1601

and a unique identifier and file descriptor for it returned to the requesting ser-1602

vice. This service must then send the identifier over the control connection so1603

23http://dbus.freedesktop.org/doc/dbus-specification.html#stability

46

http://dbus.freedesktop.org/doc/dbus-specification.html#stability
http://dbus.freedesktop.org/doc/dbus-specification.html#stability

that the corresponding service in the other domain can request a file descriptor1604

for the other end of the connection from its inter-domain service.1605

Open question: Could this be simplified by using D-Bus’support for file de-1606

scriptor passing? D-Bus’TCP transport currently explicitly does not support1607

file descriptor passing, so implementing it that way without introducing incom-1608

patibilities requires planning.1609

It is tempting to extend D-Bus’support for file descriptor (FD) passing so that1610

it operates over TCP to provide these data connections. However, that would1611

effectively be a fork of the D-Bus protocol, which we do not want to maintain1612

as part of this system. Secondly, due to the way FD passing works, with the1613

peer passing an FD to the dbus-daemon and asking for it to be forwarded —this1614

would mean that the peer (i.e. an SDK or OEM service) has the responsibility1615

for opening the data connection within the IPsec tunnel, which would be very1616

complex.1617

Instead, we recommend a custom API provided by the inter-domain service1618

which an SDK or OEM service can call to open a new data connection, passing1619

in the parameters for the connection (such as TCP/UDP, quality of service1620

requirements, etc.). The inter-domain service would communicate over a private1621

control API with the other inter-domain service to open and authenticate the1622

connection at both ends, and return a file descriptor and cryptographic nonce1623

(securely random value at least 256 bits long) to the original SDK or OEM1624

service. This service can use that file descriptor as the data connection, and1625

should pass the nonce over its own control protocol to the corresponding OEM or1626

SDK service. This service should then pass the nonce to its inter-domain service1627

and will receive the file descriptor for the other end of the data connection in1628

reply.1629

Both inter-domain services should retain their file descriptors (which they have1630

shared with the OEM and SDK services) for the data connection, so that if the1631

kill switch (Disabling the CE domain) is enabled, they can call shutdown() on1632

the data connection to forcibly close it.1633

The inter-domain services must reserve all well-known names starting1634

with org.apertis.InterDomain (for example, org.apertis.InterDomain1 or1635

org.apertis.InterDomain1.DataConnections), and similarly all D-Bus interface1636

names. This means they must not allow these names to be used as part of the1637

OEM API shared between the export and adapter layers (Interaction of the1638

export and adapter layers).1639

A data connection cannot exist without an associated control connection1640

(though one control connection may be associated with many data connections).1641

As data connections are opened and controlled through APIs defined on the1642

inter-domain services, there is no need for standard network-style service1643

47

discovery using protocols like DNS-SD24 or SSDP25.1644

Time synchronization As a distributed system, the inter-domain services1645

may require a shared clock across the domains. Time synchronization is critical1646

to correlate events and this is specially important when playing audio and video1647

streams, for example. If those streams are decoded on the CE and needs to1648

played by the AD, the AD and the CE should agree on the meaning of the1649

timestamps embedded in the streams.1650

For the synchronization, there are two suitable protocols:1651

• NTP26 is a well-known protocol to synchronise time among remote sys-1652

tems. It provides millisecond or sub-millisecond accuracy over the Internet1653

or local area networks respectively;1654

• PTP27 provides microsecond or sub-microsecond accuracy and is designed1655

for local area networks.1656

In terms of latency calculation, both protocols satisfy the requirements, but we1657

recommends PTP for the following reasons:1658

• NTP uses hierarchical time sources, whereas PTP has a simpler mas-1659

ter/slave model. That means any system that is even untrusted domain1660

in a network is able to be taken by the other CE domain as a NTP source;1661

• PTP supports hardware assisted timestamps to improve accuracy. Un-1662

der Linux, the PTP hardware clock (PHC) subsystem is used to produce1663

timestamps on supported network devices.1664

Audio streams To share audio streams RTP28 and its companion protocol1665

RTCP29 are recommended both on networked and container-based setups, for1666

encoded and decoded streams.1667

They provide jitter compensation, out-of-sequence handling and synchronization1668

across multiple different streams.1669

In particular [multiplexed RTP/RCTP][Appendix: Multiplexing RTP and1670

RTCP] can be used to multiplex both protocols over the kind of data1671

connections described above.1672

Decoded video streams A fully decoded video stream consumes large quan-1673

tities of bandwidth and sharing it between domains using the same approach1674

used by audio (RTP) can only work for very small resolutions (see Memory1675

24https://en.wikipedia.org/wiki/Zero-configuration_networking#DNS-SD
25https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol
26https://en.wikipedia.org/wiki/Network_Time_Protocol
27https://en.wikipedia.org/wiki/Precision_Time_Protocol
28https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
29https://en.wikipedia.org/wiki/RTP_Control_Protocol

48

https://en.wikipedia.org/wiki/Zero-configuration_networking#DNS-SD
https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Precision_Time_Protocol
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/RTP_Control_Protocol
https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Precision_Time_Protocol
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/RTP_Control_Protocol

bandwidth usage on the i.MX6 Sabrelite for the bandwidth limitations on one1676

of the platforms targeted by Apertis).1677

If a domain sends uncompressed 1080p video stream at 25fps in YUV422 format1678

to another domain it requires just a bit more than 100MB/s for just the stream1679

transfer. This already makes it prohibitive on Gigabit Ethernet systems, which1680

have a theoretical maximum bandwidth of 125MB/s, without including any1681

framing overhead. Even for local transfers this is a significant portion of the1682

total memory bandwidth, even more so if taking in account other activities1683

including the actual decoding and playback, plus the need for the same memory1684

bandwidth toward the GPU where the decoded frames need to be composed.1685

To be able to handle 1080p video streams it is very important that zero-copy1686

mechanisms are used for the transfer of frames, see Appendix: Audio and video1687

decoding for further considerations about how a protocol can be defined to1688

match such expectations.1689

Bulk data transfers Data connections are suitable for transfers that involve1690

large amounts of static contents such as firmware images.1691

To avoid storing multiple copies of the same data on the limited local storage,1692

for instance in cases where the contents are downloaded from the Internet from1693

a lower-privilege domain before being handed over to a more isolated higher-1694

privilege domain, validation of the data such as checksum verification should be1695

done on the fly by the originator, and only the recipient should store the data1696

on its local storage.1697

Raw direct TCP connections over IPSec or raw UDP sockets can be suitable for1698

the inter-domain data transfer, as they both provide reliability, integrity and1699

confidentiality. The downside of this approach is that each application would1700

need to handle data validation and resumable transfers on its own: for this1701

reason it is preferable to handle basic data validation in the inter-domain com-1702

munication layers and provide the data to the receiver only once it is complete1703

and matches the specified cryptographic hashes.1704

The basic API thus is aimed at senders downloading large contents from the1705

Internet and directly streaming across the domains without storing them locally,1706

doing on-the-fly cryptographic validation of the streamed data. The contents1707

are received and re-validated on the destination domain, where they are stored1708

in a file which is passed to the destination service once the transfer is complete1709

and valid.1710

When the destination service has received the file handle it must perform any1711

additional verification of the contents. It can also link the anonymous file de-1712

scriptor to a locally-accessible file path using the linkat()30 syscall with the1713

AT_EMPTY_PATH flag or use the copy_file_range()31 syscall to get a copy of the1714

30https://manpages.debian.org/stretch/manpages-dev/link.2.en.html
31https://manpages.debian.org/stretch/manpages-dev/copy_file_range.2.en.html

49

https://manpages.debian.org/stretch/manpages-dev/link.2.en.html
https://manpages.debian.org/stretch/manpages-dev/copy_file_range.2.en.html
https://manpages.debian.org/stretch/manpages-dev/link.2.en.html
https://manpages.debian.org/stretch/manpages-dev/copy_file_range.2.en.html

contents in the most efficient way that the kernel can provide.1715

A different mechanism can be defined where the sender stores the contents in1716

a private file and passes a file descriptor pointing to it to the inter-domain1717

communication subsystem. The receiving side then uses the copy_file_range()1718

syscall to get a copy of the data that cannot be altered by the sender and then1719

validates the data. On filesystems that supports reflinks, copy_file_range() will1720

automatically use them to provide fast copy-on-write clones of the original file:1721

this would make the operation nearly-instantaneous regardless of the amount of1722

data, and would avoid doubling the storage requirements. When reflinks can-1723

not be used, copy_file_range() will do an in-kernel copy, avoiding unnecessary1724

context-switches over normal user-space copy operations. Such approach can1725

be used on container-based setups or when a cluster file system is shared across1726

networked domains. Not many filesystems can handle reflinks, but Btrfs and1727

the OCFS2 cluster filesystem support them.1728

On systems set up such that reflinks can be used, this solution is much more1729

efficient than the alternatives, but imposes constraints on the whole system1730

that may not be acceptable, such as requiring filesystems that support reflinks1731

(such as Btrfs or OCFS2) on all the domains and ensuring that the appropriate1732

shared filesystem mounts are available to SDK services. For this reason, the1733

socket-based approach is recommended in the general case.1734

Data connections API This section defines the draft for a proposed D-1735

Bus API that SDK services could use to request the creation of data channels1736

separated from the control plane connection.1737

The gateway and adapter layers are responsible for the creation and initialization1738

of those channels, while other services and applications must not be able to1739

directly create them.1740

The gateway and adapter layers use instead file descriptors passing to share the1741

channel endpoints with the requesting services and applications.1742

The API drafted here is meant to only provide a very rough guideline for those1743

implementing any real data channel API and it’s not meant to be normative: real1744

implementations can diverge from the interfaces described here and the actual1745

API to be used by SDK services must be documented in a separate specification.1746

/* The interface exported by the adapter/gateway to SDK services to initiate channel creation. */1747

interface org.apertis.InterDomain.DataConnection1 {1748

/* @id: the app-specific unique token used to to identify and authorize the channel1749

* @destination: the bus name of the service which should be at the other end of the channel1750

* @type: the kind of data and the protocol to be used for the data exchange.1751

* Use 'audio-rtp' for multiplexed RTP/RFC5761.1752

* @metadata_in: a dictionary of extra information that can be used to authorize/validate the transfer1753

* @metadata_out: the @metadata_in dictionary with additional information1754

* @fd: the file descriptor for the actual data exchange using the protocol specified by @type */1755

50

method CreateChannel (in s id,1756

in s destination,1757

in s type,1758

in a{sv} metadata_in,1759

out a{sv} metadata_out,1760

out h fd)1761

1762

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel()1763

*1764

* If the receiver was not able to validate the channel, the `org.apertis.InterDomain.ChannelError`1765

* error is raised. */1766

method CommitChannel(in s id)1767

1768

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel() */1769

method AbortChannel(in s id)1770

1771

/* @refclk: the reference to the IDC shared clock, in the format of defined1772

* by the `clksrc` production of RFC7273 for the `ts-refclk:` parameter */1773

method GetClockReference(out s refclk)1774

}1775

1776

/* The interface to be exported by services that can handle incoming channels.1777

* Domains that do not use a local dbus-daemon can implement a similar mechanism1778

* with the native IPC system. */1779

interface org.apertis.InterDomain.DataConnectionClient1 {1780

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel()1781

* @sender: the bus name of the service which initiated the channel creation1782

* @type, @metadata_in, @metadata_out: see org.apertis.InterDomain.DataConnection1.CreateChannel()1783

* @proceed: true if the channel should be set up, false if it should be refused */1784

method ChannelRequested(in s id,1785

in s sender,1786

in s type,1787

in a{sv} metadata_in,1788

out a{sv} metadata_out,1789

out b proceed)1790

1791

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel()1792

* @success: whether the connection has been successfully set up and @fd is usable1793

* @fd: the file descriptor from which to read the incoming data with the1794

previously agreed protocol1795

method ChannelCreated(in s id,1796

in b success,1797

in h fd)1798

}1799

1800

/* The interface private to gateway/adapter services to cross the domain boundary. */1801

51

interface org.apertis.InterDomain.DataConnectionInternal1 {1802

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel()1803

* @sender: see org.apertis.InterDomain.DataConnectionClient1.ChannelRequested()1804

* @destination, @type, @metadata_in, @metadata_out: see org.apertis.InterDomain.DataConnection1.CreateChannel()1805

* @proceed: see org.apertis.InterDomain.DataConnectionClient1.ChannelRequested()1806

* @nonce: a one-time value used to authenticate the socket1807

* @socket_addr: the proto:addr:port string to be used to connect to the remote service1808

method RequestChannel(in s id,1809

in s sender,1810

in s destination,1811

in s type,1812

in a{sv} metadata_in,1813

out a{sv} metadata_out,1814

out b proceed,1815

out s nonce,1816

out s socket_addr)1817

1818

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel()1819

* @sender: see org.apertis.InterDomain.DataConnectionClient1.ChannelRequested()1820

* @destination: see org.apertis.InterDomain.DataConnection1.CreateChannel()1821

*1822

* If the receiver was not able to validate the channel, the `org.apertis.InterDomain.ChannelError`1823

* error is raised. */1824

*/1825

method CommitChannel(in s id,1826

in s sender,1827

in s destination)1828

1829

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel()1830

* @sender: see org.apertis.InterDomain.DataConnectionClient1.ChannelRequested()1831

* @destination: see org.apertis.InterDomain.DataConnection1.CreateChannel()1832

*/1833

method AbortChannel(in s id,1834

in s sender,1835

in s destination)1836

}1837

Data channel API flow example for a media player streaming audio1838

A possible use-case of the API is a Media Player frontend hosted on the AD1839

with the backend on the CE. The frontend requests the backend to decode a1840

specific stream using an application specific API and passing a token with the1841

request.1842

AD | CE1843

media player gateway | adapter media player1844

frontend | backend1845

52

o ------ Play() ------------o------------|------------o------------------1846

----> o1847

| o <-- CreateChannel() -- o1848

o <-- RequestChannel() -- o1849

o <-- ChannelRequested() -- o |1850

o -- ChannelRequested() --> o |1851

reply |1852

o -- RequestChannel() --> o1853

reply1854

o <- connect and nonce -- o1855

o <-- ChannelCreated() ---- o | o -- CreateChannel() --> o1856

| reply1857

o <------------------------------- data channel -------------------------1858

----- o1859

The Media Player frontend initially calls the application-specific Play() method1860

on its backend, with the IDC system transparently proxying the request across1861

domains. This call must also carry an application-specific token that will be1862

used to identify the request during the channel creation procedure.1863

Once the Media Player backend has gathered some metadata about the stream1864

to be played, it requests the creation of an audio-rtp channel directed to the Me-1865

dia Player frontend by calling the org.apertis.InterDomain.DataConnection1.CreateChannel()1866

on the local adapter service.1867

The adapter service will then access the inter-domain link by calling the1868

org.apertis.InterDomain.DataConnectionInternal1.RequestChannel() method of1869

the remote gateway peer.1870

The gateway service on the AD notifies the Media Player frontend that a channel1871

has been requested, passing the request token and other application-specific1872

metadata. If the token matches and the metadata is acceptable, the Media1873

Player frontend replies to the gateway service telling it to proceed.1874

Once the request has been accepted by the destination, the gateway service1875

creates a listening socket for the requested channel type and returns the infor-1876

mation needed to connect to it to the remote adapter peer, including a nonce1877

to authenticate the connection.1878

As soon as the adapter gets the socket information it connects to it and sends1879

the nonce over it. On the other side the gateway will read the nonce and if does1880

not matches it immediately closes the connection.1881

Once the connection has been set up and the nonce has been successfully shared,1882

the adapter and gateway services will hand over the file descriptors of the sockets1883

that have been set up.1884

Data channel API flow example for an update manager sharing1885

firmware images The bulk data transfer API is meant to be useful for1886

53

update managers where an agent in the Connectivity Domain fetches firmware1887

images from the Internet and shares them with the update manager in the AD1888

which has access to the devices to be updated.1889

AD | CD1890

update manager gateway | adapter OTA agent1891

o ----> GetUpdate() -------o------------|------------o------------------1892

----> o1893

| o <-- CreateChannel() -- o1894

o <-- RequestChannel() -- o1895

o <-- ChannelRequested() -- o |1896

o -- ChannelRequested() --> o |1897

reply |1898

o -- RequestChannel() --> o1899

reply1900

o <- connect and nonce -- o1901

| o -- CreateChannel() --> o1902

| reply1903

o <-----data channel ----------------------------- o1904

| o <- CommitChannel() --- o1905

o <-- CommitChannel() --- o1906

o <-- ChannelCreated() ---- o | o -- CommitChannel() --> o1907

| reply1908

The update manager calls the GetUpdate() method of the agent, with a to-1909

ken identifying the request. The OTA agent retrieves the metadata of the1910

file to be shared, in particular the size and a set of cryptographic hashes.1911

With that information, it requests the creation of a bulk-data channel with1912

the org.apertis.InterDomain.DataConnection1.CreateChannel() method of the lo-1913

cal adapter service. The OTA agent must specify the size parameter and a1914

known cryptographic hash such as sha512 in the metadata_in parameter. It must1915

then check in the metadata_out for the offset parameter to figure out if it must1916

resume an interrupted download.1917

The adapter service accesses the inter-domain link by calling the org.apertis.InterDomain.DataConnectionInternal1.RequestChannel()1918

method of the remote gateway peer.1919

The flow is analogous to the one in the [streaming media player case][Data1920

channel API flow example for a media player streaming audio] until the point1921

where the inter-domain socket is created: while the receiving end of the socket1922

in the streaming case is meant to be used by the receiving service, in the bulk1923

data case it is used directly by the gateway, which stores the received data in a1924

local file.1925

While it sends data through the socket, the OTA agent is expected to perform1926

on-the-fly data validation by computing cryptographic hashes on the streamed1927

contents: once it has sent all the data the agent can close the socket and call1928

org.apertis.InterDomain.DataConnectionInternal1.CommitChannel() to signal that1929

54

all the data has been shared successfully and that the computed hashes match,1930

or AbortChannel() otherwise.1931

Upon receiving the CommitChannel() message, the gateway checks that the file size1932

and cryptographic hashes match the expected values and raises the ChannelError1933

error otherwise. If and only if the data is valid it instead shares the file descriptor1934

pointing to the file to the OTA updater with a ChannelCreated() call.1935

Traffic control1936

Traffic control32 should be set by the inter-domain service (Protocol library1937

and inter-domain services) in the CE domain, using the standard Linux traffic1938

control functionality in the kernel33. As the control connection and each data1939

connection are separate TCP or UDP connections, they can have traffic controls1940

applied to them individually, which allows different quality of service settings for1941

individual data connections; and allows the control connection to have a higher1942

quality of service than all data connections, to help ensure it has guaranteed1943

low latency.1944

Applying traffic control in the CE domain has the advantage of knowing what1945

kernel functionality is available —if it were applied in the automotive domain,1946

its functionality would be limited by whatever is provided by the automotive1947

OS (for example, QNX). It has the disadvantage, however, of being vulnerable1948

to the CE domain being compromised: if an attacker gains control of the inter-1949

domain service in the CE domain, they can disable traffic control. However, if1950

they have gained control of that service, the only remaining mitigation is for the1951

automotive domain to shut down the CE domain, so having control over traffic1952

policy has little effect.1953

The specific traffic control policies used by the inter-domain service can be1954

determined later, based on the relative priorities an OEM assigns to different1955

types of traffic.1956

Protocol library and inter-domain services1957

The inter-domain communications protocol should be implemented as a library,1958

containing all layers of the protocol. The particular domain configuration which1959

the library targets should be a configure-time option, though the library must1960

support enabling the Standalone setup transport in conjunction with another1961

transport, when in developer mode (see Mock SDK implementation).1962

By implementing the protocol as a library, it can be tested easily by being1963

linked into unit tests —rather than trying to wrap the entire inter-domain service1964

daemon in a test harness. Internally, the library should implement all protocol1965

layers separately and expose them to the unit tests so that they can be tested1966

individually.1967

32https://en.wikipedia.org/wiki/Network_traffic_control
33http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

55

https://en.wikipedia.org/wiki/Network_traffic_control
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
https://en.wikipedia.org/wiki/Network_traffic_control
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

Furthermore, this allows the protocol code to be reused between the inter-1968

domain service in the automotive domain, and the inter-domain service in the1969

CE domain.1970

The main advantage of implementing the protocol as a library is the flexibility1971

this provides for integrating it into different automotive domain implementa-1972

tions —it can be integrated into an existing system service (bearing in mind the1973

suggestion to keep it in a separate trust domain, Security domains), or could be1974

used as a stand-alone service daemon.1975

A reference implementation of such a stand-alone inter-domain service program1976

should be provided with the protocol library. This should provide the necessary1977

systemd service file and AppArmor profile to allow itself to be strictly confined1978

if the automotive domain OS supports this.1979

As the inter-domain communications protocol uses D-Bus, the protocol library1980

must contain an implementation of the D-Bus protocol. Note that this is not1981

a D-Bus daemon; it is a D-Bus library, like libdbus or GDBus. See Appendix:1982

D-Bus components and licensing for details about the different components in1983

D-Bus and their licensing.1984

Apart from its D-Bus library dependency, the protocol library should be de-1985

signed with minimal dependencies in order to be easily integratable into a va-1986

riety of automotive domain operating systems (from Linux through to other1987

Unixes, QNX or Autosar). If the chosen D-Bus library is available as part of1988

the automotive OS (which is more likely for libdbus than for other D-Bus li-1989

braries), it could be linked against; otherwise, it could be statically linked into1990

the protocol library.1991

libdbus itself is already quite portable, having been known to work on Linux,1992

Windows, OS X, NetBSD and QNX. It should not be difficult to port to other1993

POSIX-compliant operating systems.1994

Rate limiting on control messages should be implemented in the protocol li-1995

brary, so that the same functionality is present in both the automotive and CE1996

domains.1997

The protocol library should expose the encryption keys for the IPsec connection1998

used in the inter-domain communications link, including signals for when those1999

keys change (due to cookie renegotiation on the link). The keys must only be2000

exposed in development builds of the protocol library. See Debuggability for2001

more details.2002

Non Linux-based domains2003

The suggested implementation uses D-Bus the protocol, not necessarily dbus-2004

daemon the message bus daemon or libdbus the protocol library.2005

This means that for inter-domain communications purposes, only the serial-2006

ization format of D-Bus is used as a well defined RPC protocol. There’s no2007

56

requirement that domains run dbus-daemon or that they use a specific D-Bus2008

implementation to talk to other domains.2009

Several implementations of the D-Bus serialization format exists and their use2010

is strongly encouraged rather than reimplementing the protocol from scratch:2011

• GDBus34 is a GTK+/GNOME oriented implementation of the D-Bus pro-2012

tocol in GLib2013

• QtDBus35 is Qt module that implements the D-Bus protocol2014

• node-dbus36 is a D-Bus protocol implementation for NodeJS written in2015

pure JavaScript2016

• libdbus37 is the reference implementation of the D-Bus protocol2017

• dbus-sharp38 is a C#/.net/Mono implementation of the D-Bus protocol2018

• pydbus39 is a python implementation of the D-Bus protocol2019

On networked setups the D-Bus-based protocol is transported over TCP, relying2020

on IPSec for authentication, confidentiality and reliability.2021

If IPSec nor TLS are available, those properties cannot be guaranteed, and thus2022

such setup is strongly discouraged. In that case every input should be treated2023

as potentially malicious: the trusted domains must export only a very reduced2024

set of interfaces, which must be conceived in a way that any kind of misuse does2025

not lead to harm.2026

Service discovery2027

Accordingly to the use of the D-Bus serialization protocol, each service2028

exported over the inter-domain communication channels is identified2029

by a well-known name subject specific constraints40, starting with the2030

reversed DNS domain name of the author of the service (for instance,2031

com.collabora.CarOS.ClimateControl1 for a potential service written by Collab-2032

ora41.2033

Only one service at a time can own such names on each domain, but the owner-2034

ship is not tracked across domains and collision may happen due to a transitional2035

state during an upgrade or other causes: each setup is thus responsible to define2036

a deterministic collision resolution procedure should two domains export the2037

same service name.2038

34https://developer.gnome.org/gio/stable/gdbus.html
35http://doc.qt.io/qt-5/qtdbus-index.html
36https://github.com/sidorares/node-dbus
37https://dbus.freedesktop.org/doc/api/html/
38https://github.com/mono/dbus-sharp
39https://github.com/LEW21/pydbus
40https://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus
41https://collabora.com

57

https://developer.gnome.org/gio/stable/gdbus.html
http://doc.qt.io/qt-5/qtdbus-index.html
https://github.com/sidorares/node-dbus
https://dbus.freedesktop.org/doc/api/html/
https://github.com/mono/dbus-sharp
https://github.com/LEW21/pydbus
https://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus
https://collabora.com
https://collabora.com
https://collabora.com
https://developer.gnome.org/gio/stable/gdbus.html
http://doc.qt.io/qt-5/qtdbus-index.html
https://github.com/sidorares/node-dbus
https://dbus.freedesktop.org/doc/api/html/
https://github.com/mono/dbus-sharp
https://github.com/LEW21/pydbus
https://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus
https://collabora.com

The adapter layer is responsible to inspect on which channel each service is2039

available. The NameOwnerChanged signal42 must be used by the adapter layer to2040

track the availability of services on each connection and to detect when a service2041

is no longer available or changed ownership (for example because it has been2042

restarted). The org.freedesktop.DBus.ListActivatableNames()43 message can be2043

used to gather the initial list of available services.2044

After an upgrade a domain may stop providing a specific service and2045

another domain may start providing it instead: both the old and new2046

domains must trigger the NameOwnerChanged signal44 in response to the2047

org.freedesktop.DBus.ReleaseName()45 and org.freedesktop.DBus.RequestName()462048

calls. No specific ordering is required and thus the service may be temporarily2049

unavailable or the two domains may export the same service name at the same2050

time: the collision resolution procedure must choose the one on the connection2051

with the highest priority.2052

In the simplest case, each domain must be given an unique priority with the2053

AD having the highest priority. The relative priority between the CE domains2054

is used to provide deterministic service access when a service name exists on2055

multiple connections. As a result, the priority list must be static and the priority2056

of CE domains can be assigned arbitrarily for each specific setup.2057

When accessing a service name that exists on more than one connection, the2058

service that exists on the connection with the highest priority must be given2059

precedence by the adapter layer.2060

CE domains should not be able to spoof trusted services exported by the AD:2061

for this reason a static list of services meant to be exported only by the AD2062

must be defined and the adapter layer must ignore matching services exported2063

by other connections, even if the service is not currently available on the AD2064

connection itself.2065

Particular care must be taken to ensure each domain can be fully booted with-2066

out blocking on services hosted on other domains, to avoid untracked circular2067

dependencies.2068

SDK services must access the above service names through the private bus2069

instance exported by the adapter layer, which proxies them from all the inter-2070

domain channels, abstracting the complexities of inter-domain communications.2071

SDK services are not aware of the fact that the services are hosted on different2072

domains.2073

42https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-
changed

43https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-list-activatabl
e-names

44https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-
changed

45https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-release-name
46https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-request-name

58

https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-changed
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-list-activatable-names
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-changed
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-release-name
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-request-name
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-changed
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-changed
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-list-activatable-names
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-list-activatable-names
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-changed
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-changed
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-release-name
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-request-name

Automotive domain export layer2074

To integrate the inter-domain communications system into an automotive do-2075

main operating system, the APIs to be shared must be exported as objects on2076

the D-Bus connection provided by the inter-domain service. This is done as an2077

export layer in the inter-domain service in the automotive domain, customised2078

for the OEM and their specific APIs. The export layer could be implemented2079

as pure C calls from within the same process (no protocol at all), or D-Bus, or2080

kdbus, or QNX message passing, or something else entirely. If D-Bus bus is2081

used, a D-Bus daemon would need to be running on the automotive domain;2082

otherwise, no D-Bus daemon would be needed.2083

For example, if the automotive domain provides the APIs which are to be ex-2084

posed over the inter-domain connection as:2085

• C APIs in headers—the inter-domain service would call those APIs directly,2086

and the export layer would essentially be those C calls;2087

• daemons with UNIX socket connections —the inter-domain service would2088

connect to those sockets and run whatever protocol is specified by the2089

daemons, and the export layer would essentially be the socket connections2090

and protocol implementations;2091

• D-Bus services —the inter-domain service would connect to a D-Bus dae-2092

mon on the automotive domain and translate the services’D-Bus APIs into2093

an API to expose on the inter-domain communications link (see below),2094

and the export layer would be the D-Bus daemon, D-Bus library in the2095

inter-domain service, and the code to translate between the two D-Bus2096

APIs.2097

The APIs must be exported under well-known names47 formatted as reverse-2098

DNS names owned by the OEM. For example, if the AD operating system2099

was written by Collabora, APIs would be exported using well-known names2100

starting with com.collabora, such as com.collabora.CarOS.EngineManagement12101

or com.collabora.CarOS.ClimateControl1.2102

The API formed by these exported D-Bus objects is vendor-specific, but should2103

maintain its own stability guarantees —for every backwards-incompatible change2104

to this API, there must be a corresponding update to the CE domain to handle2105

it. Consequently, we recommend versioning the exported D-Bus APIs48.2106

APIs which the OEM does not want to make available on the inter-domain2107

communications link (for example, because they are not able to handle untrusted2108

data, or are too powerful to expose) must not be exported onto the D-Bus2109

connection. This effectively forms a whitelist of exposed services.2110

For each piece of functionality exposed by the AD, suitable safety limits must be2111

applied (Safety limits on AD APIs). If the implementation of that functionality2112

47http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus
48http://dbus.freedesktop.org/doc/dbus-api-design.html#api-versioning

59

http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus
http://dbus.freedesktop.org/doc/dbus-api-design.html#api-versioning
http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus
http://dbus.freedesktop.org/doc/dbus-api-design.html#api-versioning

already applies the safety limits, nothing more needs to be done. Otherwise,2113

the safety limits must be enforced in the interface code which exports that2114

functionality onto the inter-domain D-Bus connection.2115

Similarly, for each piece of functionality exposed by the AD, if it fails to respond2116

to a call by the inter-domain service, the service must return an error to the2117

CE over the inter-domain D-Bus connection, rather than timing out. This is2118

especially important in systems where the export layer is a set of C calls —2119

the implementation must take care to ensure those calls cannot block the inter-2120

domain service.2121

If the vendor wants to implement per-API kill switches for services exported2122

by the automotive domain, these must be implemented in the export layer (see2123

Disabling the CE domain).2124

Consumer-electronics domain adapter layer2125

Paired with the OEM-specific API export code in the automotive domain is an2126

adapter layer in the CE domain. This adapts the API exported by the services2127

on the automotive domain to the stable SDK APIs used by applications in the2128

CE domain. The layer has an implementation in each of the SDK services in2129

the CE domain.2130

This adapter layer does not have a trust boundary —each part of it lies within2131

the trust domain of the relevant SDK service.2132

These adapters connect to a private D-Bus bus, which the inter-domain service2133

in the CE domain is also connected to. The inter-domain service exports the2134

OEM APIs from the automotive domain on this bus, and the adapters consume2135

them.2136

The private bus could be implemented either by running dbus-daemon with a2137

custom bus configuration, or by implementing it directly in the inter-domain2138

service, and having all adapters connect directly to the service. In both cases,2139

the trust boundary between the adapters (within the trust domains of the SDK2140

services) and the inter-domain service are enforced.2141

Interaction of the export and adapter layers2142

The interaction between the export and adapter layers is important in main-2143

taining compatibility between different versions of the AD and CE as they are2144

upgraded separately. The CE is typically upgraded much more frequently than2145

the AD. Both are customised to the OEM.2146

Initial deployment The OEM develops both layers, and stabilises an initial2147

version of their inter-domain API, using a version number (for example, 1). The2148

export layer exports objects from the automotive domain, and the adapter layer2149

imports those same objects. There may be functionality exposed on the objects2150

60

which the SDK APIs currently do not support —in which case, the adapter layer2151

ignores that functionality.2152

CE is upgraded, AD remains unchanged A new release of Apertis is2153

made, which expands the SDK APIs to support more functionality. The OEM2154

integrates this release of Apertis and updates their adapter layer to tie the new2155

SDK APIs to previously-unused objects from the inter-domain link.2156

The version number of the inter-domain API remains at 1.2157

AD is upgraded, CE remains unchanged The automotive domain OS2158

is upgraded, and more vehicle functionality becomes available to expose on the2159

inter-domain connection. The OEM chooses to expose most of this functionality2160

using the inter-domain service. For some objects, this results in no API changes.2161

For other objects, it results in new methods being added, but no old ones are2162

changed. For some objects, it results in some old methods being removed or2163

their semantics changed. For these objects, the OEM now exports two interfaces2164

on the inter-domain service: one at version 1, exporting the old API; and one2165

at version 2, exporting the new API. The version number of other inter-domain2166

APIs remains at 1.2167

The CE domain software remains unchanged, which means it continues to use2168

the version 1 APIs. This continues to work because all objects on the inter-2169

domain API continue to export version 1 APIs (in addition to some version 22170

APIs).2171

CE is upgraded again The next time the CE domain is upgraded, its adapter2172

layer can be modified by the OEM to use the new version 2 APIs for some of2173

the services. If this updated version of the CE domain is guaranteed to only2174

be used with new versions of the AD, the adapter layer can drop support for2175

version 1 APIs. If the updated CE domain may be used with old versions of the2176

AD, it must support version 1 and version 2 (or just version 1) APIs, and use2177

whichever it prefers.2178

Flow for a given SDK API call2179

In the following figure, particular attention should be paid to the restrictions on2180

the protocols in use for each link. For the links between the application and the2181

inter-domain service in the CE domain, any version of the D-Bus protocol can be2182

used, including kdbus or another future version. This depends only on the dbus-2183

daemon and D-Bus libraries available in the CE domain. For the link between2184

the two inter-domain services, the protocol must always be at least D-Bus 1.02185

over TCP over IPsec. If both peers support a later version of the protocol,2186

they may use it —but both must always support D-Bus 1.0 over TCP over2187

IPsec. For the link between the inter-domain service in the automotive domain2188

and the OEM service, whatever protocol the OEM finds most appropriate for2189

61

implementing their export layer should be used. This could be pure C calls2190

from within the same process (no protocol at all), or D-Bus, or kdbus, or QNX2191

message passing, or something else entirely.2192

2193

Apertis IDC message flow, following a message being sent from ap-2194

plication to hardware; the message flow is the same in reverse for2195

message replies from the hardware2196

Trusted path to the AD2197

Providing a trusted input and output path between the user and the automo-2198

tive domain is out of scope for this design —it is a problem to be solved by2199

the graphics sharing and input handling designs. However, it is worth noting2200

that the solution must not involve communication (unauthenticated, or authen-2201

ticated via the CE domain) over the inter-domain link. If it did, a compromised2202

CE domain could be used to forge this communication and gain control of the2203

trusted path to the AD —which likely results in a large privilege escalation.2204

A trusted path should be implemented by direct communication between the2205

input and output devices and the automotive domain, or mediating such com-2206

munication through the hypervisor, which is trusted.2207

Developer mode2208

In order to support connecting the CE domain from an SDK on a developer’s2209

laptop to the automotive domain in a development vehicle, the ‘separate boards2210

setup with other devices’configuration must be used, with the CE domain and2211

the automotive domain connected to the developer’s network (which might have2212

other devices on it).2213

62

In order to allow the SDK to connect, the vehicle must be in a ‘developer mode’2214

. This is because the CE domain is entirely untrusted when it is provided by2215

the SDK, because the developer may choose to disable security features in it2216

(indeed, they may be working on those security features).2217

Open question: What cryptography should be used to implement this authen-2218

tication, and the division of trust between development and production devices?2219

A likely solution is to only have the AD accept the CE connection if it connects2220

with a ‘production’key signed by the vehicle OEM.2221

Mock SDK implementation2222

In order to allow applications to be developed against the Apertis SDK, imple-2223

mentations of all the SDK APIs need to be provided as part of the official SDK2224

virtual machine distribution. These implementations need to be fully featured,2225

otherwise application developers cannot develop against the unimplemented fea-2226

tures.2227

There are two implementation options:2228

1. Have an Apertis SDK adapter layer which provides the mock implemen-2229

tations, and which does not use an inter-domain service or mock up any2230

of the automotive domain.2231

2. Write the mock implementations as stand-alone services which are log-2232

ically part of the automotive domain (even though there is no domain2233

separation in the SDK). Expose these services on the inter-domain link2234

using an Apertis SDK export layer; and adapt the services to the actual2235

SDK APIs using an Apertis SDK adapter layer.2236

The inter-domain services would be running in the same domain (the2237

SDK) and would communicate over a loopback TCP socket (see Stan-2238

dalone setup).2239

Option #1 has a much simpler implementation, but option #2 means that the2240

inter-domain communications code paths are tested by all application develop-2241

ers. Similarly, option #1 introduces the possibility for behavioural differences2242

between the mock adapter layer and the production inter-domain communica-2243

tion system, which could affect how application developers write their applica-2244

tions; option #2 reduces the potential for that considerably.2245

As option #2 uses the inter-domain service in the CE domain, it also allows for2246

the possibility of connecting the CE domain to a different automotive domain2247

—rather than the mock one provided by the SDK, a developer could connect to2248

the automotive domain in a development vehicle (Developer mode).2249

Hence, our recommendation is for option #2.2250

63

Debuggability2251

The debuggability of the inter-domain communications link is important for2252

many reasons, from integrating two domains to bringing up a new automotive2253

domain (with its export and adapter layers) to developing a new SDK API.2254

Referring to the figure in Overall architecture, debugging of:2255

• applications and the SDK services happens using normal tools and meth-2256

ods described in the Debug and Logging design49;2257

• communications between the dbus-daemon (private bus) and inter-domain2258

service (CE domain) happens using normal D-Bus monitoring tools (such2259

as Bustle50 or dbus-monitor51), though this requires the developer to gain2260

access to the private bus’socket;2261

• communications between the inter-domain services happens using a special2262

debug option in the services (see below);2263

• the export layer and OEM services happens using tools and methods spe-2264

cific to how the OEM has implemented the export layer.2265

If possible, all debugging should happen on the SDK side, in the adapter layer2266

or above, as this allows the greatest flexibility in debugging techniques —none of2267

the communications at that level are encrypted, so are accessible to a developer2268

user with the appropriate elevated permissions.2269

If the connection between the inter-domain services (the TCP/IPsec link be-2270

tween domains) needs to be debugged, it can be complex, as any debugging2271

tool needs to be able to decrypt the IPsec encryption. Wireshark is able to do2272

this52, if given the encryption key in use by the IPsec connection. This key may2273

change over the lifetime of a connection (as the connection cookie is refreshed),2274

and hence needs to be exported dynamically by the inter-domain service. In2275

order to allow debugging both ends of the connection, it should be implemented2276

in the protocol library (Protocol library and inter-domain services). In the CE2277

domain, it should be exposed as a D-Bus interface on the private bus which is2278

part of the adapter layer. This limits its access to developers who have access2279

to that bus.2280

Interface org.apertis.InterDomainConnection.Debug1 {2281

/* Mapping from IKEv1 initiator cookie to encryption key. */2282

readonly property a{ss} Ike1Keys;2283

/* Mapping from IKEv2 tuple of (initiator SPI, responder SPI) to tuple2284

* of (SK_ei, SK_er, encryption algorithm, SK_ai, SK_ar, integrity2285

* algorithm). Algorithms are enumerated types, with values to be2286

* documented by the implementation. Other parameters are provided as2287

49https://www.apertis.org/concepts/archive/application/debug-and-logging/
50http://willthompson.co.uk/bustle/
51http://dbus.freedesktop.org/doc/dbus-monitor.1.html
52https://ask.wireshark.org/questions/12019/how-can-i-decrypt-ikev1-andor-esp-packets

64

https://www.apertis.org/concepts/archive/application/debug-and-logging/
http://willthompson.co.uk/bustle/
http://dbus.freedesktop.org/doc/dbus-monitor.1.html
https://ask.wireshark.org/questions/12019/how-can-i-decrypt-ikev1-andor-esp-packets
https://ask.wireshark.org/questions/12019/how-can-i-decrypt-ikev1-andor-esp-packets
https://ask.wireshark.org/questions/12019/how-can-i-decrypt-ikev1-andor-esp-packets
https://www.apertis.org/concepts/archive/application/debug-and-logging/
http://willthompson.co.uk/bustle/
http://dbus.freedesktop.org/doc/dbus-monitor.1.html
https://ask.wireshark.org/questions/12019/how-can-i-decrypt-ikev1-andor-esp-packets

* hexadecimal strings to allow for varying key lengths. */2288

readonly property a((ss)(ssssussu)) Ike2Keys;2289

}2290

A new Lua plugin53 in Wireshark could connect to this interface and listen for2291

signals of updates to the connection’s keys, and use those to update Wireshark’2292

s IKE decryption table. Wireshark is the suggested debugging tool to use, as it2293

is a mature network analysis tool which is well suited to analysing the protocols2294

being sent over the inter-domain connection.2295

In the automotive domain, the key information provided by the protocol library2296

should be exposed in a manner which best fits the debugging infrastructure and2297

tools available for the automotive operating system.2298

In both domains, this interface must only be exposed in developer builds of the2299

inter-domain services. It must not be available in production, even to a user with2300

elevated privileges. To expose it would allow all inter-domain communications2301

to be decrypted.2302

External watchdog2303

There must be an external watchdog system which watches both the automotive2304

and consumer–electronics domains, and which restarts either of them if they2305

crash and fail to restart themselves.2306

In order to prevent one compromised domain from preventing a restart of the2307

other domain (a denial of service attack), each domain must only be able to send2308

heartbeats to its own watchdog, and not the watchdog of the other domain.2309

The implementation of the watchdog depends on the configuration:2310

• Standalone setup: No watchdog is necessary, as the configuration is not2311

safety critical.2312

• Basic virtualised setup: The watchdog should be a software component in2313

the hypervisor, exposed as virtualised watchdog hardware in the guests.2314

• Separate CPUs setup: A hardware watchdog on the board should be used,2315

connected to both domains. As an exception to the general principle that2316

the CE domain should not be allowed to access hardware, it must be able2317

to access its own watchdog (and must not be able to access the automotive2318

domain’s watchdog).2319

• Separate boards setup: A hardware watchdog on each board should be2320

used, connected to the domain on that board.2321

• Separate boards setup with other devices: Same as the separate boards2322

setup.2323

• Multiple CE domains setup: Same as the separate boards setup.2324

53https://ask.wireshark.org/questions/44562/update-decryption-table-from-lua

65

https://ask.wireshark.org/questions/44562/update-decryption-table-from-lua
https://ask.wireshark.org/questions/44562/update-decryption-table-from-lua

Tamper evidence and hardware encryption2325

The basic design for providing a root of confidentiality and integrity for the2326

system in hardware should be provided by the Secure Boot design —this design2327

can only assume that some confidential encryption key is provided which is used2328

to decrypt parts of the system on boot which should remain confidential.2329

As of February 2016 the Secure Boot design is still forthcoming2330

One possibility for implementing this is for a confidential key store to be pro-2331

vided by the automotive domain, storing keys which encrypt the bootloader2332

and root key store for the CE. When booting the CE, the AD would decrypt2333

its bootloader and hence its root key store, making the keys necessary for inter-2334

domain communications (amongst others) available in the CE’s memory. Note2335

that this suggestion should be ignored if it conflicts with recommendations in2336

the Secure Boot design, once that’s published.2337

A critical requirement of the system is that none of the keys for encrypting inter-2338

domain communications (or for protecting those keys) can be shared between2339

vehicles —they must be unique per vehicle (No global keys in vehicles). This2340

implies that keys must be generated and embedded into each vehicle as a stage2341

in the imaging process for the domains.2342

A corollary to this is that none of those keys can be stored by the vendor, trusted2343

dealer or other global organisations associated with the vehicles; as to do so2344

would provide a single point of failure which, if compromised by an attacker,2345

could reveal the keys for all vehicles and hence potentially allow them all to be2346

compromised easily.2347

Tamper evidence is an important requirement for the system (Tamper evidence),2348

providing the ability to determine if a vehicle has been tampered with in case2349

of an accident or liability claim.2350

The most appropriate way to provide tamper evidence for the hardware depends2351

on the hardware and how it is packaged in the vehicle. Typical approaches to2352

tamper evidence involve sealing the domain’s circuitry, including all access and2353

I/O ports, in a casing which is sealed with tamper evident seals54. If a garage2354

or trusted vehicle dealer needs to access the domain for maintenance or updates,2355

they must break the seals, enter this in the vehicle’s maintenance log, and replace2356

the seals with new ones once maintenance is complete.2357

Tamper evidence for software should be provided through the integrity proper-2358

ties of the Secure Boot design, as in any trusted platform module55 system.2359

Disabling the CE domain2360

The automotive domain must be able to disable the power supply to the CE2361

domain (or otherwise prevent it from booting), and must be able to prevent2362

54https://en.wikipedia.org/wiki/Security_seal
55https://en.wikipedia.org/wiki/Trusted_Platform_Module

66

https://en.wikipedia.org/wiki/Security_seal
https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Security_seal
https://en.wikipedia.org/wiki/Trusted_Platform_Module

inter-domain communications at the same time.2363

Preventing inter-domain communications should be implemented by having the2364

automotive domain inter-domain service read a ‘kill switch’setting. If this is set,2365

it should close any open inter-domain communication links, and refuse to accept2366

new ones while the setting is still set.2367

Preventing the CE domain from booting can be done in a variety of ways,2368

depending on the hardware functionality available. For example, it could be2369

done by controlling a solid-state relay on the CE domain’s power supply. Or,2370

if the CE domain implements secure boot, the boot process could require the2371

automotive domain to decrypt part of the CE domain bootloader using a key2372

known only to the automotive domain —if the kill switch is set, this key would2373

be unavailable.2374

Open question: What hardware provisions are available for controlling the2375

power supply or boot process of the CE domain? How should this integrate2376

with the secure boot design?2377

The kill switch is intentionally kept simple, controlling whether all inter-domain2378

communications are enabled or disabled, and providing no finer granularity.2379

This is intended to make it completely robust —if support were added for selec-2380

tively killing some of the control APIs or data connections on the inter-domain2381

communications link, but not others, there would be much greater scope for2382

bugs in the kill switch which could be exploited to circumvent it.2383

If the OEM wants to provide finer grained kill switches for different APIs in2384

the automotive domain, they must implement them as part of those services, or2385

as part of the export layer which connects those services to the inter-domain2386

service.2387

Reporting malicious applications2388

There are three options for reporting malicious behaviour of applications to the2389

Apertis store:2390

1. Report from the inter-domain service in the automotive domain, based on2391

error responses from the OEM APIs.2392

2. Report from the inter-domain service in the CE domain, based on error2393

responses from the automotive domain.2394

3. Report from the SDK API adapter layers, based on error responses from2395

the automotive domain.2396

They are presented in decreasing order of reliability, and increasing order of2397

helpfulness.2398

Option #1 is reliable (an attacker can only prevent a detected malicious action2399

from being reported by compromising the automotive domain), but not helpful2400

(the automotive domain does not have contextual information about the access,2401

67

such as the application bundle which originally made the request —bundle iden-2402

tifiers cannot be sent across the inter-domain link as that would mean partially2403

defining the OEM APIs). This option has the additional disadvantage that it2404

requires the AD to communicate directly with the Apertis store without going2405

via the CE, which likely means the AD is on the Internet and could potentially2406

be compromised by a Heartbleed-style vulnerability in a communication path2407

that was intended to be secure. Options #2 and #3 do not have this disadvan-2408

tage, because in those options it is the CE that needs to communicate on the2409

Internet.2410

Option #3 is unreliable (an attacker can prevent a detected malicious action2411

from being reported by compromising that SDK service in the CE domain),2412

but most helpful (the CE domain knows all contextual information about the2413

access, including the application bundle identifier, parameters sent to the SDK2414

API by the application, and the output of the adapter layer which was sent to2415

the inter-domain link).2416

We recommend option #3 as it is the most helpful, and we believe that the2417

additional contextual information it provides outweighs the potential loss of2418

reports from most severely compromised vehicles. This is one part of many2419

which contribute to the security of the system.2420

An alternative would be to implement two or all of the options, and leave it up2421

to the Apertis store software to combine or deduplicate the reports.2422

Suggested roadmap2423

One the design has been reviewed, it can be compared to the existing state of2424

the inter-domain communication system, and a roadmap produced for how to2425

reconcile the differences (if there are any).2426

Open question: How does this design compare to the existing state of the2427

inter-domain communication system?2428

Requirements2429

Open question: Once the design is finalised a little more, it can be related2430

back to the requirements to ensure they are all satisfied.2431

Open questions2432

• Existing inter-domain communication systems: Are there any relevant2433

existing systems to compare against?2434

• IPSec versus TLS: What is the security of the IPsec protocol in its current2435

(2015) state?2436

• IPSec versus TLS: What is the performance of TCP and UDP over IPsec,2437

TLS over TCP and DTLS over UDP on the Apertis reference hardware?2438

68

• Configuration designs: What trade-off do we want between performance2439

and testability for the different transport layer configurations?2440

• Configuration designs: What more detailed configuration options can we2441

specify for setting up IPsec? For example, disabling various optional fea-2442

tures which are not needed, to reduce the attack surface. What IKE2443

service should be used?2444

• Configuration designs: A lot of business logic for control over OEM li-2445

cencing can be implemented by the choice of the CA hierarchy used by2446

the inter-domain communication system. What business logic should be2447

possible to implement?2448

• Configuration designs: Consider key control, revocation, protocol obsoles-2449

cence, and various extensions for pinning keys and protocols.2450

• Configuration designs: What can be done in the automotive domain to2451

reduce the possibility of exploits like Heartbleed affecting the inter-domain2452

communications link? This is a trade-off between the stability of AD2453

updates (high; rarely released) and the pace of IPsec and TLS security2454

research and updates and the need for crypto-agility (fast). Heartbleed2455

was a bug in a bad implementation of an optional and not-very-useful TLS2456

extension.2457

• Control protocol: How should the multiple CE configuration (section 8.3.2)2458

interact with D-Bus signals? Can the adapter layer perform the broadcast2459

to all subscribers?2460

• Developer mode: What cryptography should be used to implement this2461

authentication, and the division of trust between development and pro-2462

duction devices? A likely solution is to only have the AD accept the2463

CE connection if it connects with a ‘production’key signed by the vehicle2464

OEM.2465

• Disabling the CE domain: What hardware provisions are available for2466

controlling the power supply or boot process of the CE domain? How2467

should this integrate with the secure boot design?2468

• Suggested roadmap: How does this design compare to the existing state2469

of the inter-domain communication system?2470

• Requirements: Once the design is finalised a little more, it can be related2471

back to the requirements to ensure they are all satisfied.2472

Summary of recommendations2473

Open question: Once the design is finalised a little more, and a suggested2474

roadmap has been produced (Suggested roadmap), it can be summarised here.2475

69

Appendix: D-Bus components and licensing2476

The terminology around D-Bus can sometimes be confusing; here are some2477

details of its components and their licensing.2478

• D-Bus is a protocol56 which defines an on-the-wire format for marshalling2479

and passing messages between peers, a type system for structuring those2480

messages, an authentication protocol for connecting peers, a set of trans-2481

ports for sending messages over different underlying connection media, and2482

a series of high-level APIs for implementing common API design patterns2483

such as properties and object enumeration. It has a reference implemen-2484

tation (libdbus and dbus-daemon), but these are by no means the only2485

implementations. The protocol has had full backwards compatibility since2486

200657.2487

• A D-Bus daemon (for example: dbus-daemon, kdbus) is a process which2488

arbitrates communication between D-Bus peers, implementing multicast2489

communications (such as signals) without requiring all peers to connect to2490

each other. Different D-Bus daemons have different performance charac-2491

teristics and licensing. For example, kdbus runs in the kernel to improve2492

performance by reducing context switching overhead, at the cost of some2493

features; dbus-daemon runs in user space with more overhead, but is still2494

quite performant.2495

• A D-Bus library (for example: libdbus, GDBus) is a set of code which2496

implements the D-Bus protocol for one peer, converting high-level D-Bus2497

API calls into on-the-wire messages to send to another peer or a D-Bus2498

daemon to send to other peers. Different D-Bus libraries have different2499

performance characteristics and licensing.2500

Licensing2501

• The D-Bus Specification is freely licensed and has no restrictions on who2502

may implement it or how those implementations are licensed.2503

• libdbus and dbus-daemon are both licensed under your choice of the2504

AFLv2.158, or the GPLv259 (or later versions).2505

– Hence, if the AFL license is chosen, libdbus and dbus-daemon may2506

be used in non-open-source products.2507

• GDBus is part of GLib, and hence is licensed under the LGPLv2.060 (or2508

later versions).2509

56http://dbus.freedesktop.org/doc/dbus-specification.html
57http://dbus.freedesktop.org/doc/dbus-specification.html#stability
58https://spdx.org/licenses/AFL-2.1.html
59http://spdx.org/licenses/GPL-2.0+
60http://spdx.org/licenses/LGPL-2.0+

70

http://dbus.freedesktop.org/doc/dbus-specification.html
http://dbus.freedesktop.org/doc/dbus-specification.html#stability
https://spdx.org/licenses/AFL-2.1.html
http://spdx.org/licenses/GPL-2.0+
http://spdx.org/licenses/LGPL-2.0+
http://dbus.freedesktop.org/doc/dbus-specification.html
http://dbus.freedesktop.org/doc/dbus-specification.html#stability
https://spdx.org/licenses/AFL-2.1.html
http://spdx.org/licenses/GPL-2.0+
http://spdx.org/licenses/LGPL-2.0+

Appendix: D-Bus performance2510

libdbus and dbus-daemon are reasonably performant, having been used in vari-2511

ous low-resource products (such as mobile phones) over the years. There have2512

not been any quantitative evaluations of their performance in terms of latency2513

or memory usage recently, but some have been done in61 the62 past63.2514

As indicative numbers only, D-Bus (using dbus-python64 and dbus-daemon, not2515

kdbus) gives performance of roughly:2516

• 20,000 messages per second throughput2517

• 130MB per second bandwidth2518

• 0.1s end-to-end latency between peers for a given message2519

– This is likely an overestimate, as ping-pong tests written in C have2520

given latency of 200µs2521

• 2.5MB memory footprint (RSS) for dbus-daemon in a desktop configura-2522

tion2523

– So this could likely be reduced if needed —the amount of message2524

buffering dbus-daemon provides is configurable2525

Note that these numbers are from performance evaluations on various versions of2526

dbus-daemon, so should be considered indicative of an order of magnitude only.2527

As with all performance measurements, accurate values can only be measured2528

on the target system in the target configuration.2529

The most commonly accepted disadvantage of using D-Bus with dbus-daemon2530

is the end-to-end latency needed to send a message from one peer, through the2531

kernel, to the dbus-daemon, then through the kernel again, to the receiving2532

peer. This can be reduced by using kdbus, which halves the number of context2533

switches needed by implementing the D-Bus daemon in kernel space65. However,2534

kdbus has not yet been accepted into the upstream kernel, and (as of February2535

2016) there is some concern that this might not happen due to kernel politics.2536

It can be integrated into distributions as a kernel module, although it relies on a2537

few features only available in kernel version 4.0 or newer. This means it should2538

be straightforward to integrate in the CE, but potentially not in the AD (and2539

certainly not if the AD doesn’t run Linux —in such cases, dbus-daemon can be2540

used).2541

Overall, the performance of a D-Bus API depends strongly on the API design.2542

Good [D-Bus API design] eliminates redundant round trips (which have a high2543

61https://desktopsummit.org/sites/www.desktopsummit.org/files/will-thompson-dbus-
performance.pdf

62http://blog.asleson.org/index.php/2015/09/01/d-bus-signaling-performance/
63https://blogs.gnome.org/abustany/2010/05/20/ipc-performance-the-return-of-the-

report/
64http://www.freedesktop.org/wiki/Software/DBusBindings/
65http://www.freedesktop.org/wiki/Software/systemd/kdbus/

71

https://desktopsummit.org/sites/www.desktopsummit.org/files/will-thompson-dbus-performance.pdf
http://blog.asleson.org/index.php/2015/09/01/d-bus-signaling-performance/
https://blogs.gnome.org/abustany/2010/05/20/ipc-performance-the-return-of-the-report/
http://www.freedesktop.org/wiki/Software/DBusBindings/
http://www.freedesktop.org/wiki/Software/systemd/kdbus/
https://desktopsummit.org/sites/www.desktopsummit.org/files/will-thompson-dbus-performance.pdf
https://desktopsummit.org/sites/www.desktopsummit.org/files/will-thompson-dbus-performance.pdf
http://blog.asleson.org/index.php/2015/09/01/d-bus-signaling-performance/
https://blogs.gnome.org/abustany/2010/05/20/ipc-performance-the-return-of-the-report/
https://blogs.gnome.org/abustany/2010/05/20/ipc-performance-the-return-of-the-report/
http://www.freedesktop.org/wiki/Software/DBusBindings/
http://www.freedesktop.org/wiki/Software/systemd/kdbus/

latency cost), and offloads high-bandwidth or latency sensitive data transfer2544

into side channels such as UNIX pipes, whose identifiers are sent in the D-Bus2545

API calls as FD handles66.2546

Appendix: Software versus hardware encryption2547

The choice about whether to use software or hardware encryption is a tradeoff2548

between the advantages and disadvantages of the options. There are actually2549

several ways of providing ‘hardware encryption’, which should be considered2550

separately. In order from simplest to most complex:2551

• Encryption acceleration instructions in the processor, such as the2552

AES instruction set67, CLMUL68 or the ARM cryptography extensions69.2553

These are available in most processors now, and provide assembly instruc-2554

tions for performing expensive operations specific to certain encryption2555

standards, typically AES, SHA and Galois/Counter Mode (GCM) for2556

block ciphers. Intel architectures have the most extensions, but ARM2557

architectures also have some.2558

• Secure cryptoprocessor70. These are separate, hardened hardware de-2559

vices which implement all encryption operations and some key storage2560

and handling within a tamper-proof chip. They are conceptually similar2561

to hardware video decoders —the CPU hands off encryption operations to2562

the coprocessor to happen in the background. They typically do not have2563

their own memory.2564

• Hardware security module71 (HSM). These are even more hardened se-2565

cure cryptoprocessors, which typically come with their own tamper-proof2566

memory and supporting circuitry, including tamper-proof power supply.2567

They handle all aspects of encryption, including all key storage and man-2568

agement (such that keys never leave the HSM).2569

Software encryption (without encryption acceleration instructions)2570

• Lowest encryption bandwidth.2571

• Highest attack surface area, as keys and in-progress encryption values have2572

to be stored in system memory, which can be read by an attacker with2573

physical access to the hardware.2574

• Certain versions of some cryptographic libraries are FIPS72-certified, but2575

not all. GnuTLS has been FIPS certified in various devices, but is not2576

66http://dbus.freedesktop.org/doc/dbus-specification.html#idp9446907251
67https://en.wikipedia.org/wiki/AES_instruction_set
68https://en.wikipedia.org/wiki/CLMUL_instruction_set
69http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0514g/index.html
70https://en.wikipedia.org/wiki/Secure_cryptoprocessor
71https://en.wikipedia.org/wiki/Hardware_security_module
72https://en.wikipedia.org/wiki/FIPS_140-2

72

http://dbus.freedesktop.org/doc/dbus-specification.html#idp9446907251
https://en.wikipedia.org/wiki/AES_instruction_set
https://en.wikipedia.org/wiki/CLMUL_instruction_set
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0514g/index.html
https://en.wikipedia.org/wiki/Secure_cryptoprocessor
https://en.wikipedia.org/wiki/Hardware_security_module
https://en.wikipedia.org/wiki/FIPS_140-2
http://dbus.freedesktop.org/doc/dbus-specification.html#idp9446907251
https://en.wikipedia.org/wiki/AES_instruction_set
https://en.wikipedia.org/wiki/CLMUL_instruction_set
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0514g/index.html
https://en.wikipedia.org/wiki/Secure_cryptoprocessor
https://en.wikipedia.org/wiki/Hardware_security_module
https://en.wikipedia.org/wiki/FIPS_140-2

routinely certified73. OpenSSL is not routinely certified, but provides a2577

OpenSSL FIPS Object Module which is certified74 as a drop-in replace-2578

ment for OpenSSL, provided that it’s used unmodified. The Linux kernel’2579

s IPsec support has been certified in Red Hat Enterprise Linux 6, but is2580

not routinely certified75.2581

• Cheaper than hardware.2582

• Provides the possibility of upgrading to use different encryption algorithms2583

in future.2584

• Possible to check the software implementation for backdoors, although it’2585

s a lot of work. Some of this work is being done by other users of open2586

source encryption software76.2587

Software encryption (with encryption acceleration instructions)2588

• Same advantages and disadvantages as software encryption without en-2589

cryption acceleration instructions, except that the use of acceleration gives2590

a higher encryption bandwidth (on the order of a factor of 10 improve-2591

ment).2592

• Same software interface as without acceleration.2593

• Both TLS and IPsec provide various cipher suite options, at least some of2594

which would benefit from hardware acceleration —both use AES-GCM772595

for data encryption, which benefits from AES instructions.2596

Secure cryptoprocessor2597

• Higher encryption bandwidth.2598

• Reduced attack surface area, as keys and in-progress encryption values are2599

handled within the encryption hardware, rather than in general memory,2600

and hence cannot be accessed by an attacker with physical access. Keys2601

may still leave the cryptoprocessor, which gives some attack surface.2602

• Typical secure cryptoprocessors have tamper evidence features in the hard-2603

ware.2604

• Typically hardware is FIPS-certified.2605

• More expensive than software.2606

73http://www.gnutls.org/manual/html_node/Certification.html
74https://www.openssl.org/docs/fips.html
75https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html

/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-Federal_Info
rmation_Processing_Standard.html

76http://www.zdnet.com/article/ncc-group-to-audit-openssl-for-security-holes/
77https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

73

http://www.gnutls.org/manual/html_node/Certification.html
https://www.openssl.org/docs/fips.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-Federal_Information_Processing_Standard.html
http://www.zdnet.com/article/ncc-group-to-audit-openssl-for-security-holes/
http://www.zdnet.com/article/ncc-group-to-audit-openssl-for-security-holes/
http://www.zdnet.com/article/ncc-group-to-audit-openssl-for-security-holes/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://www.gnutls.org/manual/html_node/Certification.html
https://www.openssl.org/docs/fips.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-Federal_Information_Processing_Standard.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-Federal_Information_Processing_Standard.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-Federal_Information_Processing_Standard.html
http://www.zdnet.com/article/ncc-group-to-audit-openssl-for-security-holes/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

• Provides a limited set of encryption algorithms, with no option to upgrade2607

them once it’s fixed in silicon.2608

• No possibility to audit the hardware implementation to check for back-2609

doors, so you have to trust that the hardware vendor has not been secretly2610

required to provide a backdoor by some government.2611

• Typical cryptoprocessors originate from mobile or embedded networking2612

hardware, both of which need to support TLS, and hence cryptoprocessors2613

typically have support for AES, DES, 3DES and SHA. This is sufficient2614

for accelerating the common cipher suites in TLS and IPsec.2615

• Have to be supported by the Linux kernel crypto API (/dev/crypto) in2616

order to be usable from software.2617

Hardware security module2618

• Highest encryption bandwidth.2619

• Minimal attack surface area, with keys never leaving the HSM.2620

• All hardware is tamper-proof and tamper-evident, and typically can de-2621

stroy stored keys automatically if tampering is detected.2622

• Hardware is almost universally FIPS-certified.2623

• Most expensive.2624

• Provides a range of encryption algorithms, but with no option to upgrade2625

them.2626

• No possibility to audit the hardware implementation to check for back-2627

doors, so you have to trust that the hardware vendor has not been secretly2628

required to provide a backdoor by some government.2629

• Some modules can handle encryption of network streams transparently,2630

taking a plaintext network stream as input and handling all TLS or IPsec2631

operations for it with peers.2632

Conclusion2633

According to one evaluation78, using encryption acceleration instructions should2634

reduce the number of cycles per byte for AES encryption from 28 to 3.5. Assum-2635

ing the inter-domain connection is being used to transmit a HD video at 250kB·2636

s�¹, that means encryption requires 7MHz of CPU compute without acceleration,2637

and 875kHz with it. Performing symmetric encryption on a data stream doesn’t2638

significantly increase the required memory bandwidth compared to copying the2639

stream around without encryption.2640

78https://en.wikipedia.org/wiki/AES_instruction_set#Performance

74

https://en.wikipedia.org/wiki/AES_instruction_set#Performance
https://en.wikipedia.org/wiki/AES_instruction_set#Performance

Hence, overall, if we assume a peak bandwidth requirement on the inter-domain2641

communications link on the order of 250kB·s�¹ then using software encryption2642

with acceleration instructions should give sufficient performance.2643

The hardware security (tamper-proofing) provided by a HSM is overkill for an2644

in-vehicle system, and is better suited to data centres or military equipment.2645

We recommend either using software encryption with acceleration, or a secure2646

cryptoprocessor, depending on the balance of the advantages and disadvantages2647

of the two for the particular OEM and vehicle. For the purposes of this design,2648

both options provide all features necessary for inter-domain communications.2649

Appendix: Audio and video streaming standards2650

There are several standards to enable reliable audio and video streaming between2651

various systems. These standards aim to address the synchronization problem2652

with different approaches.2653

• AES6779: The AES67 standard combines PTP and RTP using PTP clock2654

source signalling (RFC727380) to synchronize multiple streams with an2655

external clock, focusing on high-performance audio based on RTP/UDP.2656

• VSF TR-03: This is a technical recommendation from the Video Service2657

Forum81 (VFS). The TR-03 standard is similar to AES67 in terms of using2658

PTP for clock synchronization, but it extends AES67 to cover other kinds2659

of uncompressed streams, including video and metadata.2660

• AVB82: The Audio Video Bridging (AVB) is a small extensions to standard2661

layer-2 MACs and bridges. An advantage of AVB is that the time syn-2662

chronization information is periodically exchanged through the network2663

so it provides great synchronization precision. However, it requires to im-2664

plement AVB for all of devices in the network because the device should2665

allocate a fraction of network bandwidth for AVB traffic.2666

The following comparison table depicts the characteristics of the standards.2667

AES67 VSF TR-03 AVB
Time synchronization external (PTP) external (PTP) supported by the network
Kernel support not required not required required
Transport protocol RTP RTP RTP, HTTP(s), IEEE 1722
Related open source project GStreamer N/A OpenAvnu

79https://en.wikipedia.org/wiki/AES67
80https://tools.ietf.org/html/rfc7273
81http://www.videoservicesforum.org/
82https://en.wikipedia.org/wiki/Audio_Video_Bridging

75

https://en.wikipedia.org/wiki/AES67
https://tools.ietf.org/html/rfc7273
http://www.videoservicesforum.org/
http://www.videoservicesforum.org/
http://www.videoservicesforum.org/
https://en.wikipedia.org/wiki/Audio_Video_Bridging
https://en.wikipedia.org/wiki/AES67
https://tools.ietf.org/html/rfc7273
http://www.videoservicesforum.org/
https://en.wikipedia.org/wiki/Audio_Video_Bridging

Note that VFS TR-03 has no explicit open source implementation, but as it2668

combines RTP for transport and PTP for clock synchronization, it is generally2669

supported by GStreamer.2670

Appendix: Multiplexing RTP and RTCP2671

RTP requires the RTP Control Protocol (RTCP) to exchange control packets2672

and timing information such as latency and QoS. Usually RTP and RTCP use2673

two different channels on different network ports, but it is also possible to use2674

a single port for both protocols using the RFC 576183 standard, supported by2675

the GStreamer funnel element.2676

The following diagram shows how a RFC 5761 pipeline can be set up in2677

GStreamer:2678

/--------\ /---------\ /--------\ /---------------\ /-2679

---------\2680

| audio | === | audio | === | rtpbin | = rtp = | rtp payloader | = rtp = | | /-2681

---------\2682

| source | | convert | | | \---------------2683

/ | funnel | === | udp sink |2684

\--------/ \---------/ | | =========================== rtcp = | | \-2685

---------/2686

\--------/ \----------/2687

Appendix: Audio and video decoding2688

As a system which handles a lot of multimedia, deciding where to perform audio2689

and video decoding is important. There are two major considerations:2690

• minimising the amount of raw communications bandwidth which is needed2691

to transmit audio or video data between the domains; and2692

• ensuring that an exploit does not give access to arbitrary memory from2693

either domain (especially not the automotive domain).2694

The discussion below refers to video encoding and decoding, but the same con-2695

siderations apply equally well to audio.2696

Software encoding is a large CPU burden, and introduces quality loss into2697

videos —so decoding and re-encoding videos in one domain to check their well-2698

formedness is not a viable option. If decoding is being performed, the decoded2699

output might as well be used in that form, rather than being re-encoded to be2700

sent to the other domain.2701

In order to avoid spending a lot of CPU time and CPU–memory bandwidth on2702

video decoding, it should be performed by hardware. However, this hardware2703

does not necessarily have to be in the domain where the encoded video originates.2704

83https://tools.ietf.org/html/rfc5761

76

https://tools.ietf.org/html/rfc5761
https://tools.ietf.org/html/rfc5761

For example, it is entirely possible for videos to be sent from the CE to be2705

decoded in the AD.2706

The original designs which were discussed in combination with the GPU video2707

sharing design planned to create a GStreamer plugin in the CE which treats the2708

AD as a hardware video decoder which accepts encoded video, decodes it, and2709

returns a handle which can be passed to the GL scene being output by the CE,2710

via a GL extension (similar to EXT_image_dma_buf_import84). This is the2711

same model as used for ‘normal’hardware decoders, and ensures that decoded2712

video data remains within the AD, rather than being sent back over the inter-2713

domain communications link (which would incur a very high bandwidth cost,2714

which for uncompressed 1080p video in YUV 422 format at 60fps amounts to2715

16 bits∕pixel × (1920 × 1080) pixels∕frame × 60 frames/s = 1898 Mbit∕s = 2372716

MB∕s).2717

Regarding security, a hardware decoder is typically a DMA85-capable peripheral2718

which means that, unless constrained by an IOMMU86, it can access all areas2719

of physical memory. The threat here is that a malicious or corrupt video could2720

trigger the decoder into reading or writing to areas of memory which it shouldn’2721

t, which could allow it to overwrite parts of the (hypervisor) operating system or2722

running applications. This concern exists regardless of which domain is driving2723

the decoder. We highly recommend that hardware is chosen which uses an2724

IOMMU to restrict the access a video decoder has to physical memory.2725

Note that the same security threat applies to the GPU, which has direct access2726

to physical memory (if shared with the CPU —some systems use dedicated2727

memory for the GPU, in which case the issue isn’t present). GPUs have a much2728

larger attack surface, as they have to handle complex GL commands which are2729

provided from untrusted sources, such as WebGL.2730

We recommend investigating the hardening and security applied to video de-2731

coders on the particular hardware platforms in use, but there is not much which2732

can be done by software to improve their security if it is lacking —the perfor-2733

mance cost is too high.2734

Memory bandwidth usage on the i.MX6 Sabrelite2735

This section refers to some benchmarks evaluating the available memory band-2736

width on the i.MX6 Sabrelite platform used in the reference hardware for Apertis.2737

This data is very system dependent, but the order of magnitude should provide2738

a general guide for evaluating approaches.2739

The iMX6 memory bandwidth usage benchmark87 describes some tools that2740

84https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_image_dma_buf_
import.txt

85https://en.wikipedia.org/wiki/Direct_memory_access
86https://en.wikipedia.org/wiki/Input-output_memory_management_unit
87https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_us

age

77

https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Input-output_memory_management_unit
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Input-output_memory_management_unit
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage

can be used to measure how memory is used, and reports that a 1080p @ 60fps2741

loopback pipline88 using GStreamer requires up to 1744.46 MB/s of memory2742

bandwidth.2743

Another useful benchmark is the one evaluating the cost of memory copies892744

done with the memcpy() function. The effective usable memory bandwidth mea-2745

sured with this test amounts to roughly 800 MB/s.2746

Security Vulnerabilities in GStreamer2747

To list vulnerabilities by type we can refer to the statistics available from the2748

CVE90 data source.2749

According to the CVE Details91 website, a third party that provides summaries2750

of CVE vulnerabilities, GStreamer had total 17 vulnerabilities92 since 2009.2751

Examining the DoS and Code Execution vulnerability types, the statistics2752

showed different characteristics for demuxers and decoders. There have been2753

12 DoS vulnerabilities affecting demuxers, but only one issue could lead to2754

Code Execution. For decoders, all the the 5 DoS issues which were found can2755

be escalated to Code Execution as well.2756

This report indicates that demuxers might have a smaller attack surface than de-2757

coders from the arbitrary code execution viewpoint. However, it is also possible2758

to have a security hole similar to Video or audio decoder bugs.2759

Both demuxing and possibly even decoding in the CE can help to mitigate the2760

described attacks. If the CE is responsible of demuxing the AD does not need2761

to deal with content detection and container formats, and the CE provides a2762

kind of partial verification of the stream even without decoding it.2763

Decoding in the CE poses some challenges in terms of bandwidth, as the amount2764

of data generated by fully decoded video streams is very high. It’s not going to2765

be a viable solution on ethernet-based setups, and advanced zero-copy mecha-2766

nisms to transfer frames are recommended on single board setups (virtualised2767

or container-based).2768

88https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_us
age#1080p60_loopback

89https://community.nxp.com/thread/309197
90http://cve.mitre.org/
91https://www.cvedetails.com
92https://www.cvedetails.com/vendor/9481/Gstreamer.html

78

https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage#1080p60_loopback
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage#1080p60_loopback
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage#1080p60_loopback
https://community.nxp.com/thread/309197
http://cve.mitre.org/
https://www.cvedetails.com
https://www.cvedetails.com/vendor/9481/Gstreamer.html
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage#1080p60_loopback
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage#1080p60_loopback
https://community.nxp.com/thread/309197
http://cve.mitre.org/
https://www.cvedetails.com
https://www.cvedetails.com/vendor/9481/Gstreamer.html

	Terminology and concepts
	Automotive domain
	Consumer-electronics domain
	Connectivity domain
	Trusted path
	Control stream
	Data stream
	Traffic control

	Use cases
	Standalone setup
	Basic virtualised setup
	Linux container setup
	Separate CPUs setup
	Separate boards setup
	Separate boards setup with other devices
	Multiple CE domains setup
	Touchscreen events
	Wi-Fi access
	Bluetooth access
	Audio transfer
	Video decoding
	Streaming media
	Downloads of firmware updates
	Offline and online map data
	Phonebook integration
	Tinkering vehicle owner on the network
	Tinkering vehicle owner on the boards
	Support multiple AD operating systems
	Before-market upgrades
	After-market upgrades
	Testability
	Malicious CE
	Malicious CD
	After-market upgrade of a domain
	Power cycle independence of domains (CE down)
	Power cycle independence of domains (AD down, single screen)
	Power cycle independence of domains (AD down, multiple screens)
	Temporary communications problem
	New version of AD software
	New version of AD interfaces
	Unsupported AD interfaces
	Contacts sharing
	Protocol compatibility
	Navigation system
	Marshalling resource usage
	Feedback for malicious applications
	Compromised CE with delayed fix
	Denial of service through flooding
	Malicious CE UI
	Plug-and-play CE device
	Connecting an SDK to a development vehicle

	Security model
	Attackers
	Security domains
	Security model

	Non-use-cases
	Production CE domain used in multiple configurations

	Requirements
	Separated transport layer
	Message integrity and confidentiality in transport layer
	Reliability and error checking in transport layer
	Mutual authentication between domains
	Separate authentication for developer and production mode devices
	Individually addressed domains
	Traffic control for latency
	Traffic control for bandwidth
	Traffic control for frequency
	Separation of control and data streams
	No untrusted access to AD hardware
	Trusted path for users to update the CE operating system
	Safety limits on AD APIs
	Rate limiting on control messages
	Ignore unrecognised messages
	Portable transport layer
	Support push mode and pull mode communications
	OEM AD integration API
	Flexibility in OEM AD integration API
	Inflexibility in OEM AD integration API
	Service discovery
	Stability in inter-domain communications protocol
	Testability of protocols
	Testability of protocol parsers and writers
	Testability of processes
	CE system services separated from transport layer
	No dependency on CE specific hardware
	Immediate error response if service on peer is unavailable
	Immediate error response if peer is unavailable
	Timeout error response if peer does not respond
	All inter-domain communications APIs are asynchronous
	Reconnect to peer as soon as it is available
	External domain watchdog
	Reporting system for malicious applications
	Ability to disable the consumer–electronics domain
	Tamper evidence
	No global keys in vehicles

	Existing inter-domain communication systems
	Approach
	Overall architecture
	Security domains
	Protocol design
	Traffic control
	Protocol library and inter-domain services
	Non Linux-based domains
	Service discovery
	Automotive domain export layer
	Consumer-electronics domain adapter layer
	Interaction of the export and adapter layers
	Flow for a given SDK API call
	Trusted path to the AD
	Developer mode
	Mock SDK implementation
	Debuggability
	External watchdog
	Tamper evidence and hardware encryption
	Disabling the CE domain
	Reporting malicious applications
	Suggested roadmap
	Requirements

	Open questions
	Summary of recommendations
	Appendix: D-Bus components and licensing
	Licensing

	Appendix: D-Bus performance
	Appendix: Software versus hardware encryption
	Software encryption (without encryption acceleration instructions)
	Software encryption (with encryption acceleration instructions)
	Secure cryptoprocessor
	Hardware security module
	Conclusion

	Appendix: Audio and video streaming standards
	Appendix: Multiplexing RTP and RTCP
	Appendix: Audio and video decoding
	Memory bandwidth usage on the i.MX6 Sabrelite
	Security Vulnerabilities in GStreamer

