
Sysroots and Devroots

Contents1

Sysroot 22

Devroot 33

A comparison 44

Sysroot . 45

Devroot . 46

When to use them 47

Sysroots and devroots are two development rootfs meant to provide an envi-8

ronment to build software for Apertis, targeting foreign architecture that don’9

t match the CPU architecture of the build host (for instance, building ARM6410

binaries from a Intel-based host).11

They are meant to address different use cases with different trade-offs.12

Sysroot13

Sysroots are file system trees specifically meant for cross-compilation and remote14

debugging targeting a specific release image.15

They are meant to be read-only and target a specific release image, shipping16

all the development headers and debug symbols for the libraries in the release17

image.18

Sysroots can be used to cross-compile for Apertis from a third-party environ-19

ment using an appropriate cross-toolchain1. They are most suited for early20

development phases where developers focus on quick iterations and rely on fast21

incremental builds of their components.22

Cross-compilation using sysroot requires support from the project build system,23

which then needs to be set up to appropriately point to the sysroot and to the24

cross compiler. Not all build systems support cross compilation and some may25

require patching to make it work properly.26

The Apertis SDK ships the ade tool to simplify sysroots management and the27

configuration of projects based on the GNU Autotools2 to use them, focusing in28

particular on application development. See the Apertis Development Environ-29

ment3 guide for information on how to use ade.30

Sysroots can be used without ade by manually downloading the sysroot tarball31

from the release artifact repository and then unpack it locally with tar, see the32

1https://www.apertis.org/guides/app_devel/cross-build-toolchain/
2https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.h

tml
3https://www.apertis.org/guides/app_devel/ade/

2

https://www.apertis.org/guides/app_devel/cross-build-toolchain/
https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://www.apertis.org/guides/app_devel/ade/
https://www.apertis.org/guides/app_devel/ade/
https://www.apertis.org/guides/app_devel/ade/
https://www.apertis.org/guides/app_devel/cross-build-toolchain/
https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://www.apertis.org/guides/app_devel/ade/

instructions in the cross-toolchain documentation4 for a full walk-through on33

using them on non-Apertis hosts.34

Since unpacked sysroots are self-contained folders, multiple sysroots can coexist35

on a single system to target multiple architectures and releases: for instance, a36

single system could host the armhf and arm64 sysroots for v2019pre and the arm6437

one for v2020dev0 at the same time. Using the portable cross-build toolchain538

matching the target release is recommended.39

Sysroots are available from the Apertis release artifact repository as sys-40

root*.tar.gz tarballs under the $release/$architecture/sysroot/ folder, for41

instance sysroot-apertis-v2021-amd64-v2021.0.tar.gz6 under v2021.0/arm647.42

Devroot43

Devroots are file system trees meant to offer a foreign architecture build envi-44

ronment via containers and binary emulation via the QEMU user mode.45

Using emulation means that, for instance, all the binaries on the ARM64 devroot46

are ARM64 binaries and QEMU translates them at runtime to execute them on47

a Intel-based host.48

This means that builds under a devroot appear to the build system as native49

builds and no special support or configuration is needed, unlike for actual cross50

builds using sysroots.51

Devroots ship a minimal set of packages and offer the ability to install all the52

packages in the Apertis archive using the apt tool just like on the Apertis SDK53

itself.54

Due to the nature of foreign architecture emulation they impose a considerable55

overhead on build times compared to sysroot, but they avoid all the intricacies56

that cross-building involves and offer the ability to reliably build deb packages57

targeting foreign architectures.58

The Apertis SDK ships the devroot-enter tool to set up the container environ-59

ment needed to work in a unpacked devroot, see the “Programming guidelines”60

section8 for information on how to use devroot-enter.61

Since devroots are self-contained folders like sysroots, multiple devroots may62

be installed at the same time on a single host to target multiple releases and63

architectures.64

4https://www.apertis.org/guides/app_devel/cross-build-toolchain/
5https://www.apertis.org/guides/app_devel/cross-build-toolchain/
6https://images.apertis.org/release/v2021/v2021.0/amd64/sysroot/sysroot-apertis-v2021-

amd64-v2021.0.tar.gz
7https://images.apertis.org/release/v2021/v2021.0/amd64/sysroot/
8https://www.apertis.org/guides/app_devel/tooling/#development-containers-using-

devroot-enter

3

https://www.apertis.org/guides/app_devel/cross-build-toolchain/
https://www.apertis.org/guides/app_devel/cross-build-toolchain/
https://images.apertis.org/release/v2021/v2021.0/amd64/sysroot/sysroot-apertis-v2021-amd64-v2021.0.tar.gz
https://images.apertis.org/release/v2021/v2021.0/amd64/sysroot/
https://www.apertis.org/guides/app_devel/tooling/#development-containers-using-devroot-enter
https://www.apertis.org/guides/app_devel/tooling/#development-containers-using-devroot-enter
https://www.apertis.org/guides/app_devel/tooling/#development-containers-using-devroot-enter
https://www.apertis.org/guides/app_devel/cross-build-toolchain/
https://www.apertis.org/guides/app_devel/cross-build-toolchain/
https://images.apertis.org/release/v2021/v2021.0/amd64/sysroot/sysroot-apertis-v2021-amd64-v2021.0.tar.gz
https://images.apertis.org/release/v2021/v2021.0/amd64/sysroot/sysroot-apertis-v2021-amd64-v2021.0.tar.gz
https://images.apertis.org/release/v2021/v2021.0/amd64/sysroot/
https://www.apertis.org/guides/app_devel/tooling/#development-containers-using-devroot-enter
https://www.apertis.org/guides/app_devel/tooling/#development-containers-using-devroot-enter

Devroots are available from the Apertis release artifact repository as the65

ospack*.tar.gz tarballs under the $release/$architecture/devroot/ folder, for66

instance ospack_v2021-amd64-devroot_v2021.0.tar.gz9 under v2021.0/arm6410.67

As of v2019, the Apertis SDK images come with the armhf devroot pre-installed.68

A comparison69

Sysroot70

• Benefits71

– Fast72

– No special requirements on the system73

– Supports remote debugging by providing symbols matching a specific74

target images75

• Drawbacks76

– Only works with build systems explicitly supporting cross-building77

– Cannot be customized78

Devroot79

• Benefits80

– Builds appears as native builds to build systems, avoiding cross-81

compilation issues82

– Can be fully customized, adding, removing and updating packages83

• Drawbacks84

– Requires a container to be set up on the host (systemd-nspawn is rec-85

ommended)86

– Binary emulation imposes a significant performance overhead87

– Supporting remote debugging requires additional care to ensure that88

symbols match the software running on the target image89

When to use them90

• For application and agent development building app-bundles:91

use the sysroot92

– This is the main use-case for using the sysroot and the ade tool is93

meant to simplify this workflow.94

• For platform development building deb packages: use the dev-95

root96

– Support for cross-building deb packages is spotty, using the devroot97

with devroot-enter provides the most reliable solution in this case98

9https://images.apertis.org/release/v2021/v2021.0/amd64/devroot/ospack_v2021-
amd64-devroot_v2021.0.tar.gz

10https://images.apertis.org/release/v2021/v2021.0/amd64/devroot/

4

https://images.apertis.org/release/v2021/v2021.0/amd64/devroot/ospack_v2021-amd64-devroot_v2021.0.tar.gz
https://images.apertis.org/release/v2021/v2021.0/amd64/devroot/
https://images.apertis.org/release/v2021/v2021.0/amd64/devroot/ospack_v2021-amd64-devroot_v2021.0.tar.gz
https://images.apertis.org/release/v2021/v2021.0/amd64/devroot/ospack_v2021-amd64-devroot_v2021.0.tar.gz
https://images.apertis.org/release/v2021/v2021.0/amd64/devroot/

and enables developers to install extra dependencies not shipped on99

Apertis images by default.100

• To cross-build for Apertis from a third-party SDK: use the sys-101

root102

– If the build system already supports cross-building, using the sysroot103

does not pose additional requirements on the third-party SDK, while104

the devroot requires emulation and a container setup.105

• To build projects not supporting cross-compilation: use the de-106

vroot107

– The devroot is meant to emulate native compilation, side-stepping108

any cross-compilation issue.109

– On a third-party SDK it is still possible to use the devroot using the110

devroot-enter script11 as long as the following tools are available and111

set up:112

∗ qemu-arm-static/qemu-aarch64-static (from the qemu-user-static113

package) for foreign binary emulation114

∗ a binfmt_misc setup for transparent usage of qemu-user-static115

(provided by the binfmt-support package on Debian-based sys-116

tems)117

∗ systemd-nspawn (from the systemd-container package) for setting118

up the containerized environment, “/architecture/sysroots-and-119

devroots”120

11https://gitlab.apertis.org/apertis/apertis-dev-tools/blob/apertis/v2019pre/tools/devroo
t-enter

5

https://gitlab.apertis.org/apertis/apertis-dev-tools/blob/apertis/v2019pre/tools/devroot-enter
https://gitlab.apertis.org/apertis/apertis-dev-tools/blob/apertis/v2019pre/tools/devroot-enter
https://gitlab.apertis.org/apertis/apertis-dev-tools/blob/apertis/v2019pre/tools/devroot-enter

	Sysroot
	Devroot
	A comparison
	Sysroot
	Devroot

	When to use them

