
Data sharing

Contents1

Use cases . 22

Selecting an initiator . 23

Discovery . 34

Connection . 35

Communication . 46

Publish/subscribe via D-Bus . 47

Query-based access via D-Bus . 58

Provider-initiated push via D-Bus 59

Consumer-initiated pull via a stream 610

Provider-initiated push via a stream 711

Bidirectional communication via D-Bus 812

Bidirectional communication via a socket or pair of pipes 813

Resuming communication . 914

Stored state . 915

This page describes design patterns that can be used for inter-process com-16

munication, particularly between applications and background services in the17

same or different app-bundles. We consider a situation in which one or more18

consumers receive information from one or more providers; we refer to the19

consumer and provider together as peers.20

Use cases21

• Points of interest1 should use one of these patterns22

• Sharing2 could use one of these patterns23

• Global search (see ConceptDesigns3) currently carries out the equivalent24

of interface discovery4 by reading the manifest directly, but other than25

that it is similar to Query-based access via D-Bus26

Selecting an initiator27

The first design question is which peer should initiate the connection (the ini-28

tiator) and which one should not (the responder).29

When the connection is first established, the initiator must already be running.30

However, the responder does not necessarily need to be running: in some cases31

it could be started automatically.32

Some guidelines:33

• If one of the peers is a HMI (user interface) that only appears when it34

is started by the user, but the other is a background service, then the35

1https://www.apertis.org/concepts/archive/application/points_of_interest/
2https://www.apertis.org/concepts/archive/application_security/sharing/
3https://www.apertis.org/concepts/archive/application/global-search/
4https://www.apertis.org/concepts/archive/application_framework/interface_discovery/

2

https://www.apertis.org/concepts/archive/application/points_of_interest/
https://www.apertis.org/concepts/archive/application_security/sharing/
https://www.apertis.org/concepts/archive/application/global-search/
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
https://www.apertis.org/concepts/archive/application/points_of_interest/
https://www.apertis.org/concepts/archive/application_security/sharing/
https://www.apertis.org/concepts/archive/application/global-search/
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/

HMI should be the initiator and the background service should be the36

responder.37

• If one of the peers is assumed to be running already, but the other can38

be auto-started on-demand, then the peer that is running already should39

be the initiator, and the peer that can be auto-started should be the40

responder.41

• If the connection is normally only established when one of the peers re-42

ceives user input, then that peer should be the initiator.43

• If there is no other reason to prefer one direction over the other, the44

consumer is usually the initiator.45

Where there are multiple consumers or multiple providers, base the decisions46

on which of these things is expected to be most frequent among consumers and47

among providers.48

Discovery49

Each initiator carries out Interface discovery5 to find implementations of the50

responder. If the initiator is the consumer, the interface that is discovered51

might have a name like com.example.PointsOfInterestProvider. If the initia-52

tor is the provider, the interface that is discovered might have a name like53

com.example.DebugLogConsumer.54

If the responder is known to be a platform service, then interface discovery is55

unnecessary and should not be used. Instead, the initiator(s) may assume that56

the responder exists. Its API documentation should include its well-known bus57

name, and the object paths and interfaces of its “entry point”object.58

Connection59

Each initiator initiates communication with each responder by sending a D-Bus60

method call.61

We recommend that each responder has a D-Bus well-known name matching its62

app ID, using the reversed-DNS-name convention described in the Applications63

design document. For example, if Collabora implemented a PointsOfInterest-64

Provider that advertised the locations of open source conferences, it might be65

named uk.co.collabora.ConferenceList. The responder should be “D-Bus acti-66

vatable”: that is, it should install the necessary D-Bus and systemd files so67

that it can be started automatically in response to a D-Bus message. To make68

this straightforward, we recommend that the platform or the app-store should69

generate these automatically from the application manifest.70

Each interface may define its own convention for locating D-Bus objects71

within an implementation, but we recommend the conventions described in the72

5https://www.apertis.org/concepts/archive/application_framework/interface_discovery/

3

https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces

freedesktop.org Desktop Entry specification6, summarized here:73

• the responder exports a D-Bus object path derived from its app ID (well-74

known name) in the obvious way, for example uk.co.collabora.ConferenceList75

would have an object at /uk/co/collabora/ConferenceList76

• the object at that object path implements a D-Bus interface with77

the same name that was used for interface discovery, for example78

com.example.PointsOfInterestProvider79

• the object at that object path may implement any other interfaces, such80

as org.freedesktop.Application and/or org.freedesktop.DBus.Properties81

If the responder is a platform component, then it does not have an app ID, but82

it should have a documented well-known name following the same naming con-83

vention. If it is a platform component standardized by Apertis, its name should84

normally be in the org.apertis.* namespace. If it implements a standard inter-85

face defined by a third party and that interface specifies a well-known name to be86

used by all implementations (such as org.freedesktop.Notifications), it should87

use that standardized well-known name. If it is a vendor-specific component,88

its name should be in the vendor’s namespace, for example com.bosch.*.89

Communication90

There are several patterns which could be used for the actual communication.91

If the communication is expected to be relatively infrequent (an average of92

several seconds per message, rather than several messages per second) and con-93

vey reasonably small volumes of data (bytes or kilobytes per message, but not94

megabytes), and the latency of D-Bus is acceptable, we recommend that the95

initiator and responder use D-Bus to communicate.96

If the communication is frequent or high-throughput, or low latency is required,97

we recommend the use of an out-of-band stream.98

Publish/subscribe via D-Bus99

This pattern is very commonly used when the initiator is the consumer, the100

message and data rates are suitable for D-Bus, and the communication continues101

over time.102

• The consumer can receive the initial state of the provider by calling a103

method such as ListPointsOfInterest(), or by retrieving its D-Bus proper-104

ties using GetAll(). This method call is often referred to as state recovery.105

• The provider can notify all consumers of changes to its state by emitting106

broadcast signals, or notify a single consumer by using unicast signals.107

The consumer is expected to connect D-Bus signal handlers before it calls108

the initial method, to avoid missing events.109

6http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#in
terfaces

4

http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces

• We recommend that the provider should hold its state on disk or in mem-110

ory so that it can provide state recovery. However, if there is a strong111

reason for a particular interaction to use a “carousel7”model in which state112

is not available, this can be modelled by having the initial method call ac-113

tivate the provider, but not return any state.114

• For efficiency, the design of the provider should ensure that the consumer115

can operate correctly by connecting to signals, then making the state116

recovery method call once. For robustness, the design of the provider117

should ensure that calling the state recovery method call at any time118

would give a correct result, consistent with the state changes implied by119

signals.120

• If required, the consumer can control the provider by calling additional121

D-Bus methods defined by the interface (for example an interface might122

define Pause(), Resume() and/or Refresh() methods)123

A complete interface for the provider might look like this (pseudocode):124

interface com.example.ThingProvider: /* (xy) represents whatever data struc-125

ture is needed */ method ListThings() -> a(xy): things sig-126

nal ThingAdded(x: first_attribute, y: second_attribute) signal ThingRe-127

moved(x: first_attribute, y: second_attribute) method Refresh() -> nothing128

Query-based access via D-Bus129

This pattern is commonly used where the initiator is the consumer and the inter-130

face is used for a series of short-lived HTTP-like request/response transactions,131

instead of an ongoing stream of events or a periodically updated state.132

• The consumer sends a request to the provider via a D-Bus method call.133

This is analogous to a HTTP GET or POST operation, and can contain134

data from the consumer.135

• The provider sends back a response via the D-Bus method response.136

For example, a simple search interface might look like this (pseudocode):137

interface com.example.SearchProvider: /* Return a list of up to @max_results fi138

le:/// URIs with names containing @name_contains, each no larger than @max_size bytes */139

method FindFilesMatching(s: name_contains, t: max_size, u: max_results) -140

> as: file_uris141

(This is merely a simple example; a more elaborate search interface might con-142

sider factors like paging through results.)143

Provider-initiated push via D-Bus144

If the initiator is the provider and the data/message rates are suitable for D-Bus,145

the consumer could implement an interface that receives “pushed”events from146

the provider:147

7https://en.wikipedia.org/wiki/Data_and_object_carousel

5

https://en.wikipedia.org/wiki/Data_and_object_carousel
file:///
file:///
file:///
https://en.wikipedia.org/wiki/Data_and_object_carousel

• the provider can send data by calling a method such as AddPointsOfIn-148

terest()149

• if required, the consumer can influence the provider(s) by emitting broad-150

cast or unicast D-Bus signals defined by the interface (for example an inter-151

face might define PauseRequested, ResumeRequested and/or RefreshRe-152

quested signals)153

A complete interface for the consumer might look like this (pseudocode):154

interface com.example.ThingReceiver: /* (xy) represents whatever data struc-155

ture is needed */ method AddThings(a(xy): things) -> nothing signal Re-156

freshRequested()157

This pattern is unusual, and reversing the initiator/responder roles should be158

considered.159

Consumer-initiated pull via a stream160

If the initiator is the consumer and the data/message rates make D-Bus un-161

suitable, the provider could implement an interface that sends events into an162

out-of-band stream that is provided by the consumer when it initiates commu-163

nication, using the D-Bus type “h”(file-handle) for file descriptor passing. For164

instance, in GDBus, the “_with_unix_fd_list”versions of D-Bus APIs, such as165

g_dbus_connection_call_with_unix_fd_list(), work with file descriptor pass-166

ing.167

• The consumer should create a pipe (for example using pipe2()), keep the168

read end, and send the write end to the provider.169

• If required, the provider may send additional information, such as a filter170

to receive only a subset of the available records.171

• The consumer may pause receiving data by not reading from the pipe. The172

provider should add the pipe to its main loop in non-blocking mode; it173

will receive write error EAGAIN if the pipe is full (paused). The provider174

must be careful to write a whole record at a time: even if it received EA-175

GAIN part way through a record and skipped subsequent records, it must176

finish writing the partial record before doing anything else. Otherwise,177

the structure of the stream is likely to be corrupted.178

• If there are n providers, the consumer would read from n pipes, and could179

receive new records from any of them.180

• If there are m consumers, the provider would have m pipes, and would181

normally write each new record into each of them.182

• The consumer may stop receiving data by closing the pipe. The provider183

will receive write error EPIPE, and should respond by also closing that184

pipe.185

• If required, the consumer could control the provider by calling additional186

methods. For instance, the interface might define a ChangeFilter()187

method.188

6

The advantages of this design are its high efficiency and low latency. The major189

disadvantage of this design is that the provider and consumer need to agree190

on a framing and serialization protocol with which they can write records into191

the stream and read them out again. Designing the framing and serialization192

protocol is part of the design of the interface.193

For the serialization protocol, they might use binary TPEG records, a fixed-194

length packed binary structure, a serialized GVariant of a known type such195

as G_VARIANT_TYPE_VARIANT, or even an XML document. If streams196

in the same format might cross between virtual machines or be transferred197

across a network, interface designers should be careful to avoid implementation-198

dependent encodings such as numbers with unknown endianness, types with199

unknown byte size, or structures with implementation-dependent padding. If200

there is no well-established encoding, we suggest GVariant as a reasonable op-201

tion.202

For the framing protocol, the serialization protocol might provide its own fram-203

ing (for example, fixed-length structures of a known length do not need framing),204

or the interface might document the use of an existing framing protocol such205

as netstrings8, or its own framing/packetization protocol such as “4-byte little-206

endian length followed by that much data”.207

Interface designers should also note that there is no ordering guarantee between208

different pipes or sockets, and in particular no ordering guarantee between the209

D-Bus socket and the out-of-band pipe: if a provider sends messages on two210

different pipes, there they will not necessarily be received in the same order211

they were sent.212

A complete interface might look like this (pseudocode):213

interface com.example.RapidThingProvider: /* Start receiving bi-214

nary Thing objects and write them into * @file_descriptor, until writ-215

ing fails. * * The provider should ignore SIGPIPE, and write to216

* @file_descriptor in non-blocking mode. If a write fails with * EA-217

GAIN, the provider should pause receiving records until * the pipe is ready for read-218

ing again. If a write fails with * EPIPE, this indicates that the pipe has been closed, and219

* the provider must stop writing to it. * * Arguments: * @fil-220

ter: the things to receive * @file_descriptor: the write end of a pipe, as pro-221

duced * by pipe2() */ method Provide-222

Things((some data structure): filter, h: file_descriptor) -> nothing223

method ChangeFilter((some data structure): new_filter) -> nothing224

Provider-initiated push via a stream225

If the initiator is the provider and the data/message rates make D-Bus unsuit-226

able, the consumer could implement an interface that receives events from an227

8https://en.wikipedia.org/wiki/Netstring

7

https://en.wikipedia.org/wiki/Netstring
https://en.wikipedia.org/wiki/Netstring

out-of-band stream that is provided by the provider when it initiates communi-228

cation, again using the D-Bus type “h”(file-handle) for file descriptor passing.229

• The provider should create a pipe (for example using pipe2()), keep the230

write end, and send the read end to the provider.231

• The consumer may pause receiving data by not reading from the pipe. The232

provider should add the pipe to its main loop in non-blocking mode; it will233

receive write error EAGAIN if the pipe is full (paused). The provider must234

be careful to write a whole record at a time, even if it received EAGAIN235

part way through a record and skipped subsequent records.236

• If there are n providers, the consumer would read from n pipes, and could237

receive new records from any of them.238

• If there are m consumers, the provider would have m pipes, and would239

normally write each new record into each of them.240

• The consumer may stop receiving data by closing the pipe. The provider241

will receive write error EPIPE, and should respond by also closing that242

pipe.243

As with its “pull”counterpart, the major disadvantage of this design is that the244

provider and consumer need to agree on a framing and serialization protocol.245

In addition, there is once again no ordering guarantee between different pipes246

or sockets.247

A complete interface might look like this (pseudocode):248

interface com.example.RapidThingReceiver: /* @file_descriptor is the read end of a pipe */249

method ReceiveThings(h: file_descriptor) -> nothing250

Bidirectional communication via D-Bus251

If required, the consumer could provide feedback to the provider by adding ad-252

ditional D-Bus methods and signals to the interface. For example, the Change-253

Filter method described above can be viewed as feedback from the consumer to254

the provider.255

To avoid dependency loops and the potential for deadlocks, we recommend a256

design where method calls always go from the initiator to the responder, and257

method replies and signals always go from the responder back to the initiator.258

Bidirectional communication via a socket or pair of pipes259

If required, the consumer could provide high-bandwidth, low-latency feedback260

to the provider by using file descriptor passing to transfer either an AF_UNIX261

socket or a pair of pipes (the read end of one pipe, and the write end of another),262

and using the resulting bidirectional channel for communication.263

We recommend that this is avoided where possible, since it requires the inter-264

face to specify a bidirectional protocol to use across the channel, and designing265

8

bidirectional protocols that will not deadlock is not a trivial task. Peer-to-peer266

D-Bus is one possibility for the bidirectional protocol.267

As with unidirectional pipes, there is no ordering guarantee between different268

pipes or sockets.269

Resuming communication270

If the system is restarted and the previously running applications are restored,271

and the interface is one where resuming communication makes sense, we rec-272

ommend that the original initiator re-initiates communication. This would nor-273

mally be done by repeating interface discovery9.274

In a few situations it might be preferable for the original initiator to store a list275

of the responders with which it was previously communicating, so that it can276

resume communications with exactly those responders.277

Stored state278

In some interfaces, the provider has a particular state stored in-memory or279

on-disk at any given time, and the inter-process communication works by pro-280

viding enough information that the consumer can reproduce that state. This281

approach is recommended, particularly for publish/subscribe interfaces, where282

it is conventionally what is done.283

If implementations of a publish/subscribe interface are not required to offer full284

state-recovery, the interface’s documentation should specifically say so. The285

normal assumption should be that state-recovery exists and works.286

In the interfaces other than the publish/subscribe model, the initial state may287

be replayed at the beginning of communication by assuming that the consumer288

has an empty state, and sending the same data that would normally represent289

addition of an item or event, either as-is or with some indication that this event290

is being “replayed”. For example, in Consumer-initiated pull via a stream, the291

provider would queue all currently-known items for writing to the stream as292

soon as the connection is opened. The interface’s documentation should specify293

whether this is done or not.294

In interfaces where the provider is stateless and has “carousel10”behaviour, the295

consumer may cache past items/events in memory or on disk for as long as they296

are considered valid.297

Similarly, if a provider that receives items from a carousel implements an inter-298

face that expects it to store state, the provider may cache past items/events in299

memory or on disk for as long as they are considered valid, so that they can be300

provided to the consumer.301

9https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
10https://en.wikipedia.org/wiki/Data_and_object_carousel

9

https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
https://en.wikipedia.org/wiki/Data_and_object_carousel
https://www.apertis.org/concepts/archive/application_framework/interface_discovery/
https://en.wikipedia.org/wiki/Data_and_object_carousel

	Use cases
	Selecting an initiator
	Discovery
	Connection
	Communication
	Publish/subscribe via D-Bus
	Query-based access via D-Bus
	Provider-initiated push via D-Bus
	Consumer-initiated pull via a stream
	Provider-initiated push via a stream
	Bidirectional communication via D-Bus
	Bidirectional communication via a socket or pair of pipes

	Resuming communication
	Stored state

