
Applications

Contents1

Traditional package managers are unfit for applications 32

Terminology . 33

Graphical program . 34

Bundle . 45

Store account . 46

Software Categories . 47

Pre-installed Applications . 68

Responsibilities of the Application Store 79

Identifying applications . 710

Application Releasing Process . 911

Application Installation Tracking 912

Digital Rights Management . 1013

Permissions . 1114

Data Storage . 1215

Extending Storage Capabilities 1216

Application Management . 1317

Store Applications . 1418

License Agreements . 1619

Application Run Time Life-Cycle . 1720

Start . 1721

Background Operation . 1822

End . 1923

Resource Usage . 2024

Applications not Written for Apertis 2025

References . 2026

This document is intended to give a high-level overview of application handling27

by Apertis. Topics handled include the storage of applications and related data28

on the device, how they’re integrated into the system, and how the system29

manages them at run-time. Topics related to the development of applications30

are covered by several other designs.31

Unfortunately, the term “application”has seen a lot of misuse in recent times.32

While many mobile devices have an “application store”that distributes “applica-33

tion packages”, what is actually in one of those packages may not fit any sensible34

definition of an application –as an example, on the Nokia N9 one can download35

a package from the application store that adds MSN Messenger capabilities to36

the existing chat application.37

To avoid ambiguity, this document will avoid using “application”as a jargon term.38

Instead, we use two distinct terms for separate concepts that could informally39

be referred to as applications: graphical programs, and application bundles. See40

Terminology.41

2

Apertis is a multiuser system; see themultiuser1 design document for more on the42

specifics of the multiuser experience and the division of responsibilities between43

middleware and HMI elements.44

Traditional package managers are unfit for applications45

Apertis relies heavily on a traditional packaging system to compose the base OS.46

However, it does not rely on it to distribute the composed system as it is not47

a good fit for the use-cases Apertis addresses, seesystem updates and rollback248

for more details. Similarly, a traditional packaging system is not a good fit for49

applications in Apertis since:50

• Apertis relies on a immutable base OS to implement a robust update51

mechanism, seesystem updates and rollback3 for more details. This means52

that a traditional package manager is not used to distribute updates on53

the field and that the writable application storage should be kept separate54

from the read-only base OS.55

• Application bundles don’t depend on each other –this simplifies depen-56

dency management in modern package management systems specializing57

in support for applications.58

• Much of the complexity in application bundle handling (DRM, rollbacks,59

communicating security “permissions”to the user) is not part of traditional60

package management tools, and is not interesting to the upstream tool61

maintainers.62

• Applications can have conflicting dependencies which can’t be shipped as63

part of the base OS and should be somehow bundled with the application64

itself.65

Thus, Apertis has chosen Flatpak4 as the system for installing and managing66

application bundles (see application framework5).67

Terminology68

Graphical program69

A graphical program is a program with its own UI drawing surface, managed70

by the system’s window manager. This matches the sense with which “appli-71

cation”is traditionally used on desktop/laptop operating systems, for instance72

referring to Notepad or to Microsoft Word.73

1https://www.apertis.org/concepts/archive/application_security/multiuser/
2https://www.apertis.org/concepts/platform/system-updates-and-rollback/
3https://www.apertis.org/concepts/platform/system-updates-and-rollback/
4https://flatpak.org/
5https://www.apertis.org/concepts/archive/application_framework/application-framew

ork/

3

https://www.apertis.org/concepts/archive/application_security/multiuser/
https://www.apertis.org/concepts/platform/system-updates-and-rollback/
https://www.apertis.org/concepts/platform/system-updates-and-rollback/
https://flatpak.org/
https://www.apertis.org/concepts/archive/application_framework/application-framework/
https://www.apertis.org/concepts/archive/application_security/multiuser/
https://www.apertis.org/concepts/platform/system-updates-and-rollback/
https://www.apertis.org/concepts/platform/system-updates-and-rollback/
https://flatpak.org/
https://www.apertis.org/concepts/archive/application_framework/application-framework/
https://www.apertis.org/concepts/archive/application_framework/application-framework/

Bundle74

A bundle or application bundle is a group of functionally related components75

(be they services, data, or programs), installed as a unit. This matches the sense76

with which “app”is typically used on mobile platforms such as Android and iOS;77

for example, we would say that an Android .apk file contains a bundle. Some78

systems refer to this concept as a package, but that term is strongly associated79

with dpkg/apt (.deb) packages in Debian-derived systems, so we have avoided80

that term in this document.81

Store account82

The Digital rights management section discusses store accounts, anticipated83

to have a role analogous to Google Play accounts on Android or Apple Store84

accounts on iOS. If these accounts exist, we recommend against using the term85

“user”for them, since that would be easily confused with the users found in the86

Multiuser design document; it is not necessarily true that every user has access87

to a store account, or that every store account corresponds to only one user.88

Software Categories89

The software in a Apertis device can be divided into three categories: platform,90

built-in application bundles and store application bundles. Of these categories,91

some store application bundles may be preinstalled.92

4

Store application bundles

Preinstalled application bundles

Weather Angry Birds

Yelp Twitter

Yahoo! Kindle Foursquare

identi.ca

Built-in application bundles

Browser Contacts Media player

Platform

libfolks dbus-daemon systemd

Ap
pl

ic
at

io
n

bu
nd

le
s

Essential software

Navigation

93

The platform is comprised of all the facilities used to boot up the device and94

perform basic system checks and restorations. It also includes the infrastruc-95

tural services on which the applications rely, such as the session manager, win-96

dow manager, message bus and configuration storage service, and the software97

libraries shared between components.98

Built-in application bundles are components that have a structure analogous99

to that of an application bundle from the application store, but can only be100

upgraded as part of an operating system upgrade, not separately. This should101

include all software laid on top of the platform that is on the critical path of102

user-facing basic functionality, and hence cannot be removed or upgraded except103

by installing a new operating system; this might include basic software such as104

the browser, email reader and various settings management applications.105

The platform and built-in applications combine to make up essential software:106

the bare minimum Apertis will always have installed. Essential software has107

strict requirements both in terms of reliability and security.108

5

Store application bundles are application bundles developed by third-parties109

to be used as add-ons to the system: they are not part of the system image and110

are made available for installation through the application store instead. While111

they may be important to the user, their presence is not required to operate the112

device properly.113

It is important to note that store application bundles can be shipped pre-114

installed on the device, which provides OEMs with a flexible way of providing115

differentiation or a more complete user experience by default.116

Pre-installed Applications117

On most software platforms there are two kinds of applications that come pre-118

installed on the device: what we call built-in application bundles and regular119

store application bundles. The difference between built-in application bundles120

and regular store application bundles that just happen to come pre-installed is121

essentially that the former are considered part of the system’s basic functionality,122

are updated along with the system and cannot be removed.123

Taking Apple’s iPad as an example, we can see that approach being applied:124

Safari, Weather, Mail, Camera and so on are built into the system.125

See http://www.apple.com/ipad/built-in-apps/ for a list126

They cannot be removed and they are updated through system updates. Apple127

doesn’t seem to include any store applications pre-installed, though.128

The Android approach is very similar: applications such as the browser are not129

removable and are updated with the system, but it’s much more common to130

have store applications be pre-installed, including Google applications such as131

Gmail, Google Maps, and so on.132

The reason why browsers, mail readers, contacts applications are built-in soft-133

ware that come with the system is they are considered integral parts of the core134

user experience. If one of these applications were to be removed the user would135

not be able to utilize the device at all or would have a lot of trouble doing so:136

listening to music, browsing the web and reading email are basic expectations137

for any mobile consumer device.138

A second reason which is also important is that these applications often provide139

basic services for other applications to call upon. The classic example here is140

the contacts application that manages contacts used by text messaging, instant141

Internet messaging, email, and several other use cases.142

Case Study: a navigation application, how would it work? The navi-143

gation application was singled out as a case that has requirements and features144

that intersect those of built-in applications and those of store applications. On145

the one hand, the navigation application is core functionality, which means it146

should be part of the system. On the other hand, it should be possible to make147

6

http://www.apple.com/ipad/built-in-apps/

the application extensible or upgradable, enabling the selling of updated maps,148

for instance.149

Apertis believes that the best way to solve this duality is to separate program150

and data, and to follow the lead of other platforms and their app stores in151

providing support for in-app purchases. This functionality is used often by152

games to provide additional characters, scenarios, weapons and such, but also153

used by applications to provide content for consumption through the application,154

such as magazine issues and also maps.155

For such a feature to work, it needs to be provided as an API that applications156

can use to talk to the app store to place orders and to verify which data sets157

the user should be allowed to download. The actual data should be hosted at158

the app store for downloading post-validation. The disposition of the data, such159

as whether it should be made available as a single file or several, whether the160

file or files are compressed or not, should be left for the application author to161

decide on based on what makes more sense for the application.162

Responsibilities of the Application Store163

The application store will be responsible for hosting a developer’s signed appli-164

cation bundles. Special “SDK”system images will provide software development165

tools and allow the installation of unsigned packages, but the normal “target”166

system image will not allow the installation of packages that don’t contain a167

valid store signature.168

The owner of the store, via the signing authority of the application store, will169

have the ability to accept or reject any application to be run on Apertis. By dis-170

allowing any form of “self publication”by application developers, the store owner171

can ensure a consistent look and feel across all applications, screen applications172

for malicious behavior, and enforce rigorous quality standards.173

However, pre-publication screening of applications will represent a significant174

time commitment, as even minor changes to applications must undergo thor-175

ough testing. High priority security fixes from developers may need to be given176

a higher priority for review and publication, and the priority of application up-177

dates may need to be considered individually. System updates will correspond178

to the busiest periods for both internal and external developers, and the appli-179

cation store will experience significant pressure at these times.180

Identifying applications181

During the design of other Apertis components, it has become clear that several182

areas of the system design would benefit from a consistent way to identify and183

label application bundles and programs. In particular, the ability to provide184

a security boundary where inter-process communication is used relies on being185

able to identify the peer, in a way that ensures it cannot be impersonated.186

7

An application has several strings that might reasonably act as its machine-187

readable name in the system:188

• the name of the application bundle, being the Flatpak app-id6 or the name189

discussed in Application bundle metadata7190

• the D-Bus well-known name or names taken by the program(s) in the191

bundle, for instance via GLib’s GApplication interface192

• the name(s) of the freedesktop.org .desktop file(s) associated with the193

program(s), if they have them194

• the name of the systemd user service (.service file) associated with the195

program(s), if they have them196

Flatpak aligns these according to the following system8:197

• The bundle ID is a case-sensitive string matching the syntactic rules for198

a D-Bus interface name, i.e. two or more components separated by dots,199

with each component being a traditional C identifier (one or more ASCII200

letters, digits, or underscores, starting with a non-digit).201

This scheme makes every bundle ID a valid D-Bus well-known name,202

but excludes certain D-Bus well-known names (those containing the hy-203

phen/minus). This allows hyphen/minus to be used in filenames without204

ambiguity, and facilitates the common convention in which a D-Bus ser-205

vice’s main interface has the same name as its well-known name.206

• Application authors should be strongly encouraged to use a DNS name207

that they control, with its components reversed (and adjusted to follow208

the syntactic rules if necessary), as the initial components of the bundle209

ID. For instance, the owners of collabora.com and 7-zip.org might choose210

to publish com.collabora.MyUtility and org._7_zip.Decompressor, respec-211

tively. This convention originated in the Java world and is also used for212

Android application packages, Tizen applications, D-Bus names, GNOME213

applications and so on.214

• App-store curators should not allow the publication of a bundle whose215

name is a prefix of a bundle by a different developer, or a bundle that is216

in the essential software set. App-store curators do not necessarily need217

to verify domain name ownership in advance, but if a dispute arises, the218

app-store curator should resolve it in favour of the owner of the relevant219

domain name.220

• Well-known namespaces used by platform components (such as aper-221

tis.org, freedesktop.org, gnome.org, gtk.org) should be restricted to app222

bundles associated with the relevant projects. Example projects provided223

6http://docs.flatpak.org/en/latest/using-flatpak.html#identifiers
7https://www.apertis.org/concepts/archive/application_framework/application-bundle-

metadata/
8http://docs.flatpak.org/en/latest/using-flatpak.html#identifiers

8

http://docs.flatpak.org/en/latest/using-flatpak.html#identifiers
https://www.apertis.org/concepts/archive/application_framework/application-bundle-metadata/
http://docs.flatpak.org/en/latest/using-flatpak.html#identifiers
http://docs.flatpak.org/en/latest/using-flatpak.html#identifiers
https://www.apertis.org/concepts/archive/application_framework/application-bundle-metadata/
https://www.apertis.org/concepts/archive/application_framework/application-bundle-metadata/
http://docs.flatpak.org/en/latest/using-flatpak.html#identifiers

in SDK documentation should use the names that are reserved for224

examples (see RFC26069), such as example.com, but app-store curators225

should not publish bundles that use such names.226

• Programs in a bundle may use the D-Bus well-known name correspond-227

ing to the bundle ID, or any D-Bus well-known name for which the228

bundle ID is a prefix. For instance, the org.apertis.MyUtility bundle229

could include programs that take the bus names org.apertis.MyUtility,230

org.apertis.MyUtility.UI and/or org.apertis.MyUtility.Agent.231

• If a program has a freedesktop.org .desktop file, its name should be the232

program’s D-Bus well-known name followed by .desktop, for example233

org.apertis.MyUtility.UI.desktop.234

A library available to platform services should provide a recommended imple-235

mentation of this algorithm.236

Application Releasing Process237

Once application testing is complete and an application is ready to be dis-238

tributed, the application releasing process should contain at least the following239

steps:240

• Verify that the application’s bundle ID does not collide with any bundle241

by a different publisher (in the sense that neither is a prefix of the other).242

• Make the application available at the store.243

Application Installation Tracking244

The System Updates and Rollback design describes a method of migrating set-245

tings and data from an existing Apertis system to another one. To work prop-246

erly, the application store would need to have a list of applications installed on247

a specific Apertis device.248

If the application store keeps a database of vehicle IDs and the applications249

purchased for them, this will help in order to facilitate software updates and to250

simplify software re-installation after a system wipe.251

The application store can only know which applications have been downloaded252

for use in a specific vehicle –with no guarantee of a persistent Internet connection,253

the store has no way to know whether the application has really been installed254

or subsequently uninstalled. The store also can’t reliably track what version of255

an application is installed.256

If an application is downloaded on a computer with a web browser (presumably257

for installation via external media), the store shouldn’t assume it was actually258

installed anywhere. Only applications installed directly to the device should be259

logged as installed. When the user logs in to the store (or the device logs into260

9http://www.rfc-editor.org/info/rfc2606

9

http://www.rfc-editor.org/info/rfc2606
http://www.rfc-editor.org/info/rfc2606

the store with the users credentials to check for updates), the list of installed261

packages can be synchronized.262

If an application is installed from a USB storage device the application manager263

could write a synchronization file back to the device that could subsequently be264

uploaded back to the application store from a web browser. Care should be265

taken to ensure these files can’t be used by malicious users to steal applications266

–the store should check that the applications listed in the synchronization file267

have been legitimately purchased by the user and the file’s contents should be268

discarded if they have not.269

To perform a migration for a device that hasn’t had a consistent Internet con-270

nection, the device could be logged into the store to synchronize its application271

list prior to beginning the migration process.272

Digital Rights Management273

Details of how DRM is to be used in Apertis are not finalized yet, but some274

options are presented here.275

The store is in a convenient position to enforce access control methods for appli-276

cations. When an application is purchased, the application store can generate277

the downloadable bundle with installation criteria built in.278

The installation could be locked in the following ways:279

• Locked to a specific device ID –it will only install on a specific Apertis280

unit.281

• Locked to a specific ID of a larger system containing the device running282

Apertis. For instance, in the automotive use case, this could be locked to283

a specific vehicle ID. The Apertis unit will refuse to install the application284

if the vehicle ID does not match the ID embedded in the downloaded285

application package.286

• Locked to a customer ID –It will only install for a specific person, as287

represented by their store account - presumably a store account must be288

present and logged in for this to work. The store account is assumed289

to be analogous to an Apple Store or Google Play account: as noted in290

Terminology, we recommend avoiding the term “user”here, since a store291

account does not necessarily correspond 1:1 to the “users”discussed in the292

Multiuser design document.293

Any “and”combination of these 3 locks could also be used. For example, an294

application bundle may only be installable to a specific device in a specific295

vehicle (in other words, locked to vehicle ID and device ID) –if the Apertis296

unit is placed in another vehicle, or the vehicle’s Apertis unit is replaced, the297

application bundle would not be installable.298

10

Conversely, rights could also be combined with the “or”operator, such as allow-299

ing an application bundle to be installed if either the correct Apertis unit is300

used, or the correct vehicle. Collabora recommends these combinations not be301

implemented. Most of the combinations provided by “or”aren’t obviously useful.302

It might also be useful to distribute some packages in an unlocked form –free303

software, ad sponsored software, or demo software may not require any locking304

at all. Ultimately, this is a policy decision, not a technical one, as they could305

just as easily be locked to the downloader’s account.306

Note that these are all install time checks, and if a device is moved to another307

vehicle after successfully installing a bundle, it may result in running an app308

somewhere that an application developer or OEM didn’t intend it to be run. In309

order to prevent this from happening, it would be more reliable to do launch-310

time testing of the applications.311

The store would generate a file to be bundled with the application that listed the312

launch criteria, and the application manager would check those criteria before313

launching the application for use.314

It should be considered that launch time testing would require a user to be315

logged in to the store in some way if the applications are to be keyed to a store316

account. This would make it impossible to launch certain applications when317

Apertis is without network connectivity, and could be a source of frustration for318

end users.319

Permissions320

Applications can perform many functions on a variety of user data. They may321

access interfaces that read data (such as contacts, network state, or the users322

location), write data, or perform actions that can cost the user money (like send-323

ing SMS). As an example, the Android operating system has a comprehensive324

manifest10 that govern access to a wide array of functionality.325

Some users may wish to have fine grained control over which applications have326

access to specific device capabilities, and even those that don’t should likely be327

informed when an application has access to their data and services.328

See the Permissions concept design11 for further details.329

Ideally, users would be able to accept a subset of permission, but there are some330

difficulties in allowing this:331

• A huge testing burden is placed on the application developer if they can’332

t rely on the requested permissions. They must test their applications in333

all possible configurations.334

10http://developer.android.com/reference/android/Manifest.permission.html
11https://www.apertis.org/concepts/archive/application_security/permissions/

11

http://developer.android.com/reference/android/Manifest.permission.html
https://www.apertis.org/concepts/archive/application_security/permissions/
http://developer.android.com/reference/android/Manifest.permission.html
https://www.apertis.org/concepts/archive/application_security/permissions/

• The permissions may be required for the application developer’s business335

model –be that network permissions for displaying advertising, or GPS336

information for crowd sourcing traffic information. Allowing the user to337

restrict permissions in these situations would be unfair to the developer.338

To mitigate some of these problems, an application author may assume that the339

permissions listed in the Flatpak manifests12 will be available. More sensitive340

permissions are available via runtime requests to the external XDG portals13341

running on the host system; the user may reject access to these permissions at342

their discretion.343

Some permissions may prove to be more of an annoyance than helpful to the user.344

It may be worth considering having some permission acceptance governed by345

system settings, and only directly query the user if a permission is “important”346

(such as sending SMS).347

Data Storage348

Applications will have access to several types of writable application storage, as349

per the official Flatpak guidance on XDG base directories14. In addition, an350

application can request permission to access general storage locations such as351

the user’s home or documents folder.352

Extending Storage Capabilities353

It may be desirable for some Apertis devices to allow the user to install an SD354

card to increase storage capacity. Since SD cards are removable –possibly even355

at runtime –they present some problems that need to be addressed:356

• Allowing applications to be run from SD cards makes it more difficult to357

prevent software piracy.358

• An SD card should be properly unmounted by the system before being359

physically removed from the device.360

It is recommended that SD card storage not be used for the installation of361

applications or any manner of system software, as this could give users a way362

to run untrusted code, or tamper with application settings or data in ways the363

developers haven’t anticipated. Media files are obvious candidates for placement364

on this type of removable storage, as they don’t provide key system functionality,365

and are not trusted data.366

If it is critical that applications (or other trusted data, such as navigation maps)367

be run off of removable storage, allowing the system to “format”the device before368

use, deleting all data already on the card and replacing it with an encrypted369

12https://docs.flatpak.org/en/latest/manifests.html
13https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
14https://docs.flatpak.org/en/latest/conventions.html#xdg-base-directories

12

https://docs.flatpak.org/en/latest/manifests.html
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://docs.flatpak.org/en/latest/conventions.html#xdg-base-directories
https://docs.flatpak.org/en/latest/manifests.html
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html
https://docs.flatpak.org/en/latest/conventions.html#xdg-base-directories

BTRFS filesystem would allow a secure method of placing application storage370

on the device.371

The dm-crypt LUKS15 system would be used to encrypt the storage device372

using a random binary key file. These key files would be generated at the time373

the external storage device is formatted and stored along with the device serial374

number. One way to generate a key file would be to read an appropriate number375

of bytes (such as 32) from /dev/random.376

The key store will be in a directory in the var subvolume (but not in /var/lib)377

as the var subvolume is not tracked by system rollbacks. If the key files were in378

a volume subject to rollbacks, they would disappear and render external storage379

unreadable after a system rollback that crossed their creation date.380

It is imperative that the key store not be accessible to a user as it would allow381

them to directly access their removable storage device on another computer and382

potentially copy and distribute applications.383

The device could be recognized by its label as reported by the blkid command,384

and added to the startup application scan in Boot time procedures.385

If this is extended to multiple SD cards, difficulties arise in deciding which386

storage device to install an application to. Either configuration options will387

need to be added to control this, or the device with the greatest free space at388

the time of installation can be selected.389

Many embedded devices require some manner of disassembly to remove an SD390

card, preventing the user from removing it while the system is in operation (such391

as a mobile phone that hides the SD card behind the battery). If an approach392

such as this is used, there is no need for special “eject”procedures for the SD393

storage. If this is not possible however, some manner of interface will need to394

be provided so the user can safely unmount the SD card before removal.395

If it’s physically possible for a user to remove the SD card while the system396

is running, the operating system and applications may be exposed to difficult397

to recover from situations and poorly tested code paths. These sorts of SD398

card sockets should probably not be used for cards using the BTRFS filesystem.399

Instead, the better tested FAT-32 filesystem should be used.400

Application Management401

Applications will be distributed by the application store as “application bundles”402

containing programs and services that can be launched in a variety of ways.403

All communication with the application store will take place over a404

secure HTTPS connection.405

15https://gitlab.com/cryptsetup/cryptsetup

13

https://gitlab.com/cryptsetup/cryptsetup
https://gitlab.com/cryptsetup/cryptsetup

The metadata in this bundle provides information about the application such406

as it’s user friendly name, services it needs from the system (such as querying407

the GPS) and the permissions it needs from the user.408

Store Applications409

Acquisition Applications will be made available through the application410

store’s corresponding Flatpak repository16.411

Since Apertis may have limited or no Internet connectivity, it must be possible412

to download an application elsewhere and install it from a USB storage device.413

Even if Internet connectivity is available the download process must be reliable414

–it must be possible to resume a partially completed application download if the415

connection is broken or Apertis is shut down before the download completes.416

Installation If an application is being installed directly from the store, an417

icon will be displayed in the launcher while the download and installation takes418

place will now be acquired from the application store.419

Displaying an accurate progress indicator while installing an application is non-420

trivial. One simple option is to include the full decompressed size of the ap-421

plication in its metadata and send an update to the user interface occasionally422

based on the amount of bytes written.423

This assumes that “number of bytes left to install”directly correlates to “amount424

of time left to completion”, and suffers from a couple of common problems:425

• Eventually storage caches are filled and begin writing out causing a dra-426

matic slowdown in apparent installation speed for larger applications.427

• Decompression speed may vary for different OSTree objects that are part428

of the same application.429

• Some of the required files to be downloaded may already be available430

locally, but this will not be known until the file’s digest is determined.431

However, users are unlikely to notice even moderate inaccuracies in an instal-432

lation percentage indicator, so this may be adequate without requiring compli-433

cated development that may not solve these problems anyway.434

Upgrades If configured with a suitable Internet connection, the system will435

periodically check whether upgrades are available for any store applications that436

have been installed. Apertis will provide its vehicle ID to the application store437

and the application store will reply with a list of the most recent versions of the438

applications authorized for the vehicle. If Apertis has had software installed or439

removed without an Internet connection, the list of installed applications will440

be synchronized with the store at this time.441

16https://docs.flatpak.org/en/latest/repositories.html

14

https://docs.flatpak.org/en/latest/repositories.html
https://docs.flatpak.org/en/latest/repositories.html

Some users may voice concerns over the store’s tracking of all the installed442

packages on their Apertis. It may be worth mentioning in a “privacy policy”443

exactly what the data will be used for.444

If no Internet connection is available, the user can still supply a newer version445

of an application on a USB device to start an upgrade. They can acquire ap-446

plication bundles from the store web page, which will provide the latest version447

of applications for download. Old application versions will not be available448

through the store.449

Since the application store attempts to track installed applications, it could450

notify a user by e-mail when updates are available, or show a list of updated451

application when the user logs in to the store.452

Removal When a user removes the application, any personal settings and453

caches required by the application will be automatically removed –files the ap-454

plication has stored in general storage will be left behind.455

Removing a third-party music player shouldn’t delete the user’s music collection,456

but it should delete any configuration information specific to that player. For457

this to work properly, application developers need to be careful to store data in458

the appropriate locations.459

Roll-back Apertis may utilize Flatpak functionality17 to implement a per-460

application rollback system that allows an end user to revert to the last installed461

version of an application (that is, a single previously installed version will be462

kept when an upgrade is performed).463

This rollback paradigm has some interesting quirks:464

• If a user rolls back an application installed system-wide, all other users of465

that application will also be rolled back.466

• As some software updates may contain critical security fixes, an ever grow-467

ing blacklist will have to be maintained to prevent a user from rolling back468

to potentially dangerous versions.469

• A rollback will not modify the application’s data. Thus, if the data has470

been modified by the newer version, it would then be up to the application471

to determine how to handle the changes when loading the data in the472

previous version.473

• Developers will have no control over what software versions their cus-474

tomers are using, making long term support very difficult. They may475

receive bug reports for bugs already fixed in newer versions of the soft-476

ware.477

17https://docs.flatpak.org/en/latest/tips-and-tricks.html#downgrading

15

https://docs.flatpak.org/en/latest/tips-and-tricks.html#downgrading
https://docs.flatpak.org/en/latest/tips-and-tricks.html#downgrading

• Old versions of applications may break if they interact with online services478

that changed their protocols, or if Apertis APIs are deprecated.479

• The effect of a system rollback on installed applications is unclear. If an480

application has been upgraded twice since the last system update and a full481

system rollback occurs it is possible for applications to have no launchable482

version installed.483

• In some cases an application rollback may not even be possible if the old484

version of the application is not capable of running on the current version485

of the system.486

After application rollback, launching the application now will use the previously487

installed version, with all user data left untouched, in identical state as before488

the rollback.489

License Agreements490

Collabora does not have legal expertise in these matters, and any491

authoritative information –especially if financial damages may be492

involved –should be supplied by the appropriate legal advisers.493

Each application may have its own license agreements, privacy policies, or other494

stipulations a user must accept before they can use the application. Different495

OEMs may have different requirements, and the legal requirements governing496

the contents of these documents may vary from country to country.497

Such licenses generally disclose information regarding the use of data collected498

by an application or related services, define acceptable usage of the application499

or services by a user, or discuss the warranty and culpability of the application500

provider.501

Regardless of content, Apertis should make all reasonable efforts to ensure a user502

has agreed to the appropriate agreements before they may use an application.503

The first step to accomplishing this goal is to require a user accept the license504

agreement before downloading an application from the store.505

As this only requires a single user to accept the agreement, and does nothing for506

built-in applications, it is an incomplete solution. Requiring acceptance of the507

license terms when an application is installed, or when it is enabled for a user’s508

account, would increase the likelihood that a user has agreed to the appropriate509

license.510

If license terms change between releases, it might be advisable to ask users511

to accept the license terms on the first launch after an application update or512

rollback as well.513

Ultimately, there is no guarantee that the person using a Apertis account is the514

person that agreed to an application’s license.515

16

Some licenses, such as the GPL, inform the user of their rights to obtain a copy516

of the source code of the software. Licenses like this should be made available517

to the user, but don’t necessarily need to be displayed to the user unless the518

user explicitly requests the information.519

Application Run Time Life-Cycle520

The middleware will assist UI components in launching and managing applica-521

tions on Apertis. Application bundles can provide executable files (programs)522

to be launched via different mechanisms, some of them user visible (perhaps as523

icons on the desktop or home screen that will launch a graphical program), and524

some of them implicit (like a connection manager for the Telepathy framework,525

or a graphical program that does not appear in menus but is launched in order526

to handle a particular request).527

On a traditional Linux desktop, a graphical program doesn’t generally make a528

distinction between foreground and background operation, though it may watch529

for certain events (input focus, window occlusion) that could be used to monitor530

that status. Some mobile operating systems (Android, iOS) hide the details of531

background operation from the user, some (WebOS, Meego) allow the user to532

interact with background applications more directly.533

The approach will be similar to that traditional desktop Linux; an application534

is fully closed upon restart or when requested, and resuming state is entirely535

within its own responsibility.536

Start537

There are multiple ways in which a program associated with an application538

bundle, whether graphical or not, can be started by Apertis:539

• Direct launch –application bundles may contain an image to be displayed540

in the application launcher, which will launch a suitable graphical program.541

The name and icon shown in the application launcher is part of the entry542

point metadata18.543

• By data type association - The content-type (MIME type) of data is used544

to select the appropriate application to handle the request. Applications545

will provide a list of content-types (if any) that they handle in the en-546

try point metadata19; activating the application with the corresponding547

content type will launch the corresponding graphical program.548

• An application can request the ability to launch persistent non GUI pro-549

cesses that provide a background component for applications. These can550

also be launched automatically at boot time. The ability for an application551

18https://www.apertis.org/concepts/archive/application_framework/application-entry-
points/

19https://www.apertis.org/concepts/archive/application_framework/application-entry-
points/

17

https://www.apertis.org/concepts/archive/application_framework/application-entry-points/
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/
https://www.apertis.org/concepts/archive/application_framework/application-entry-points/

to request this is conditional upon the user’s choice, and the application552

is responsible the situation that would arise if background or auto-start553

support were rejected.554

We refer to the programs that are launched in these ways as entry points.555

Another method of launching processes is present –D-Bus activation. If a D-Bus556

client attempts to use a known-name for a service that isn’t currently running,557

D-Bus will search its configuration files for an appropriate handler to launch.558

This sort of activation is more useful for system level developers, and won’t be559

used to launch graphical programs.560

During pre-publication review by the app store, careful attention should be paid561

to application bundles that wish to use background services, and the resource562

consumption of the services. The concept does not scale –it creates a system563

where the number of installed application bundles can dramatically affect run-564

time performance as well as system boot-up time.565

Background Operation566

More than one graphical program may be running at the same time, but the user567

can only directly interact with a limited number of graphical programs at any568

instant. For example, 1/3 of the screen may be giving driving directions while569

the other 2/3 of the screen displays an e-mail application. Concurrently, in the570

background, a music player may be running while several RSS feed readers are571

periodically updating.572

Background tasks may also be performed by long running background processes.573

These run for the duration of the user’s session, and are never explicily termi-574

nated unless the user revokes the background permissions or the system is low575

on resources.576

Graphical programs will be notified by the compositor when they lose focus and577

are relegated to background status –the response to this notification is appli-578

cation dependent. If it has no need to perform processing in the background,579

It may save its current state and self-terminate, or it may remain idle until re-580

focused. Some graphical programs will continue to operate in the background581

–for example, a navigation application might remain active in the background582

and continue to give turn-by-turn instructions.583

Graphical programs that need to perform tasks in the background will have to584

request for permissions20. Ideally they should be designed with a split between585

foreground and background components (perhaps using a graphical program for586

the user interface and a background service for such work) instead.587

If a background graphical program wishes to be focused, it can use the standard588

method for requesting that a window be brought to the foreground.589

20https://www.apertis.org/concepts/archive/application_security/permissions/

18

https://www.apertis.org/concepts/archive/application_security/permissions/
https://www.apertis.org/concepts/archive/application_security/permissions/

End590

Applications written for Apertis have persistent state, so from a user’s perspec-591

tive they never end. Apertis still needs to be able to terminate applications to592

manage resources, perform user switching, or prepare for shutdown.593

Programs –either graphical or not –may be sent a signal by the middleware at594

any time requesting that they save their state and exit. Even if the application595

bundle has permission to run in the background, its processes may still be596

signaled to save its state in the case of a system shut-down or a user switch.597

To prevent an application that doesn’t respond to the state saving request from598

delaying a system shutdown or interfering with the system’s ability to manage599

memory, processes will be given a limited amount of time (5 seconds) to save600

their state before termination. Applications that don’t need to save state should601

simply exit in response to this signal.602

It should be noted that state saving is difficult to implement, and much of the603

work is the responsibility of the application writer. While Apertis can provide604

functions for handling the incoming signal and storing state data, the hardest605

part is determining exactly what application state needs to be saved in order606

for the application to exit and restart in exactly the same way it had been607

previously running.608

There is no standard Linux API for saving application state. POSIX defines609

SIGSTOP and SIGCONT signals for pausing and resuming programs, but these signals610

don’t remove applications from memory or provide any sort of persistence over611

a system restart. Since they’re unblockable by applications, the application may612

be interrupted at any time with no opportunity to do any sort of clean-up.613

However, some applications may react to changes in system state –such as net-614

work connectivity. One method of preventing applications from reacting to615

D-Bus messages, system state changes, and other signaling is to use SIGSTOP to616

halt an application’s processing. The application becomes responsible for han-617

dling whatever arises after SIGCONT causes it to resume processing (such as a618

flood of events or network timeouts).619

Automatically saving the complete state of an application is essentially impos-620

sible - even if the entire memory contents are saved, the application may have621

open files, or open connections on remote servers, or it may have configured622

hardware like the GPU or a Bluetooth device.623

For a web browser the state might be as simple as a URL and display position624

within the page, and the page will be reloaded and redisplayed when the browser625

is re-launched. However, if the user was in the middle of watching a streaming626

video from a service that requires a log-in, the amount of information that needs627

to be retained is larger and has potential security ramifications.628

It’s possible that a viewer application may exit and the file it was viewing be629

deleted before the application’s next start, making it impossible to completely630

19

restore the previous application state. Applications will be responsible for han-631

dling such situations gracefully.632

Resource Usage633

To make better use of the available memory, it’s recommended that applications634

listen to the cgroup notification memory.usage_in_bytes21 and when it gets635

close to the limit for applications, start reducing the size of any caches they636

hold in main memory. It may be good to do this inside the SDK and provide637

applications with a GLib object22 that will notify them.638

In order to reduce the chances that the system will find itself in a situation639

where lack of disk space is problematic, it is recommended that available disk640

space is monitored and applications notified so they can react and modify their641

behavior accordingly. Applications may chose to delete unused files, delete or642

reduce cache files or purge old data from their databases.643

The recommended mechanism for monitoring available disk space is for a dae-644

mon running in the user session to call statvfs (2) periodically on each mount645

point and notify applications with a D-Bus signal. Example code can be found646

in the GNOME project23 which uses a similar approach (polling every 60 sec-647

onds).648

In order to make sure that malfunctioning applications cannot cause disruption649

by filling filesystems, it would be required that each application writes to a650

separate filesystem.651

Applications not Written for Apertis652

It may be desirable to run applications (such as Google Earth) that were not653

written for Apertis. These applications won’t understand any custom signals or654

APIs that Apertis provides, providing yet another reason to minimize those and655

stick to upstream solutions as much as possible.656

References657

This document references the following external sources of information:658

• XDG Base Directory Specification24659

• Apertis System Updates and Rollback25 design660

• Apertis Multiuser26 design661

21https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt
22https://gitlab.gnome.org/GNOME/glib/merge_requests/1005
23http://git.gnome.org/browse/gnome-settings-daemon/tree/plugins/housekeeping/gsd-

disk-space.c#n693
24https://specifications.freedesktop.org/basedir-spec/latest/
25https://www.apertis.org/concepts/platform/system-updates-and-rollback/
26https://www.apertis.org/concepts/archive/application_security/multiuser/

20

https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt
https://gitlab.gnome.org/GNOME/glib/merge_requests/1005
http://git.gnome.org/browse/gnome-settings-daemon/tree/plugins/housekeeping/gsd-disk-space.c#n693
https://specifications.freedesktop.org/basedir-spec/latest/
https://www.apertis.org/concepts/platform/system-updates-and-rollback/
https://www.apertis.org/concepts/archive/application_security/multiuser/
https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt
https://gitlab.gnome.org/GNOME/glib/merge_requests/1005
http://git.gnome.org/browse/gnome-settings-daemon/tree/plugins/housekeeping/gsd-disk-space.c#n693
http://git.gnome.org/browse/gnome-settings-daemon/tree/plugins/housekeeping/gsd-disk-space.c#n693
https://specifications.freedesktop.org/basedir-spec/latest/
https://www.apertis.org/concepts/platform/system-updates-and-rollback/
https://www.apertis.org/concepts/archive/application_security/multiuser/

• Apertis Supported API27 design662

• Apertis Preferences and Persistence28 design663

• Eastlake 3rd, D. and A. Panitz, “Reserved Top Level DNS Names”, BCP664

32, RFC 2606, DOI 10.17487/RFC2606, June 1999 (http://www.rfc-665

editor.org/info/rfc2606)666

27https://www.apertis.org/concepts/archive/application_customization/supported-api/
28https://www.apertis.org/concepts/archive/application_customization/preferences-and-

persistence/

21

https://www.apertis.org/concepts/archive/application_customization/supported-api/
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/
http://www.rfc-editor.org/info/rfc2606
http://www.rfc-editor.org/info/rfc2606
http://www.rfc-editor.org/info/rfc2606
https://www.apertis.org/concepts/archive/application_customization/supported-api/
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/
https://www.apertis.org/concepts/archive/application_customization/preferences-and-persistence/

	Traditional package managers are unfit for applications
	Terminology
	Graphical program
	Bundle
	Store account

	Software Categories
	Pre-installed Applications
	Responsibilities of the Application Store
	Identifying applications
	Application Releasing Process
	Application Installation Tracking
	Digital Rights Management
	Permissions

	Data Storage
	Extending Storage Capabilities

	Application Management
	Store Applications
	License Agreements

	Application Run Time Life-Cycle
	Start
	Background Operation
	End
	Resource Usage
	Applications not Written for Apertis

	References

