
Debug and logging

Contents1

Terminology and concepts . 32

Application bundle . 33

Component . 44

Trusted dealer . 45

Use cases . 46

Debug deterministic application on SDK 47

Debug non-deterministic application on SDK 48

Debug application on target . 49

Debug application in the context of the whole system 410

Extract logs from a device under test 511

Trusted dealer can extract logs from a device post-production . . 512

Third party cannot extract logs from a device post-production . 513

Logging storage space is limited in post-production 514

Record and replay logs for input to an application 515

Record and replay logs for sensors to the whole system 516

Performance profiling . 617

Denial of service attack on logging 618

Private application log file . 619

Non-use-cases . 620

Record and replay logs for entire system behaviour 621

Requirements . 622

Code debugger installable on development and target machines . 623

Code debugger can be used remotely 724

Code record and replay tool installable on development and target25

machines . 726

Whole system logs are aggregated and timestamped 727

Whole system logs are tagged by process and priority 728

Whole system logs are limited by priority and rotated 829

Extract whole system logs from target device 830

Extract whole system logs from target device in post-production 831

Protect access to whole system logs on production devices 832

Code record and replay tool can handle multiple processes 833

Record and replay SDK sensor data 834

Profiling tools installable on development and target machines . 935

Rate limiting of whole system logs 936

Applications can write their own log files 937

Disk usage for each application is limited 938

Existing debug and logging systems 939

Approach . 940

GDB and gdbserver . 1041

Record and Replay (rr) . 1042

systemd journal . 1043

Application log files . 1144

Diagnostic log and trace . 1145

2

Extracting logs from a post-production system 1146

D-Bus monitoring . 1247

Trip logging of SDK sensor data 1248

Security . 1349

Disk usage and performance . 1450

Profiling tools . 1551

Suggested roadmap . 1552

Requirements . 1553

Open questions . 1654

Summary of recommendations . 1655

This documents several approaches to debugging components of an Apertis sys-56

tem, either during development, or in the field. This includes debugging tools57

for reproducing and analysing problems; and logging systems for gathering data58

about problems and about system behaviour.59

The major considerations with a debugging and logging system are:60

• Reproducibility: Many of the hardest problems to diagnose are ones which61

are hard to reproduce. A set of debugging tools should make it easy to re-62

produce problems, and certainly should not make the problems disappear63

when being debugged.64

• Timing: An important part of ensuring that problems are reproducible is65

ensuring that timing effects are reproducible, which means that a debug-66

ging system must have a low (almost zero) overhead, in order to avoid67

disturbing timing effects. Secondarily to this, it must allow the developer68

to see the order in which events occurred during the course of a problem.69

• Context: As well as helping reproducibility of a problem, a debugging70

system should reduce the need to reproduce the problem in the first place71

—by capturing as much contextual information about it on the initial72

attempt at debugging.73

• Confidentiality: Any system which logs information about a running sys-74

tem must ensure that the logged data remains confidential apart from to75

developers who need it for debugging. This may mean that logging is not76

enablable on production systems.77

Terminology and concepts78

Application bundle79

An application bundle is a group of functionally related components (services,80

data or programs) installed as a unit. This matches the sense with which ‘app’81

is typically used on mobile platforms such as Android and iOS. (See the Appli-82

cations design document for the full definition.)83

3

Component84

An application bundle or system service.85

Trusted dealer86

An authorised vehicle dealer, garage or other sale or repair location which has87

a business relationship with the vehicle manufacturer.88

Use cases89

A variety of use cases for scenarios where a component needs debugging, or where90

logging data are needed, are given below. Particularly important discussion91

points are highlighted at the bottom of each use case.92

Some of these cases may be already solved in the Apertis distribution in its93

current state. However, they will all have an effect, to a greater or lesser extent,94

on this design.95

Debug deterministic application on SDK96

An application developer needs to be able to debug their application when97

running it on the SDK, diagnosing crashes and looking at log output for that98

particular application.99

Debug non-deterministic application on SDK100

An application developer is working on an application whose behaviour appears101

non-deterministic (for example, due to using a lot of threads, or depending on102

sensitive timing). They manage to reproduce a particular bug only occasionally,103

but need to debug it further.104

Debug application on target105

An application developer needs to be able to debug their application when run-106

ning it on the target device (connected to an SDK machine during development),107

diagnosing crashes and looking at log output for that particular application.108

Debug application in the context of the whole system109

An application developer has a problem with their application which is depen-110

dent on the state of the whole (integrated) target system, rather than just on111

internal state in their application. They need to be able to correlate system112

state with their application’s internal state.113

4

Extract logs from a device under test114

An Apertis tester has observed a failure in a development vehicle while doing115

field testing on it. They need to be able to extract logs from the vehicle after116

the event, and examine them offline to diagnose the failure.117

Trusted dealer can extract logs from a device post-production118

A vehicle owner has brought their vehicle into the garage with a failure in the119

IVI system. The trusted dealer at the garage extracts logs from the vehicle and120

passes them to the vehicle vendor for analysis, potentially leading to a fix for121

the problem in a subsequent release of the CE domain operating system for that122

vehicle.123

Third party cannot extract logs from a device post-production124

A vehicle owner likes to tinker with their vehicle, and would like to look at the125

logs which their trusted dealer can look at, in order to get more information126

about reverse engineering the IVI system in their vehicle.127

They must not be able to access these logs.128

Logging storage space is limited in post-production129

On a production vehicle, the amount of storage space available for logging is130

limited, so the system should log only the most important or recent and relevant131

messages, and not write other messages to persistent storage.132

Record and replay logs for input to an application133

An application developer has found a problem in their application which depends134

on external input to it, and subtle timing sequences of that input. The input135

includes sensor input (from the SDK API, over D-Bus), and user interactions136

with the interface using the touchscreen and on-screen keyboard. This makes it137

a hard problem to reproduce. They want to add a regression test for it to their138

application, and want to automate it because reproducing the problem manually139

is too hard. This regression test needs to perfectly reproduce the problem each140

time it is run.141

The application has more than one process (it has one or more agent processes,142

in addition to the main UI); all the processes communicate with each other at143

runtime.144

Record and replay logs for sensors to the whole system145

An Apertis tester wants to test the whole system against a variety of road trips,146

but it would be a waste of time to repeatedly drive a vehicle around a real road147

system in order to do repeat test runs. They want a replayable log file of all148

the sensor inputs from the vehicle, which can be replayed to the whole Apertis149

5

system on a development machine, to allow repeated testing of how the system150

responds to those inputs.151

Performance profiling152

An application is performing poorly on the target device, and the developer153

wants to diagnose the problem so they can fix it.154

Denial of service attack on logging155

A misbehaving or malicious application is submitting log messages as fast as it156

can. This should not adversely affect system performance, or cause other log157

messages to be prematurely dropped.158

Private application log file159

An application is being ported from another platform to Apertis, and it already160

has its own logging infrastructure, storing log messages in a private log file. The161

developers wish to keep this infrastructure, rather than (or as well as) integrating162

with the Apertis logging infrastructure.163

Non-use-cases164

Record and replay logs for entire system behaviour165

While [this use case][Record and replay logs for sensors to the whole system] is166

legitimate, it becomes harder to record the entire system behaviour (as opposed167

to just the inputs from the sensor system), as that starts to be affected by168

differences in the components which are being tested if those components are169

changed to test new features. For example, if the entire system behaviour were170

recorded and replayed, it might not be possible to run a debugger on the system171

while replaying a log, as the debugger would impact the replay state too much.172

Requirements173

Code debugger installable on development and target machines174

A code debugger must be available in Apertis, and installable on development175

and target machines so that it can be used by Apertis and application develop-176

ers.177

The tool must allow interactive walking through the stack, printing expressions,178

and other common C debugging functions.179

See Debug deterministic application on SDK.180

6

Code debugger can be used remotely181

The code debugger must be usable remotely in real time, most likely with a182

server component running on the target device, and a client component on the183

developer’s machine.184

See Debug application on target.185

Code record and replay tool installable on development and target186

machines187

A code record and replay tool must be available in Apertis, and installable188

on development and target machines so that it can be used by Apertis and189

application developers.190

The tool must allow recording all inputs to an Application from the kernel, plus191

any other system behaviour which would influence the application’s behaviour.192

Those logs must be stored as files, and replayable many times.193

When replaying logs, the developer must be able to use a debugger to investigate194

problems.195

See:196

• Debug non-deterministic application on SDK197

• Debug application in the context of the whole system198

• Record and replay logs for input to an application199

Whole system logs are aggregated and timestamped200

All log messages from all system components and services must be directed to201

a central logging repository, which must timestamp them all in order (so that202

all the timestamps are directly comparable).203

See Extract logs from a device under test, Debug application in the context of204

the whole system.205

Whole system logs are tagged by process and priority206

All log messages from all system components and services must be tagged with207

the name of the process which generated them, and their priority (for example,208

‘debug’versus ‘warning’versus ‘error’). This metadata must be available to the209

developer to allow them to filter logs for relevant messages.210

See:211

• Debug deterministic application on SDK212

• Debug application on target213

7

Whole system logs are limited by priority and rotated214

On a production vehicle, the log messages which are written to persistent storage215

must be limited to only the most recent logs (according to some age cutoff) and216

the most important logs (according to some priority cutoff). These cutoffs must217

be configurable at production time.218

It may be possible to keep all other log messages in memory while the vehicle219

is running, for example to allow them to be uploaded to an online diagnosis220

service in case of a fault. They must not, however, be written to disk.221

See Logging storage space is limited in post-production.222

Extract whole system logs from target device223

The aggregated system log on a development target device must be accessible224

by the developer, who must be able to copy it to their development machine225

for analysis. The log does not necessarily have to be extractable in real time,226

though that would be helpful.227

See Extract logs from a device under test.228

Extract whole system logs from target device in post-production229

The aggregated system log on a production target device must be extractable230

by a trusted dealer so that It can be sent to an Apertis developer for analysis.231

Extracting the log may require physical access to the vehicle.232

See Trusted dealer can extract logs from a device post-production.233

Protect access to whole system logs on production devices234

The aggregated system log on a production device must only be extractable by235

a trusted dealer or other authorised representative of the vehicle manufacturer.236

See Third-party cannot extract logs from a device post-production.237

Code record and replay tool can handle multiple processes238

The code record and replay tool must be able to record and replay a single log239

for multiple processes, such as an application and its agents. They must all see240

the same timing information.241

See Record and replay logs for input to an application.242

Record and replay SDK sensor data243

It must be possible to record all D-Bus traffic to and from the SDK sensors API244

for a given time period (a ‘trip’), and later replay that log to the whole system245

instead of using current sensor data.246

8

See Record and replay logs for sensors to the whole system.247

Profiling tools installable on development and target machines248

A variety of profiling tools must be available in Apertis, and installable on249

development and target machines so that they can be used by Apertis and250

application developers.251

See Performance profiling.252

Rate limiting of whole system logs253

To prevent denial of service attacks on the system log, rate limiting must be254

applied to log message submissions from each application. If an application255

submits log messages at too high a rate, the extras must be dropped.256

See Denial of service attack on logging.257

Applications can write their own log files258

Application developers may choose to ignore or supplement the Apertis SDK259

logging infrastructure with their own system which writes to a log file in their260

application’s storage space. This must be permitted, although the SDK does261

not have to provide convenience API for it.262

See Private application log file.263

Disk usage for each application is limited264

An application is logging to its own private log file, rather than the system265

journal. The system must constrain the amount of disk space the application266

can use, so that it cannot prevent other applications from working by consuming267

all free disk space. If the application consumes too much disk space, the system268

may delete its files or prevent it from working.269

See Private application log file.270

Existing debug and logging systems271

Open question: What existing debug and logging systems are relevant to do272

background research on?273

Approach274

Based on the above research (section 6) and requirements (section 5), we rec-275

ommend the following approach as an initial sketch of a debug and logging276

system.277

9

GDB and gdbserver278

For real-time debugging of applications, both on a local SDK system and on279

a remote target system, GDB should be used. For debugging remote systems,280

gdbserver should be set up on the remote system and GDB used as a client to281

control it.282

They are both available in the development repository and Flatpak SDK, and283

hence installable on development and target devices.284

Record and Replay (rr)285

For debugging of non-deterministic problems and problems which depend on286

context or state outside of the application, Mozilla’s Record and Replay (rr)287

tool should be used. It works by recording all input and output to a process288

(especially the input and output via kernel APIs), and allowing that log to be289

replayed while re-running the application. This eliminates all sources of non-290

determinism in the replay, ensuring that the conditions which triggered the291

original problem can be reproduced every time.292

Crucially, rr works with D-Bus: as all socket input and output for an application293

is recorded, this includes all D-Bus traffic —this is reproduced faithfully in any294

re-runs of the application. As many of the Apertis SDK APIs are provided via295

D-Bus, this is a crucial feature.296

In addition, rr can record a group of processes to a single log, and replay to the297

same group later on. This can be used for debugging an application together298

with its agents, for example.299

Note, however, that rr is a replay tool and not an interactive debugger —a devel-300

oper cannot replay a log recorded against one version of an application with a301

newer version of the application (for example, with changes which the developer302

hopes will fix the bug they’re investigating). This is because it would change303

the program’s output behaviour and hence its effects on external processes.304

For example, consider a bug where a program is writing a network packet to305

the wrong socket out of two it has open. rr has recorded the response from the306

socket the program was originally sending to (the wrong socket) —when a fixed307

version of the program is run, the log file rr is using will not have a response308

stored for the second (correct) socket.309

This must be available in the development repository and Flatpak SDK, and310

hence installable on development and target devices.311

systemd journal312

All log output from processes on the target system should be sent to the systemd313

journal, allowing it to provide a single source of log data for the entire system,314

with all log messages in a single ordering. This includes debug messages, errors,315

warnings, and other log output. All messages should be sent with a priority316

10

level, plus additional metadata if relevant. The journal automatically adds the317

sending process’name to log entries.318

When developing on a local SDK system, the log should be queried using the319

journalctl command line tool.320

Application log files321

If an application developer chooses to log their application’s messages to a pri-322

vate log file instead of, or as well as, to the systemd journal, this is permitted.323

The SDK may not provide convenience APIs for doing this, other than its APIs324

for file input and output. For example, it is up to the application developer to325

implement rate limiting, log file rotation and vacuuming.326

Applications must not be able to consume all available disk space and prevent327

the system or other applications from working.328

Applications may only write to their own log files if they have permission to329

write to persistent storage, which is one of the standard permissions in the330

application manifest.331

Diagnostic log and trace332

When testing a component on a target system, the developer should use diag-333

nostic log and trace (DLT) from GENIVI —this is a client–server system where334

the DLT daemon runs on the target system and forwards systemd journal mes-335

sages over the network to the developer’s system, where they are presented in336

the DLT Viewer UI, which allows filtering, ordering, and other analysis to be337

performed on the logs.338

However, DLT is only as useful as the log messages sent to it by the components339

on the system. Certain components may need to be modified to emit more log340

messages.341

The DLT daemon exposes itself on the network and on the serial port with no342

authentication, so must not be installed by default on production systems.343

Extracting logs from a post-production system344

For extracting logs from a post-production system, a new journal export service345

must be written which provides and authenticates access to the systemd journal.346

This service would essentially run the journalctl -o export1 command to retrieve347

a full copy of the system’s logs in a stable format suitable for sending to another348

system for review.349

The service would need to listen on some external interface which a trusted350

dealer could connect to. This could, for example, be a network port; or it could351

1http://www.freedesktop.org/wiki/Software/systemd/export/

11

http://www.freedesktop.org/wiki/Software/systemd/export/
http://www.freedesktop.org/wiki/Software/systemd/export/

be a physical connector on the IVI system’s main board. In any case, the service352

must require authentication before exporting any logs.353

Open question: What external interface can the journal export service listen354

on?355

The authentication mechanism chosen depends partially on the characteristics of356

the interface the service listens on. It would most likely be a challenge–response357

protocol2 issued by the journal export service, where the trusted dealer proves358

knowledge of a secret which has been issued by the vehicle manufacturer.359

Open question: Should the logs be exported in an encrypted form, to keep360

them confidential while being stored by a trusted dealer?361

D-Bus monitoring362

As many of the Apertis SDK APIs are provided via D-Bus, an easy way to see363

what they’re doing is to log all D-Bus traffic on the system and session buses.364

This can then be exposed by the DLT Viewer (or the local journalctl tool) and365

analysed.366

A new D-Bus logging service (similar to the dbus-monitor tool, but presented367

as a systemd service which is enablable by developers, and only on development368

images) should be written which logs all traffic for a specified D-Bus bus to the369

systemd journal.370

Note that this does not allow for log replay. For specific cases, this will be371

handled using Trip logging of SDK sensor data.372

Trip logging of SDK sensor data373

In order to record ‘trip logs’of the sensor data sent to and from the SDK sensor374

API and the entirety of the rest of the system, a D-Bus record and replay tool375

should be written. When recording, this could monitor the D-Bus session bus376

and record all traffic to and from the sensor API. When replaying, it would377

replace the SDK sensor service on the bus, and impersonate all its APIs, re-378

playing responses from the log. This program must be aware of the semantics379

of D-Bus messages so, for example, it would not store the serial number of a380

message reply, but would instead use the serial number corresponding to the381

method call at the time of replay. Similarly, it must be aware of common D-Bus382

interfaces such as org.freedesktop.DBus.Properties and know that the value of383

a property remains unchanged unless a notification signal has been emitted for384

it.385

One implementation option would be to implement this based on the dbus-386

monitor code: log all messages to or from the sensors API, and extract ones387

with known semantics, such as org.freedesktop.DBus.Properties method calls388

and signals. The replay code would maintain a queue of pairs of (expected389

2https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication

12

https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication
https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication
https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication
https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication

method call, reply), and for each incoming method call, would return and remove390

the first matching reply from the queue; or would return an error otherwise.391

For calls to known interfaces like org.freedesktop.DBus.Properties, the property392

state would be emulated with the correct semantics. Asynchronous events, such393

as signal emissions from the sensors API, would be emitted at the appropriate394

time relative to their surrounding events, rather than based on the absolute395

timestamp they were originally logged at. For example, if the log contained396

a signal emission after method call A and before method reply B, that signal397

would only be emitted in the replayed log after the program under test had398

made method call A.399

An alternative implementation, which would be faster to implement but less400

generic and hence could not be repurposed for logging other SDK services in401

future, would be to use python-dbusmock3 to build a specific mock service for402

the sensors API. This service would have full knowledge of the semantics of all403

the D-Bus messages it sent and received —the full sensors SDK API, rather than404

just the standard D-Bus interfaces. The log file would be generated similarly to405

in the first implementation—by monitoring and interpreting the D-Bus traffic for406

the sensors API. The file would contain an initial set of values for the properties407

of all the sensors, followed by timestamped updates to each value as it changed408

during logging.409

A third, most-specific, implementation option, is to use the emulator backend410

service for the vehicle device daemon (See the Sensors and Actuators design),411

and feed the recorded trip logs to it. This has the advantage of re-using the412

vehicle device daemon’s SDK API, without having to mock it up. The emulator413

backend service has to be written anyway, in order to implement the sensors414

and actuators emulator (see section 8.4 of the Sensors and Actuators design,415

version 0.3.0). This would be the fastest implementation option, and the least416

re-usable.417

Example trip files To give application developers some baseline situations418

to test against, it would be helpful if Apertis or OEM variants of it shipped with419

several example trip logs, demonstrating some common or uncommon driving420

situations which applications must handle.421

Open question: Should example trip files be produced by Apertis, or by OEMs422

so they are specific to vehicles?423

Security424

The security issues from logging are all concerned with confidentiality of system425

information, which may include sensitive data from a variety of processes.426

This data must be kept confidential, both within the system (for example, ap-427

plications must not have access to the logs of any process which is not in their428

3https://github.com/martinpitt/python-dbusmock

13

https://github.com/martinpitt/python-dbusmock
https://github.com/martinpitt/python-dbusmock

trust domain), and from external attackers.429

On production devices, especially, access to full system logs is a valuable goal430

for an attacker, as it gives insight into how the system is configured and further431

potential attack targets. For this reason, it may be worthwhile considering432

whether to reduce or disable logging on production systems.433

Conversely, log entries from production devices are very useful for debugging434

unreproduceable post-production problems. Therefore, the choice of logging435

verbosity on production systems becomes a trade-off between the risk of confi-436

dentiality breaches, and the practicality of being able to debug problems.437

Open question: What level of logging should be enabled for production sys-438

tems versus development systems?439

Disk usage and performance440

Storing log entries persistently consumes an unbounded amount of disk space.441

A limit must be applied to the number or age of log entries which are stored442

before being dropped. The systemd journal must have a disk space or age limit443

applied; this can be done by editing /etc/systemd/journald.conf and adding the444

following, for example:445

SystemMaxUse=100M446

To limit the priority level of messages which are stored to disk, the following447

configuration option can be used; it is highly recommended to set it to ‘debug’448

on development systems and ‘error’for production systems.449

The full range of options is documented in man 5 journald.conf450

MaxLevelStore=error451

Logging must not have a large runtime overhead —each call from a process to452

the logging API must be fast. Furthermore, rate limiting must be applied to453

prevent a misbehaving application from overfilling the system logs. This can454

be achieved using the following configuration options for the systemd journal;455

the following values limit each process to at most 1000 messages in a given 30456

seconds:457

RateLimitInterval=30s458

RateLimitBurst=1000459

As discussed in the Robustness design, the journal should additionally be config-460

ured to leave an amount of free space smaller than the reserved blocks of the file461

system containing the log files, so that log messages can continue to be written462

in low disk space conditions, allowing easier diagnosis of the problem:463

SystemKeepFree=5%464

14

Profiling tools465

A variety of profiling tools should be packaged for the Apertis development466

repository and Flatpak SDK:467

• perf468

• valgrind469

• google-perftools470

• strace471

• ltrace472

• systemtap473

• gprof474

Suggested roadmap475

GDB and DLT are already packaged, so no further work is needed there; as are476

all the profiling tools.477

rr is not yet packaged, but should be.478

Integration of everything into the systemd journal, plus adding additional debug479

messages to various system services to improve debuggability of those services.480

The journal export service, D-Bus logging service and D-Bus record and replay481

tools are all self-contained, so could be produced individually as later stages in482

the implementation.483

Requirements484

• Code debugger installable on development and target machines: GDB is485

the debugger.486

• Code debugger can be used remotely: GDB can be used with gdbserver.487

• Code record and replay tool installable on development and target ma-488

chines: rr is the record and replay tool.489

• Whole system logs are aggregated and timestamped: All system logs are490

forwarded to the systemd journal. D-Bus messages are logged to the491

journal via a new D-Bus logging service.492

• Whole system logs are tagged by process and priority: Done by the sys-493

temd journal by default.494

• Whole system logs are limited by priority and rotated: Done with suitable495

configuration of the systemd journal.496

• Extract whole system logs from target device: DLT is used to extract logs497

and transfer them to a developer machine in real time.498

15

• Extract whole system logs from target device in post-production New jour-499

nal export service exposing an authenticated interface for exporting sys-500

temd journal logs.501

• Protect access to whole system logs on production devices: Journal export502

service requires authentication.503

• Code record and replay tool can handle multiple processes: rr supports504

logging and replaying to multiple processes.505

• Record and replay SDK sensor data: D-Bus record and replay tool will be506

used for this.507

• Profiling tools installable on development and target machines: Various508

profiling tools will be packaged.509

• Rate limiting of whole system logs: Done with suitable configuration of510

the systemd journal.511

• Applications can write their own log files: Allowed for any application512

which is allowed to write files.513

• Disk usage for each application is limited: Each application must have its514

storage usage restricted by the system.515

Open questions516

• What existing debug and logging systems are relevant to do background517

research on?518

• What external interface can the journal export service listen on?519

• Should the logs be exported in an encrypted form, to keep them confiden-520

tial while being stored by a trusted dealer?521

• Should example trip files be produced by Apertis, or by OEMs so they are522

specific to vehicles?523

• What level of logging should be enabled for production systems versus524

development systems?525

Summary of recommendations526

As discussed in the above sections, we recommend:527

• Packaging Mozilla’s Record and Replay (rr) tool for the development repos-528

itory.529

• Ensure that all system components and services are logging exclusively to530

the systemd journal.531

• Configure the systemd journal to handle log expiry, rotation and priority532

storage levels to avoid consuming unbounded disk space.533

16

• Potentially add more debug log messages to various system services to534

give more context when debugging applications.535

• Write a journal export service for exporting the systemd journal with536

authentication from a production system.537

• Write a D-Bus logging service for logging all D-Bus traffic to the systemd538

journal to give more context when debugging applications.539

• Write a D-Bus record and replay tool for producing trip logs from the540

SDK sensor API.541

• Audit the confidentiality of the systemd journal and ensure it is only ac-542

cessible to developers and the journal export service.543

• Write documentation on how to use the Apertis SDK logging API, and544

advice for application developers who want to use their own logging sys-545

tems.546

17

	Terminology and concepts
	Application bundle
	Component
	Trusted dealer

	Use cases
	Debug deterministic application on SDK
	Debug non-deterministic application on SDK
	Debug application on target
	Debug application in the context of the whole system
	Extract logs from a device under test
	Trusted dealer can extract logs from a device post-production
	Third party cannot extract logs from a device post-production
	Logging storage space is limited in post-production
	Record and replay logs for input to an application
	Record and replay logs for sensors to the whole system
	Performance profiling
	Denial of service attack on logging
	Private application log file

	Non-use-cases
	Record and replay logs for entire system behaviour

	Requirements
	Code debugger installable on development and target machines
	Code debugger can be used remotely
	Code record and replay tool installable on development and target machines
	Whole system logs are aggregated and timestamped
	Whole system logs are tagged by process and priority
	Whole system logs are limited by priority and rotated
	Extract whole system logs from target device
	Extract whole system logs from target device in post-production
	Protect access to whole system logs on production devices
	Code record and replay tool can handle multiple processes
	Record and replay SDK sensor data
	Profiling tools installable on development and target machines
	Rate limiting of whole system logs
	Applications can write their own log files
	Disk usage for each application is limited

	Existing debug and logging systems
	Approach
	GDB and gdbserver
	Record and Replay (rr)
	systemd journal
	Application log files
	Diagnostic log and trace
	Extracting logs from a post-production system
	D-Bus monitoring
	Trip logging of SDK sensor data
	Security
	Disk usage and performance
	Profiling tools
	Suggested roadmap
	Requirements

	Open questions
	Summary of recommendations

